Skip to main content

Learning Languages with Help

  • Conference paper
  • First Online:
Grammatical Inference: Algorithms and Applications (ICGI 2002)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2484))

Included in the following conference series:

  • 330 Accesses

Abstract

Grammatical inference consists in learning formal grammars for unknown languages when given learning data. Classically this data is raw: strings that belong to the language and eventually strings that do not. We present in this paper the possibility of learning when presented with additional information such as the knowledge that the hidden language belongs to some known language, or that the strings are typed, or that specific patterns have to/can appear in the strings. We propose a general setting to deal with these cases and provide algorithms that can learn deterministic finite automata in these conditions. Furthermore the number of examples needed to correctly identify can diminish drastically with the quality of the added information. We show that this general setting can cope with several well known learning tasks.

This work was done when the second author visited the Departamento de Lenguajes y Sistemas Informáticos of the University of Alicante, Spain. The visit was sponsored by the Spanish Ministry of Education.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. D. Angluin. Learning regular sets from queries and counterexamples. Information and Control, 39:337–350, 1987.

    Article  MathSciNet  Google Scholar 

  2. M. Bernard and A. Habrard. Learning stochastic logic programs. Int. Conf. on Inductive Logic Programming, Work in progress session, 2001.

    Google Scholar 

  3. H. Boström. Theory-Guided Induction of Logic Programs by Inference of Regular Languages. In Int. Conf. on Machine Learning, 1996.

    Google Scholar 

  4. R. Carrasco and J. Oncina. Learning stochastic regular grammars by means of a state merging method. In ICGI’94, number 862 in LNAI, pages 139–150, 1994.

    Google Scholar 

  5. C. de la Higuera. Characteristic sets for polynomial grammatical inference. Machine Learning, 27:125–138, 1997.

    Article  MATH  Google Scholar 

  6. C. de la Higuera and M. Bernard. Apprentissage de programmes logiques par inférence grammaticale. Revue dÍntelligence Artificielle, 14(3):375–396, 2001.

    Google Scholar 

  7. C. de la Higuera, J. Oncina, and E. Vidal. Identification of DFA: data-dependent versus data-independent algorithm. In ICGI’96, number 1147 in LNAI, pages 313–325, 1996.

    Google Scholar 

  8. P. Dupont, L. Miclet, and E. Vidal. What is the search space of the regular inference? In ICGI’ 94, number 862 in LNAI, pages 25–37, 1994.

    Google Scholar 

  9. H. Fernau. Identification of function distinguishable languages. In Int. Conf. on Algorithmic Learning Theory, volume 1968 of LNCS, pages 116–130, 2000.

    Chapter  Google Scholar 

  10. H. Fernau. Learning xml grammars. In Machine Learning and Data Mining in Pattern Recognition MLDM’01, number 2123 in LNCS, pages 73–87, 2001.

    Chapter  Google Scholar 

  11. K. S. Fu and T. L. Booth. Grammatical inference: Introduction and survey. part i and ii. IEEE Transactions on Syst. Man. and Cybern., 5:59–72 and 409–423, 1975.

    Google Scholar 

  12. T. Goan, N. Benson, and O. Etzioni. A grammar inference algorithm for the world wide web. In Proc. of AAAI Spring Symp. on Machine Learning in Information Access., 1996.

    Google Scholar 

  13. E. M. Gold. Language identification in the limit. Information and Control, 10(5):447–474, 1967.

    Article  MATH  Google Scholar 

  14. E. M. Gold. Complexity of automaton identification from given data. Information and Control, 37:302–320, 1978.

    Article  MATH  MathSciNet  Google Scholar 

  15. K. J. Lang, B. A. Pearlmutter, and R. A. Price. Results of the Abbadingo one DFA learning competition and a new evidence-driven state merging algorithm. In ICGI’98, number 1433 in LNAI, pages 1–12, 1998.

    Google Scholar 

  16. S. Muggleton. Inductive Logic Programming. In The MIT Encyclopedia of the Cognitive Sciences (MITECS). MIT Press, 1999.

    Google Scholar 

  17. J. Oncina and P. García. Identifying regular languages in polynomial time. In Advances in Structural and Syntactic Pattern Recognition, pages 99–108. 1992.

    Google Scholar 

  18. D. Ron, Y. Singer, and N. Tishby. On the learnability and usage of acyclic probabilistic finite automata. In Proc. of COLT 1995, pages 31–40, 1995.

    Google Scholar 

  19. Y. Sakakibara. Recent advances of grammatical inference. Theoretical Computer Science, 185:15–45, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  20. Y. Sakakibara and H. Muramatsu. Learning context-free grammars from partially structured examples. In ICGI’00, number 1891 in LNAI, pages 229–240, 2000.

    Google Scholar 

  21. L. G. Valiant. A theory of the learnable. Com. of the ACM, 27(11):1134–1142, 1984.

    Article  MATH  Google Scholar 

  22. M. Young-Lai and F. W. Tompa. Stochastic grammatical inference of text database structure. Machine Learning, 40(2):111–137, 2000.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kermorvant, C., de la Higuera, C. (2002). Learning Languages with Help. In: Adriaans, P., Fernau, H., van Zaanen, M. (eds) Grammatical Inference: Algorithms and Applications. ICGI 2002. Lecture Notes in Computer Science(), vol 2484. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45790-9_13

Download citation

  • DOI: https://doi.org/10.1007/3-540-45790-9_13

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44239-4

  • Online ISBN: 978-3-540-45790-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics