Abstract
Learning from positive data is a center goal in grammatical inference. Some language classes have been characterized in order to allow its learning from text. There are two different approaches to this topic: (i) reducing the new classes to well known ones, and (ii) designing new learning algorithms for the new classes. In this work we will use reduction techniques to define new classes of even linear languages which can be inferred from positive data only. We will center our attention to inferable classes based on local testability features. So, the learning processes for such classes of even linear languages can be performed by using algorithms for locally testable regular languages.
Work supported by the Spanish CICYT under contract TIC2000-1153.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
V. Amar and G. Putzolu. On a Family of Linear Grammars. Information and Control 7, pp 283–291. 1964.
D. Angluin. Inductive Inference of Formal Languages from Positive Data. Information and Control 45, pp 117–135. 1980.
D. Angluin. Inference of Reversible Languages. Journal of the Association for Computing Machinery. Vol 29 No 3, pp 741–765. July 1982.
D. Angluin and C. Smith. Inductive Inference: Theory and Methods. Computing Surveys, vol. 15. No. 3, pp 237–269. 1983.
J.D. Emerald, K.G. Subramanian and D.G. Thomas. Learning code regular and code linear languages. Proceedings of the Third International Colloquium on Grammatical Inference ICGI-96. (L. Miclet, C. de la Higuera, eds). LNAI Vol. 1147, pp 211–221. Springer. 1996.
J.D. Emerald, K.G. Subramanian and D.G. Thomas. Learning a subclass of context-free Languages. Proceedings of the 4th International Colloquium ICGI-98. (V. Honavar, G. Slutzki, eds). LNAI Vol. 1433, pp 223–243. 1998.
J.D. Emerald, K.G. Subramanian and D.G. Thomas. Inferring Subclasses of contextual languages. Proceedings of the 5th International Colloquium ICGI 2000. (A. Oliveira, ed). LNAI Vol. 1891, pp 65–74. 2000.
H. Fernau. Learning of terminal distinguishable languages. Technical Report WSI-99-23. Universität Tübingen (Germany), Wilhelm-Schickard-Institut für Informatik, 1999.
H. Fernau. k-gram extensions of terminal distinguishable languages. Proceedings of the International Conference on Pattern Recognition ICPR 2000, Vol. 2 pp 125–128. IEEE Press. 2000.
H. Fernau. Identification of function distinguishable languages. Proceedings of the 11th International Conference on Algorithmic Learning Theory ALT 2000. (H. Arimura, S. Jain, A. Sharma, eds.). LNCS Vol. 1968 pp 116–130. Springer-Verlag 2000.
P. García. Explorabilidad Local en Inferencia Inductiva de Lenguajes Regulares y Aplicaciones. Ph.D. Thesis. Departamento de Sistemas Informáticos y Computación. Universidad Politécnica de Valencia. 1988.
P. García, E. Vidal and J. Oncina. Learning Locally Testable Languages in the Strict Sense. Proceedings of the First International Workshop on Algorithmic Learning Theory. pp 325–338. 1990.
M. Gold. Language Identification in the Limit. Information and Control 10, pp 447–474. 1967.
J. Hopcroft and J. Ullman. Introduction to Automata Theory, Languages and Computation. Addison-Wesley Publishing Co. 1979.
T. Koshiba, E. Mäkinen, Y. Takada. Learning deterministic even linear languages from positive examples. Theoretical Computer Science 185, pp 63–97. 1997.
E. Mäkinen. On inferring zero-reversible languages. Acta Cybernetica 14, pp 479–484. 2000.
R. McNaughton and S. Papert. Counter-free automata. MIT Press. 1971.
V. Radhakrishnan. Grammatical Inference from Positive Data: An Efective Integrated Approach. PhD. Thesis. Department of Computer Science and Engineering. IIT, Bombay. 1987.
V. Radhakrishnan and G. Nagaraja. Inference of Regular Grammars via Skeletons. IEEE Trans. on Systems, Man and Cybernetics, 17, No. 6 pp 982–992. 1987.
V. Radhakrishnan and G. Nagaraja. Inference of Even Linear Languages and Its Application to Picture Description Languages. Pattern Recognition, 21, No. 1. pp 55–62. 1988.
J. Ruiz. Familias de Lenguajes Explorables: Inferencia Inductiva y Caracterizaciön Algebraica. Ph.D. Thesis. Departamento de Sistemas Informáticos y Computación. Universidad Politécnica de Valencia. 1997.
Y. Sakakibara. Recent advances of grammatical inference. Theoretical Computer Science 185, pp 15–45. 1997.
J.M. Sempere and P. García. A Characterization of Even Linear Languages ans its Application to the Learning Problem. Proceedings of ICGI’94 (R. Carrasco and J. Oncina, eds.). LNAI Vol. 862, pp 38–44. Springer-Verlag. 1994.
Y. Takada. Grammatical Inference of Even Linear Languages based on Control Sets. Information Processing Letters 28, No. 4, pp 193–199. 1988.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2002 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Sempere, J.M., García, P. (2002). Learning Locally Testable Even Linear Languages from Positive Data. In: Adriaans, P., Fernau, H., van Zaanen, M. (eds) Grammatical Inference: Algorithms and Applications. ICGI 2002. Lecture Notes in Computer Science(), vol 2484. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45790-9_18
Download citation
DOI: https://doi.org/10.1007/3-540-45790-9_18
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-44239-4
Online ISBN: 978-3-540-45790-9
eBook Packages: Springer Book Archive