Skip to main content

Local Problems, Planar Local Problems and Linear Time

  • Conference paper
  • First Online:
Computer Science Logic (CSL 2002)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2471))

Included in the following conference series:

  • 563 Accesses

Abstract

This paper aims at being a step in the precise classification of the many NP-complete problems which belong to NLIN (nondeterministic linear time complexity on random-access machines), but are seemingly not NLIN-complete. We define the complexity class LINLOCAL - the class of problems linearly reducible to problems defined by Boolean local constraints - as well as its planar restriction LINPLAN-LOCAL. We show that both ”local” classes are rather computationally robust and that SAT and PLAN-SAT are complete in classes LIN-LOCAL and LIN-PLAN-LOCAL, respectively. We prove that some unexpected problems that involve some seemingly global constraints are complete for those classes. E.g., VERTEX-COVER and many similar problems involving cardinality constraints are LIN-LOCAL-complete. Our most striking result is that PLAN-HAMILTON - the planar version of the Hamiltonian problem - is LIN-PLAN-LOCAL and even is LIN-PLAN-LOCAL-complete. Further, since our linear-time reductions also turn out to be parsimonious, they yield new DP-completeness results for UNIQUE-PLAN-HAMILTON and UNIQUE-PLAN-VERTEX-COVER.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. R. Barbanchon. Planar Hamiltonian problems and linear parsimonious reductions. Tech. report, Les Cahiers du GREYC 1, 2001. (postscript available at http://www.info.unicaen.fr/algo/publications).

  2. R. Barbanchon. The problems Sat and Hamilton are equivalent under linear parsimonious reductions in the plane. Tech. report, Les Cahiers du GREYC 4, 2001. (postscript available at http://www.info.unicaen.fr/algo/publications).

  3. R. Barbanchon and E. Grandjean. Local problems and linear time. Tech. report, Les Cahiers du GREYC 8, 2001. (postscript available at http://www.info.unicaen.fr/algo/publications).

  4. Nadia Creignou. The class of problems that are linearly equivalent to Satisfiability or a uniform method for proving NP-completeness. Theoretical Computer Science, 145(1–2):111–145, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  5. M. de Rougemont. Second order and inductive definability on finite structures. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, 33:47–63, 1987.

    Article  MATH  Google Scholar 

  6. A. K. Dewdney. Linear time transformations between combinatorial problems. Internat. J. Computer Math., 11:91–110, 1982.

    Article  MATH  MathSciNet  Google Scholar 

  7. R. Fagin. Generalized first-order spectra and polynomial-time recognizable sets. Complexity and Computation, 7:43–73, 1974.

    MathSciNet  Google Scholar 

  8. R. Fagin. Monadic generalized spectra. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, 21:89–96, 1975.

    MATH  MathSciNet  Google Scholar 

  9. M.R. Garey and D.S. Johnson. Computers and Intractability. W.H. Freeman and Co., 1979.

    Google Scholar 

  10. M.R. Garey, D.S. Johnson, and R. E. Tarjan. The planar hamiltonian circuit problem is NP-complete. SI AM Journal on Computing, 5(4):704–714, 1976.

    Article  MATH  MathSciNet  Google Scholar 

  11. E. Grandjean. A nontrivial lower bound for an NP problem on automata. SIAM Journal on Computing, 19:438–451, 1990.

    Article  MATH  MathSciNet  Google Scholar 

  12. E. Grandjean. Linear time algorithms and NP-complete problems. SIAM Journal on Computing, 23(3):573–597, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  13. E. Grandjean. Sorting, linear time and the satisfiability problem. Annals of Mathematics and Artificial Intelligence, 16:183–236, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  14. E. Grandjean and F. Olive. Monadic logical definability of nondeterministic linear time. Computational Complexity, 7(1):54–97, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  15. E. Grandjean and T. Schwentick. Machine-independent characterizations and complete problems for deterministic linear time. Tech. report, Les Cahiers du GREYC 10, 1999. To appear in SIAM Journal on Computing.

    Google Scholar 

  16. H.B. Hunt III, M.V. Marathe, V. Radhakrishnan, and R.E. Stearns. The complexity of planar counting problems. SIAM Journal on Computing, 27(4):1142–1167, August 1998.

    Google Scholar 

  17. R.M. Karp. Reducibility among combinatorial problems. In Complexity of Computer Computations, pages 85–103. Plenum Press, 1972.

    Google Scholar 

  18. C. L. Lautemann and B. Weinzinger. Monadic-NLIN and quantifier-free reductions. In CSL, 8th annual conference of the EACSL, Lect. Notes Comput. Sci., volume 1683 of LNCS, pages 322–337, 1999.

    Google Scholar 

  19. D. Lichtenstein. Planar formulae and their uses. SIAM Journal on Computing, 11(2):329–343, 1982.

    Article  MATH  MathSciNet  Google Scholar 

  20. R. J. Lipton and R. E. Tarjan. Applications of a planar separator theorem. SIAM Journal on Computing, 9(3):615–627, 1980.

    Article  MATH  MathSciNet  Google Scholar 

  21. K. Mehlhorn and P. Mutzel. On the embedding phase of the Hopcroft and Tarjan planarity testing algorithm. Algorithmica, 16(2):233–242, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  22. W. J. Paul, N. Pippenger, E. Szeéredi, and W. T. Trotter. On determinism versus non-determinism and related problems. In 24th Annual Symposium on Foundations of Computer Science, pages 429–438. IEEE Computer Society Press, 1982.

    Google Scholar 

  23. T. Schwentick. On winning Ehrenfeucht games and Monadic NP. Annals of Pure and Applied Logic, 79(1):61–92, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  24. R. E. Stearns and H. B. Hunt III. Power indices and easier hard problems. Mathematical Systems Theory, 23(4):209–225, 1990.

    Article  MATH  MathSciNet  Google Scholar 

  25. W.T. Tutte. On Hamilton circuits. J. London Math. Soc., 21:98–101, 1946.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Barbanchon, R., Grandjean, E. (2002). Local Problems, Planar Local Problems and Linear Time. In: Bradfield, J. (eds) Computer Science Logic. CSL 2002. Lecture Notes in Computer Science, vol 2471. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45793-3_27

Download citation

  • DOI: https://doi.org/10.1007/3-540-45793-3_27

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44240-0

  • Online ISBN: 978-3-540-45793-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics