Skip to main content

Restricting SBH Ambiguity via Restriction Enzymes

  • Conference paper
  • First Online:
Algorithms in Bioinformatics (WABI 2002)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2452))

Included in the following conference series:

Abstract

The expected number of n-base long sequences consistent with a given SBH spectrum grows exponentially with n, which severely limits the potential range of applicability of SBH even in an error-free setting. Restriction enzymes (RE) recognize specific patterns and cut the DNA molecule at all locations of that pattern. The output of a restriction assay is the set of lengths of the resulting fragments. By augmenting the SBH spectrum with the target string’s RE spectrum, we can eliminate much of the ambiguity of SBH. In this paper, we build on [20] to enhance the resolving power of restriction enzymes. We give a hardness result for the SBH+RE problem, and supply improved heuristics for the existing backtracking algorithm. We prove a lower bound on the number restriction enzymes required for unique reconstruction, and show experimental results that are not far from this bound.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Andrews. The Theory of Partitions. Addison-Wesley, Reading, Mass., 1976.

    MATH  Google Scholar 

  2. R. Arratia, D. Martin, G. Reinert, and M. Waterman. Poisson process approximation for sequence repeats, and sequencing by hybridization. J. Computational Biology, 3:425–463, 1996.

    Google Scholar 

  3. W. Bains and G. Smith. A novel method for nucleic acid sequence determination. J. Theor. Biol., 135:303–307, 1988.

    Article  Google Scholar 

  4. A. Ben-Dor, I. Pe’er, R. Shamir, and R. Sharan. On the complexity of positional sequencing by hybridization. Lecture Notes in Computer Science, 1645:88–98, 1999.

    Google Scholar 

  5. A. Chetverin and F. Kramer. Oligonucleotide arrays: New concepts and possibilities. Bio/Technology, 12:1093–1099, 1994.

    Article  Google Scholar 

  6. N.G. de Bruijn. A combinatorial problem. Proc. Kon. Ned. Akad. Wetensch, 49:758–764, 1946.

    Google Scholar 

  7. R. Dramanac and R. Crkvenjakov. DNA sequencing by hybridization. Yugoslav Patent Application 570, 1987.

    Google Scholar 

  8. S. Fodor, J. Read, M. Pirrung, L. Stryer, A. Lu, and D. Solas. Light-directed, spatially addressable parallel chemical synthesis. Science, 251:767–773, 1991.

    Article  Google Scholar 

  9. A. Frieze and B. Halldorsson. Optimal sequencing by hybridization in rounds. In Proc. Fifth Conf. on Computational Molecular Biology (RECOMB-01), pages 141–148, 2001.

    Google Scholar 

  10. M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the theory of NP-completeness. W. H. Freeman, San Francisco, 1979.

    MATH  Google Scholar 

  11. Y. Lysov, V. Florentiev, A. Khorlin, K. Khrapko, V. Shik, and A. Mirzabekov. Determination of the nucleotide sequence of dna using hybridization to oligonucleotides. Dokl. Acad. Sci. USSR, 303:1508–1511, 1988.

    Google Scholar 

  12. P. Pevzner, Y. Lysov, K. Khrapko, A. Belyavski, V. Florentiev, and A. Mizabelkov. Improved chips for sequencing by hybridization. J. Biomolecular Structure & Dynamics, 9:399–410, 1991.

    Google Scholar 

  13. P. A. Pevzner and R. J. Lipshutz. Towards DNA sequencing chips. 19th Int. Conf. Mathematical Foundations of Computer Science, 841:143–158, 1994.

    Google Scholar 

  14. P.A. Pevzner. l-tuple DNA sequencing: Computer analysis.J. Biomolecular Structure and Dynamics, 7:63–73, 1989.

    Google Scholar 

  15. V. Phan and S. Skiena. Dealing with errors in interactive sequencing by hybridization. Bioinformatics, 17:862–870, 2001.

    Article  Google Scholar 

  16. F. P. Preparata and E. Upfal. Sequencing-by-hybridization at the informationtheory bound: An optimal algorithm. In Proc. Fourth Conf. Computational Molecular Biology (RECOMB-00), pages 245–253, 2000.

    Google Scholar 

  17. R. Roberts. Rebase: the restriction enzyme database. http://rebase.neb.com, 2001.

  18. R. Shamir and D. Tsur. Large scale sequencing by hybridization. In Proc. Fifth International Conf. on Computational Molecular Biology (RECOMB-01), pages 269–277, 2001.

    Google Scholar 

  19. S. Skiena and G. Sundaram. Reconstructing strings from substrings. J. Computational Biology, 2:333–353, 1995.

    Article  Google Scholar 

  20. S. Snir, E. Yeger-Lotem, B. Chor, and Z. Yakhini. Using restriction enzymes to improve sequencing by hybridization. Technical Report CS-2002-14, Department of Computer Science,The Technion, Haifa, Israel, 2002.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Skiena, S., Snir, S. (2002). Restricting SBH Ambiguity via Restriction Enzymes. In: GuigĂł, R., Gusfield, D. (eds) Algorithms in Bioinformatics. WABI 2002. Lecture Notes in Computer Science, vol 2452. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45784-4_30

Download citation

  • DOI: https://doi.org/10.1007/3-540-45784-4_30

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44211-0

  • Online ISBN: 978-3-540-45784-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics