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Abstract. The validity of segmentation is an important issue in image processing
because it has a direct impact on surgical planning. Binary manual segmenta-
tion is not only time-consuming but also lacks the ability of differentiating subtle
intensity variations among voxels, particularly for those on the border of a tu-
mor and for different tumor types. Previously we have developed an automated
segmentation method that yields voxel-wise continuous probabilistic measures,
indicating a level of tumor presence. The goal of this work is to examine three
accuracy metrics based on two-sample statistical methods, against the estimated
composite latent ground truth derived from several experts’ manual segmentation
by a maximum likelihood algorithm. We estimated the distribution functions of
the tumor and control voxel data parametrically by assuming a mixture of two beta
distributions with different shape parameters. We derived the resulting receiver op-
erating characteristic curves, Dice similarity coefficients, and mutual information,
over all possible decision thresholds. Based on each validation metric, an optimal
threshold was then computed via maximization. We illustrated these methods on
MR imaging data from nine brain tumor cases, three with meningiomas, three
astrocytomas, and three other low-grade gliomas. The automated segmentation
yielded satisfactory accuracy, with varied optimal thresholds.

1 Introduction

Surgical planning and image-guided intervention procedures increasingly employ semi-
automated segmentation algorithms. MR imaging of the brain provides useful informa-
tion about its anatomical structure, enabling quantitative pathological or clinical studies.
Brain segmentation frequently assigns unique labels to several classes, e.g., skin, brain
tissue, ventricles and tumor, representing an anatomic structure to each voxel in an input
gray-level image.

Binary (two-class) manual segmentation is a simple and yet time-consuming proce-
dure. It also has the difficulty of differentiating subtle intensity variations among voxels,
particularly for those on the border of a tumor. However, the results of such manual
segmentations may ultimately influence the amount and degree of tumor removal.

Recently, Warfield et al. have proposed an automated segmenter that yields voxel-
wise continuous probabilistic measures indicative of malignancy (see [1] for an exam-
ple). Thus, methods for validating continuous segmentation data are required. The aim
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of this study was to evaluate the performance of this segmenter by examining three
validation metrics, compared against combined experts’ manual segmentations as the
ground truth.

The most important element in validating the accuracy of a segmentation algorithm
is the ground truth, which is the classification truth of each voxel. For simplicity, we
assume a two-class truth by labeling the non-tumor class as C0 and tumor class as C1.

For the purpose of comparing two sets of binary segmentation results, several ac-
curacy and reliability metrics may be found in the literature [2]. For example, Jaccard
(JSC) [3] and Dice (DSC) [4] similarity coefficients are typically used as a measure of
overlap; DSC ranges from 0, indicating no similarity between these two sets of binary
segmentation results, to 1, indicating complete agreement.

In order to evaluate the performance of a “continuous classifier", the distributions
in the two distinct classes, C0 and C1, may be directly compared using two-sample
statistics such as a Student’s t-test or a nonparametric Mann-Whitney U-statistic. Alter-
natively, a Komogorov-Smirnov test may be used to directly compare the two underlying
distributions. Other distance measures between the two sets may also be considered.

Several statistical methods may be adopted for assessing the performance of a con-
tinuous classifier. A popular method for assessing the overall classification accuracy is a
receiver operating characteristic (ROC) curve, a function of sensitivity vs. (1-specificity).
Zou et al. developed several methods, including nonparametric, semiparametric, and
parametric, for estimating and comparing ROC curves derived from continuous data
[5,6]. The goal of this work is to examine and illustrate three accuracy metrics, ROC
curve, mutual information, and Dice similarity coefficient, to validate automated prob-
abilistic brain tumor segmentations.

2 Notations and Assumptions

For simplicity, we assume that individual voxels belong to one of two distinct and
independent populations (i.e., non-tumor control class, C0 vs. tumor class, C1), de-
termined by the ground truth, T . Consider two random samples, Xi (i = 1, ..., m)
and Yj (j = 1, ..., n), drawn from C0 and C1, respectively. The observed continuous
random variable is labeled Z of prosbabilistic segmentation measures. The continuous
random variable Z generates our probabilistic segmentation data, while the ground truth
T determines the true voxel-wise classes. Stratified by the truth, for each member of
class C0, there is a measurement X ∼ (Z|T = 0) assumed to have cumulative dis-
tribution function (c.d.f.) F , with probability density function (p.d.f.) f and survival
function F = 1 − F. Similarly, for each member of class C1, there is a measurement
Y ∼ (Z|T = 1) assumed to have c.d.f. G with p.d.f. g and survival function G = 1−G.

We assume that the ground truth, T , has a Bernoulli distribution, with a probability of
Pr(T = 0) = π = m/(m + n) for class C0 and the tumor probability of Pr(T = 1) =
π = 1−π = n/(m+n) for class C1. By Bayes’Theorem, the marginal distribution of Z
is a mixture of F and G, with mixing proportions π and π. That is, CDF K = π ·F +π ·G
with pdf k, where the p.d.f. of Z is

k(z) = πf(z) + πg(z), with π + π = 1 (∀z ∈ [0, 1]). (1)
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Specifying any arbitrary threshold, γ ∈ (0, 1) for Z, yields a discretized version of
a decision random variable, Dγ . This implies the equivalence of the following events:
{Dγ = 0} ≡ {Z ≤ γ} and {Dγ = 1} ≡ {Z > γ}. Thus, we may construct Table 1:

Table 1. A two-by-two table of the joint probabilities of the truth (T ) vs. the correspond-
ing segmentation decision (Dγ) at each possible threshold γ.

Decision vs. Truth T = 0 (non-tumor) T = 1 (tumor)

Dγ = 0 (non-tumor) p11 p12

Dγ = 1 (tumor) p21 p22

Marginal Total π π

where

p11 = P (Dγ = 0, T = 0) = P (Z ≤ γ|T = 0)P (T = 0) = πF (γ),
p21 = P (Dγ = 1, T = 0) = P (Z > γ|T = 0)P (T = 0) = πF (γ),
p12 = P (Dγ = 0, T = 1) = P (Z ≤ γ|T = 1)P (T = 1) = πG(γ),
p22 = P (Dγ = 1, T = 1) = P (Z > γ|T = 1)P (T = 1) = πG(γ).

Note that the marginal totals, p11 + p21 = π and p12 + p22 = π, are related to the
Bernoulli parameter of T . Let pγ = F (γ) and qγ = G(γ) (see Section 4.1) [5,6].

3 Estimation of the Composite Latent Binary Ground Truth
and Modeling Assumptions for the Probabilistic Segmentations

3.1 Composite Latent Ground Truth Based on Experts’ Manual Segmentations

Instead of directly observing the ground truth, T , we conduct manual segmentations by
having R expert readers, each perform binary manual segmentation Blr (l = 1, ..., N =
m+n; r = 1, ..., R). Each expert gave a0r and a1r correct counts (agreements with the
truth) for classes C0 and C1, respectively. Let Q0r and Q1r represent the true accuracy
rates under these two classes. The experts’ decisions are assumed to be conditionally
independent, given the latent truth. We only observe binary classification decision Blr,
i.e., (Blr|Tl, Q0r, q1r) ⊥ (Blr′ |Tl, Q0r′ , Q1r′), for any two different experts, r �= r′.

We wish to estimate the latent vectorT, of length N , by T̂ = arg maxT p(B|T,Q0,
Q1), for all N = m+n voxels. However, these classification probabilities Q0 and Q1,
each a vector of length R, are unknown quantities. An iterative maximum likelihood
algorithm [7,8] has been developed by realizing that the quality fractions (Q0r|T) and
(Q1r|T) have independent beta distributions with modes (a0r/m) and (a1r/n) as their
estimates.

3.2 A Beta Mixture Model of Probabilistic Segmentation Data

Recall that the continuous random variables, X and Y , are the probabilistic segmentation
results for classes C0 and C1, stratified by the ground truth T . Because both X and Y
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take values between [0, 1], it is conventional and flexible to assume independent beta
distributions, i.e., F (x) ∼ Beta(αx, βx) and G(y) ∼ Beta(αy, βy). The expectation and
variance of a Beta(α, β) distribution are known to be α/(α+β) and αβ/{(α+β)2(α+
β + 1)}, respectively. Thus, the estimates (α̂x, β̂x) of the shape parameters based on
the x-sample of C0 may be obtained by matching the first two moments (mean and
variance). To match the sample mean x and standard deviation sx of the x-sample, it can
be shown that α̂x = x{x(1−x)/s2

x −1}, β̂x = (1−x){x(1−x)/s2
x −1}. Similarly for

α̂y and β̂y , computed based on the two moments, y and sy , of the y-sample of C1. Three
validation metrics are presented with a higher value in [0,1] indicating higher accuracy.

4 Three Validation Accuracy Metrics

4.1 Sensitivity, Specificity, and ROC Analysis

The accuracy of a diagnostic test can be summarized in terms of an ROC curve [5,6]. It
is a plot of sensitivity (true tumor fraction) vs. (1-specificity) (true non-tumor fraction)
based on Z and T , at all possible thresholds.

Conventionally, pγ = F (γ) is labeled as false positive rate (FPR or 1 − specificity),
on the x-axis of an ROC curve. True positive rate (TPR or sensitivity) is qγ = G(γ) at

the specified γ, or qp = G ◦ F
−1

(p) at any specified p, on the y-axis of an ROC curve.

The ROC curve is (F (γ), G(γ)) for γ ∈ [0, 1], or (p, G ◦ F
−1

(p)) for p ∈ [0, 1]. There
is always a tradeoff between these two error rates, false positive and false negative rates,
both taken values in [0, 1].

An overall summary accuracy measure is the area under the ROC curve, AUC:

AUC = P (X < Y ) =
∫ 1

γ=0
G(γ) dF (γ) =

∫ 1

p=1
q(p) dp. (2)

4.2 Dice Similarity Coefficient

At any arbitrary threshold γ, Dice similarity coefficient (DSC), Dγ may be computed as
a function of the sensitivity and specificity. Following the convention of an ROC plot,
label the false positive rate pγ = P (Z > γ|T = 0) = P (Dγ = 1|T = 0) and the true
positive rate qγ = P (Z > γ|T = 1) = P (Dγ = 1|T = 1). According to the definition
of DSCγ [4] for the tumor class and Bayes’ Theorem, the Jaccard similarity coefficient
at γ, JSCγ ,is defined as the voxel ratio of union and intersection between the two tumor
classes determined separately by Dγ and by T [3]:

JSCγ ≡ #{(Dγ = 1) ∩ (T = 1)}
#{(Dγ = 1) ∪ (T = 1)}

=
P (Dγ = 1|T = 1)P (T = 1)

P (Dγ = 1) + P (T = 1) − P (Dγ = 1|T = 1)P (T = 1)

=
P (Dγ = 1|T = 1)P (T = 1)

P (Dγ = 1|T = 0)P (T = 0) + P (T = 1)
=

πqγ

πpγ + π
=

πG(γ)
πF (γ) + π

.
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(Note that the DSC for the non-tumor may be computed similarly but may not be of
interest.) An overall DSC, DSC, based on JSCγ is defined by integrating over γ:

DSC =
∫ 1

γ=0
2JSCγ/(JSCγ + 1) dγ. (3)

4.3 Entropy and Mutual Information

The mutual information between the binary decision Dγ at any threshold γ and the
ground truth T can be computed as follows [9]:

MIγ = MI(Dγ , T ) = H(Dγ) + H(T ) − H(Dγ , T ), (4)

where

H(Dγ) = −(p11 + p12) log2(p11 + p12) − (p21 + p22) log2(p21 + p22)
= −(πpγ + πqγ) log2(πpγ + πqγ) − (πpγ + πqγ) log2(πpγ + πqγ),

H(T ) = −(p11 + p21) log2(p11 + p21) − (p12 + p22) log2(p12 + p22)
= −π log2(π) − π log2(π),

H(Dγ , T ) = −p11 log2(p11) − p12 log2(p12) − p21 log2(p21) − p22 log2(p22)
= −πpγ log2(πpγ) − πpγ log2(πpγ) − πpγ log2(πpγ) − πqγ log2(πqγ),

with the joint probabilities, (p11, p12, p21, p22), given in Table 1.
The mutual information between the continuous random variable Z and T may also

be computed using a conditioning entropy approach (with proof omitted):

MI(Z, T ) = H(Z) − H(Z|T )
= −EZ [log2{k(Z)}] − πEZ [log2{f(Z)}] − πEZ [log2{g(Z)}]

= −
∫ 1

z=0

[
k(z) log2{k(z)} − πf(z) log2{f(z)} − πg(z) log2{g(z)}]

dz,

where k(z) = πf(z) + πg(z) as in (1).

4.4 Determination of an Optimal Threshold

Each of the above criteria, e.g., the square-root of the sum of squared sensitivity and

specificity,
√

q2
γ + (1 − pγ)2, mutual information MIγ , and Dice similarity coefficient

(DSCγ) may be maximized numerically over the entire range of γ in order to obtain an
optimal threshold γ̂opt. Computations and optimizations were performed on a SunMi-
crosystem SunBlade 100 Workstation and in Matlab6, S-Plus6.0 and C languages.

5 A Clinical Example: MRI of Three Types of Brain Tumors

5.1 Materials and Methods

(1) The Cases: A total of nine patients were selected from a neurosurgical database of
260 brain tumor patients, of which three had meningiomas (M), three astrocytomas (A),



320 K.H. Zou et al.

and three other low-grade gliomas (G)[10]. The meningiomas enhanced well but the
gliomas did not.
(2) Imaging Protocol: Patient heads were imaged in the sagittal planes with a 1.5T MR
imaging system (Signa, GE Medical Systems, Milwaukee, WI), with a postcontrast 3D
sagittal spoiled gradient recalled (SPGR) acquisition with contiguous slices (flip angle,
45◦); repetition time (TR), 35 ms; echo time (TE), 7 ms; field of view, 240 mm; slice-
thickness, 1.5 mm; 256× 256× 124 matrix). The acquired MR images were transferred
onto a UNIX network via Ethernet.
(3) Automated Probabilistic Segmentation: The automated probabilistic segmentation
was the relative tumor probability of lesion per voxel with signal intensity modeled
as a Gaussian mixture of the two classes based on an initial semi-automated binary
segmentation (left panel of Fig 1, in an example case) [10].
(4) Manual Binary Segmentation and Composite Ground Truth:An interactive segmen-
tation tool (MRX, GE Medical Systems, Schenectady, NY) was employed and ran on
an Ultra 10 Workstation (Sun Microsystems, Mountain View, CA). The structures were
outlined slice-wise by expert operators using a mouse. The program connected consec-
utive points with lines. An anatomical object was defined by closed contour, and the
program labeled every voxel of the enclosed volume. For the purpose of validation, we
randomly selected one single 2D slice for each case from the subset of the MR volume
with the tumor. Manual segmentation was performed independently by 3 expert oper-
ators (blinded to the machine segmentation results) to outline the brain and the tumor.
An M.L.E of voxel-wise composite ground truth was determined. The remaining voxels
were labeled as background. Stratified analyses are conducted by tumor type based on
the estimated composite voxel-wise ground truth.

5.2 Results

We show semi-automated binary segmentations of a meningioma to derive the proba-
bilistic results, with the empirical and approximated beta densities by truth (Fig 1).
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Fig. 1. Left Panel: Automated Binary segmentation of a slice of meningioma used as a basis for
probablistic segmentation. Right Panel: The empirical (relative frequency histograms) and the
approximated beta distributions (smooth lines) of the continuous segmentation data.
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For all cases, we reported the voxel counts (m, n), stratified by the ground truth. The
sample means and SD’s of the non-tumor and tumor probability data were reported and
were used to estimate the shape parameters of the beta distributions (Table 2).

Table 2. Sample Statistics and Estimated Beta Parameters for 9 Cases.

Tumor Voxel Counts Sample Means and SD’s Estimated Beta Parameters

Type m n π = n/N x̄ sx ȳ sy α̂x β̂x α̂y β̂y

M 10534 1175 10% 0.0316 0.1264 0.8683 0.2954 0.0289 0.8848 0.2693 0.0408

15363 1503 8.9% 0.0207 0.0890 0.8479 0.3344 0.0321 1.5227 0.1301 0.0233

12891 1045 7.5% 0.1797 0.2746 0.7775 0.2619 0.1716 0.7832 1.1835 0.3387

A 10237 268 2.6% 0.3682 0.1548 0.6347 0.2703 3.2081 5.5044 1.3790 0.7937

11579 1428 11.0% 0.1812 0.2496 0.7684 0.2773 0.2500 1.1303 1.0098 0.3043

7148 1379 16.2% 0.0621 0.1229 0.9613 0.1742 0.1773 2.6790 0.2173 0.0087

G 8952 1417 13.7% 0.0112 0.0908 0.8693 0.3177 0.0038 0.3394 0.1090 0.0164

12679 1177 8.5% 0.1564 0.2803 0.7398 0.2731 0.1063 0.5732 1.1691 0.4112

9635 1873 16.3% 0.2275 0.2630 0.7369 0.2765 0.3505 1.1903 1.1314 0.4040

The overall validation accuracies were generally high but were variable, and gener-
ally the highest for meningiomas but lowest for astrocytomas. Furthermore, the recom-
mended optimal thresholds varied by metric and case (Table 3).

Table 3. Estimated Accuracy metrics (ROC, MI and DSC) and Optimal Thresholds.

Tumor Validation Metrics Optimal Thresholds
Type AUC MI DSC

√
(1 − p)2 + q2 γ̂opt MI γ̂opt DSC γ̂opt

M 0.9842 0.2888 0.8154 1.3255 0.4709 0.3107 0.8625 0.8730 0.8734
0.9684 0.3012 0.8415 1.2834 0.8448 0.3065 0.8521 0.8931 0.8268
0.9242 0.1572 0.4220 1.1844 0.2622 0.1098 0.4657 0.5185 0.8414

A 0.7860 0.0557 0.1970 1.0050 0.7713 0.0415 0.7728 0.4871 0.7808
0.9255 0.2319 0.5146 1.1881 0.4469 0.1598 0.6843 0.6321 0.8005
0.9858 0.4649 0.8708 1.4142 1.0000 0.5669 0.8553 0.9724 0.8385

G 0.9829 0.4018 0.8961 1.3720 0.0120 0.4032 0.4905 0.8992 0.6736
0.9157 0.1595 0.4396 1.1735 0.0773 0.1276 0.2232 0.4897 0.6511
0.8956 0.2505 0.5276 1.1417 0.4547 0.1693 0.6191 0.6197 0.7113

6 Summary

In this work, we have presented systematic approaches to validating the accuracy of
automated segmentation results that generates voxel-wise probabilistic interpretation of
the tumor class. We developed an M.L.E. algorithm for estimating the latent ground
truth. In addition, we modeled the probabilistic segmentation results using a mixture
of two beta distributions with different shape parameters. Summary accuracy measures,
including ROC curve, mutual information, and Dice similarity coefficient, are estimated.
An optimal threshold was derived under each metric.

The example data showed satisfactory accuracy of our automated segmentation al-
gorithm. The recommended optimal threshold, however, was significantly case- and task
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(metric)-dependent. The main advantage of our approaches is that the parametric mod-
eling is simple and probabilistic. The estimation procedures are straightforward and are
generalizable to similar statistical validation tasks of segmentation methods.
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