Skip to main content

Classical Linear Logic of Implications

  • Conference paper
  • First Online:
Computer Science Logic (CSL 2002)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2471))

Included in the following conference series:

  • 597 Accesses

  • 5 Citations

Abstract

We give a simple term calculus for the multiplicative exponential fragment of Classical Linear Logic, by extending Barber and Plotkin’s system for the intuitionistic case. The calculus has the nonlinear and linear implications as the basic constructs, and this design choice allows a technically managable axiomatization without commuting conversions. Despite this simplicity, the calculus is shown to be sound and complete for category-theoretic models given by *-autonomous categories with linear exponential comonads.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Barber, A. (1997) Linear Type Theories, Semantics and Action Calculi. PhD Thesis ECS-LFCS-97-371, University of Edinburgh.

    Google Scholar 

  2. Barber, A. and Plotkin, G. (1997) Dual intuitionistic linear logic. Submitted. An earlier version available as Technical Report ECS-LFCS-96-347, LFCS, University of Edinburgh.

    Google Scholar 

  3. Barr, M. (1979) *-Autonomous Categories. Springer Lecture Notes in Math. 752.

    Google Scholar 

  4. Barr, M. (1991) *-autonomous categories and linear logic. Math. Struct. Comp. Sci. 1, 159–178.

    Article  MATH  MathSciNet  Google Scholar 

  5. Benton, P. N. (1995) A mixed linear and non-linear logic: proofs, terms and models (extended abstract). In Computer Science Logic (CSL’4), Springer Lecture Notes in Comput. Sci. 933, pp. 121–135.

    Google Scholar 

  6. Berdine, J., O’Hearn, P.W., Reddy, U. S. and Thielecke, H. (2001) Linearly used continuations. In Proc. ACM SIGPLAN Workshop on Continuations (CW’01), Technical Report No. 545, Computer Science Department, Indiana University, pp. 47–54.

    Google Scholar 

  7. Bierman, G. M. (1995) What is a categorical model of intuitionistic linear logic? In Proc. Typed Lambda Calculi and Applications (TLCA’ 95), Springer Lecture Notes in Comput. Sci. 902, pp. 78–93.

    Google Scholar 

  8. Bierman, G. M. (1999) A classical linear lambda-calculus. Theoret. Comp. Sci. 227(1–2), 43–78.

    Article  MATH  MathSciNet  Google Scholar 

  9. Filinski, A. (1992) Linear continuations. In Proc. Principles of Programming Languages (POPL’92), pp. 27–38.

    Google Scholar 

  10. Girard, J.-Y. (1987) Linear logic. Theoret. Comp. Sci. 50, 1–102.

    Article  MATH  MathSciNet  Google Scholar 

  11. Hasegawa, M. (1999) Logical predicates for intuitionistic linear type theories. In Proc. Typed Lambda Calculi and Applications (TLCA’ 99), Springer Lecture Notes in Comput. Sci. 1581, pp. 198–213.

    Google Scholar 

  12. Hasegawa, M. (2000) Girard translation and logical predicates. J. Funct. Programming 10(1), 77–89.

    Article  MATH  MathSciNet  Google Scholar 

  13. Hasegawa, M. (2002) Linearly used effects: monadic and CPS transformations into the linear lambda calculus. In Proc. Functional and Logic Programming (FLOPS2002), Springer Lecture Notes in Comput. Sci.

    Google Scholar 

  14. Hofmann, M., Pavlović, D. and Rosolini, P. (eds.) (1999) Proc. 8th Conf. on Category Theory and Computer Science. Electron. Notes Theor. Comput. Sci. 29.

    Google Scholar 

  15. Hyland, M. and Schalk, A. (200x) Glueing and orthogonality for models of linear logic. To appear in Theoret. Comp. Sci.

    Google Scholar 

  16. Kelly, G. M. and Mac Lane, S. (1971) Coherence in closed categories. J. Pure Appl. Algebra 1(1):97–140.

    Article  MATH  MathSciNet  Google Scholar 

  17. Koh, T. W. and Ong, C.-H. L. (1999) Explicit substitution internal languages for autonomous and *-autonomous categories. In [14].

    Google Scholar 

  18. Maietti, M. E., de Paiva, V. and Ritter, E. (2000) Categorical models for intuitionistic and linear type theory. In Foundations of Software Science and Computation Structure (FoSSaCS 2000), Springer Lecture Notes in Comput. Sci. 1784, pp. 223–237.

    Google Scholar 

  19. Murawski, A. S. and Ong, C.-H. L. (1999) Exhausting strategies, Joker games and IMLL with units. In [14].

    Google Scholar 

  20. Nishizaki, S. (1993) Programs with continuations and linear logic. Science of Computer Programming 21(2), 165–190.

    Article  MATH  MathSciNet  Google Scholar 

  21. Parigot, M. (1992) λμ-calculus: an algorithmic interpretation of classical natural deduction. In Proc. Logic Programming and Automated Reasoning, Springer Lecture Notes in Comput. Sci. 624, pp. 190–201.

    Google Scholar 

  22. Plotkin, G. (1993) Type theory and recursion (extended abstract). In Proc. Logic in Computer Science (LICS’93), pp. 374.

    Google Scholar 

  23. Streicher, T. (1999) Denotational completeness revisited. In [14].

    Google Scholar 

  24. Wadler, P. (1990) Linear types can change the world! In Proc. Programming Concepts and Methods, North-Holland, pp. 561–581.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hasegawa, M. (2002). Classical Linear Logic of Implications. In: Bradfield, J. (eds) Computer Science Logic. CSL 2002. Lecture Notes in Computer Science, vol 2471. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45793-3_31

Download citation

  • DOI: https://doi.org/10.1007/3-540-45793-3_31

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44240-0

  • Online ISBN: 978-3-540-45793-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics