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Abstract. It is shown that unifiability of terms in the simply typed
lambda calculus with 8 and n rules becomes decidable if there is a bound
on the number of bound variables and lambdas in a unifier in n-long 8-
normal form.

1 Introduction

First-order unification [BS94] is a fundamental operation in several areas of
computer science, e.g. automated deduction, term rewriting, logic programming
and type-checking. The generalization to higher-order unification increases the
expressiveness, the applicability and improves the level of abstraction. This ex-
plains the interest in higher-order systems such as higher-order logics and higher-
order deduction systems [And86,Pau94,GLM97,And01,Pfe01], higher-order
(functional) programming languages [BMS80, Tur85,Pau91,Bar90,Bir98], higher-
order logic programming languages [Mil91 HKMN95], higher-order rewriting
[Nip91,Kl1092,DJ90] and higher-order unification [Hue75,Dow01].

It is well-known that second-order unification — hence higher-order unifi-
cation — is undecidable ([Gol81,Far91,LV00a]). Higher-order unification pro-
cedures were already described by in [Hue75,JP76]. The undecidability results
triggered research into restrictions to make unification decidable. A special syn-
tactic restriction is the unification of higher-order patterns [Mil91], which is
decidable. In [SS99a,5501] it was shown that second-order unification becomes
decidable if an upper bound on the number of occurrences of bound variables
in the substitution terms is fixed, which has as a corollary the well-known re-
sult that second-order unification with monadic function symbols is decidable
[Hue75,Zhe79,Far88]. The monadic restriction fails to yield a decidable unifi-
cation problem, if generalized to all types. Restricting third-order unification
to monadic types, i.e. every function has at most one argument, was shown
to be undecidable in [Nar90]. A further restriction of second-order unification
that restricts the number of bound variables in the substitution terms to be



one 1is context unification. The conjecture is that context unification is decid-
able. There are several results on decidability of fragments of context unification
[Com98,5594,5599b,5SS00,Lev96] or variants of context unification [CP97].

In this paper we generalize the result on decidability of bounded second-order
unification to higher-order unification in the simply typed lambda calculus with
B3 and 75 rules [Bar84,HS86]. We show that solvability of unification problems
1s decidable if for any variable a bound on the number of lambda-binders and
occurrences of bound variables in the image of the variable under a unifier is
given. Here each image is assumed to be in n-expanded f-normal form.

The result implies that undecidability proofs for higher-order unification re-
quire an unbounded number of lambda-bound variables or lambdas in a unifier in
n-expanded normal form. It can be used to define a semi-decision procedure for
ordinary higher-order unification where we start with given bounds for the vari-
ables in the problem and increase the bounds as long as we have an unsolvable
problem.

The proof technique uses a lemma on an upper bound for the exponent of
periodicity for a minimal unifier for context unification from [SSS98] which is
a generalization of a lemma that appeared in the decidability proof of word
unification by Makanin [Mak77]. An improvement of the latter result was given
in [KP96]. This link to word unification ([Mak77,Sch90,5ch93,Gut98,Plag9]) is
not accidental. The relationship between word unification and bounded higher-
order unification is indicated in Figure 1 where we also mention some other
problems in order to position the results of this paper.
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Fig. 1. Decidable (4) and undecidable (-) unification problems and their relationship.

The problems mentioned in the figure can be divided into two classes. The
class of “complete structural alignment problems” comprehends word unification
and context unification. The class of “functional equality problems” contains all
other problems. The principal difference between both classes may be exemplified



using the equation
ra = xzb.

When treating the equation as a complete structural alignment problem, as it is
done in word unification, we ask for a word W, representing the solution value for
z, such that the complete strings Wa and Wb are identical. Obviously, this is not
possible and the equation is unsolvable. From the functional equality perspective,
where the equation can be rewritten in the form z(a) = #(b), we ask for a function
F such that F'(a) = F(b). Assuming that the constant function Az.a represents
a possible value for z, the equation has a trivial solution. More generally, in
complete structural alignment problems the value of each subterm occurring
in an equation influences the final identity of both sides under a solution. In
contrast, when solving functional equality problems, constant functions can be
used and the values of arguments may become irrelevant.

The possible values for functional variables in second-order monadic unifica-
tion are unary (resp. constant) term functions of the form f(...g([])...) (resp.
f(-..g(a)...)) composed of unary first-order function symbols and individual
constants. From one perspective, all these functions have one argument that
has at most one occurrence/position. Second-order and higher-order unification
problems are more general in the sense that the functions assigned to variables
may have an arbitrary number of arguments, and each argument may have an
arbitrary number of argument positions/occurrences. For the bounded versions,
an upper limit for the number of arguments and positions is fixed. Still, since
for each argument the number of occurrences/positions may be zero, solution
values may be constant functions, which means that equations where both sides
start with variables are always trivially solvable. This effect is heavily used in
the decidability results for bounded second-order/higher-order unification given
in [SS992a,5501] and in the present paper.

In context unification [NPR9I7,Vor98 NTT00,5599b,5SSS00,LV0O0b], solution
values of context variables are tree functions with one argument that has ezactly
one occurrence/position. Hence solving a context equation leads to a complete
structural alignment of both sides as trees.

As we explain in Section 10.3, (bounded) second-order unification can be
considered as a special case of (bounded) higher-order unification where char-
acteristic restrictions on signatures and types are imposed. From (bounded)
second-order unification we get monadic second-order unification by exclusion
of function symbols of arity > 1. In the same way, word unification is obtained
from context unification.

Lemmas on the exponent of periodicity, roughly, give a bound on the max-
imal number of periodical repetitions of words/trees that occur in the solution
values of “minimal” solutions. All known decision procedures for word unifi-
cation are based on periodicity bounds. For the above-mentioned “functional
equality problems”, periodicity bounds are used for simplifying equations of a
particular kind. The idea can be illustrated using a monadic second-order equa-
tion X (s) = f(X(¢)). Obviously, under any solution X is mapped to a function
of the form f(f(...([])...)). If we have an upper bound for the number of peri-



odical repetitions of f’s in a minimal solution, it is possible to eliminate X in the
equation, using a finite subcase analysis. A more complex, but similar argument
is used in the present paper for simplifying bounded higher-order unification
problems of a specific syntactic form.

The structure of the paper is as follows. We start with a brief introduction
to the simply types lambda-calculus with 5 and # rules in Section 2. In Sec-
tion 3 we formally introduce bounded higher-order unification problems,; which
represent the decision problems studied in this paper. Section 4 describes prop-
erties of minimal solutions of bounded higher-order unification problems that are
needed for proving correctness of the decision algorithm. Section 5 introduced
the notions that are needed for the decision algorithm, describes the termination
order and the structure of the algorithm. The remaining Sections 6-9 introduce
the specific reduction and transformation rules that are used in the decision
algorithm for different types of bounded higher-order unification problems. In
Section 10 we summarize the obtained results.

2 Simply Typed Lambda Calculus

We present the simply typed lambda-calculus (see [Bar84,Wol93,Hin97]).

2.1 Types and Terms

Definition 2.1. The language of types is defined according to the grammar
To=Ty | (T—=T)

where Ty # ( is the set of elementary types. The symbols o, T range over types,
and ¢ ranges over elementary types.

A shorter notation for types of the form 7 = (a; = (a2...(ap = ¢)...)) is
(ap = a3 = ... = a, — ). The number n is called the arity of the type 7,
denoted ar(r), and ¢ is called the target type of 7.

The background signature X for building higher-order terms is a set of func-
tion symbols, where every function symbol f comes with a type type(f). The
arity of f is defined as ar(f) := ar(type(f)). Function symbols f of elementary
type (i.e., ar(f) = 0) are called elementary constant symbols. We assume that X
contains for every type 7 a countably infinite set of function symbols. For every
type 7 there is in addition a (countably) infinite set of variables V;. The union
of all these sets is denoted as V. Variables are denoted as z, y, z, expressions %
denote finite sequences of variables. As for function symbols, with type(z) we
denote the type of . The arity ar(z) of x is ar(x) := ar(type(x)). If necessary,
the type is indicated as a superscript. Since for every type there are infinitely
many variables (or function symbols, respectively), we can always use fresh vari-
ables (or function symbols, respectively). A variable of elementary type is also
called a first-order variable.



Definition 2.2. For every type 7 we define the set Term™ of terms of type T
according to the grammar

Term™ ::= f7 | a7 | (TermTl_” TermTl) | Aa™ . Term™

where f is a function symbol of type T, and x is a variable of type 7. The term
Az . Term™ is only valid if 1 — 7 = 7.

If t € Term”, we say ¢ has type T and denote this by type(t) = . Terms of
the form (¢, ?2) are called applications, and terms of the form Ax.t are called
abstractions. The target type of a term ¢ is the target type of type(t).

The notions of bound and free variables in a term and open and closed (or
ground) terms are as usual. The set of free variables in a term ¢ is denoted as
FV(t). We say that s,t are a-equal (=), if s and t differ only by a sequence of
renamings of bound variables of equal types. To avoid too clumsy notation and to
avoid distraction from the essential, we assume the disjoint variable convention:
all bound variables in terms are distinct, and whenever an operation makes it
necessary to rename bound variables, this is performed.

To avoid excessive bracketing, we write applications in flat form: (¢1 t2 ...1,)
means the term (...((¢t1 t2) t3)...t5). If a term is of the form (f #1...1,),
where n = ar(f), then we may write this term as f(t1,...,%,). We also
write nested lambda-expressions in a shorter form. Azi,zs...,x,.t1 means
Az1.(Aza....(Az,.1)...). Expressions A% .t are shorthand for Arq,zs..., z,.t.
We will use positions in terms, which are tree addresses corresponding to occur-
rences of subterms.

A mazimal application in a term is a subterm of the form (¢1 t2 ...%,) (n > 1)
that is not an abstraction and not the left subterm of an application.

The head of an application is the subterm that is in the leftmost position in
the flat representation. For example, f is the head of (f 1 ... ).

For a set of types T, let subt(T) be the smallest superset of 7" with the
condition: If & — § € subt(T), then a, 3 € subt(T'). For a term t, let types(t)
be the set of all the types of subterms, and let subt(t) be subt(types(t)).

2.2 TFirst-order Terms and First-Order Contexts

For each type 7 let [-]” denote a new function symbol of type 7 that does not
belong to X. []7 is called the hole of type 7. Conteats are terms built over the
enlarged signature that have exactly one occurrence of a hole. The expression
C[t]” for a context C' and a term/context ¢ of type T denotes the term/context
that is constructed from C' by replacing the hole [-]7 with ¢. Since contexts are
used as a kind of meta syntax to describe a term, it is justified that variable
capture is permitted for contexts. A context is trivial iff it has the form []7. A
context B is a prefiz of a context C iff there is a context B’ such that C' = B[B’].
A context B is a suffir of a context C' iff there is a context B’ such that C' = B’[B].
A context B is a subcontext of a context C' iff there are contexts B’ B” such that
C = B'[B[B"]]. A context B is a subcontext of a term t iff there is a context B’
and a term ¢’ such that ¢ = B'[B[']].



Definition 2.3. A first-order function symbol is either an elementary constant,
or a function symbol of type 11 — 12 = ... = tyy, — . A first-order term s a
term generated by the grammar:

FOT =" | f(FOTy,...,FOT,)

where f denotes a first-order function symbol of arityn > 0. A first-order context
1s defined using the grammar:

FOC = []L | f(tl, . .,ti_l,FOC,tH_l, . .,tn)

where f 1s a first-order function symbol of arity n > 1 and the t; are first-order
terms.

For first-order terms/contexts we will use positions as for conventional terms
of first-order logic and call them first-order positions. E.g., i is the first-order
position of ¢; in f(t1,...,%,). The length of the first-order position of the hole
of a first-order context C' is called main depth of C, denoted as |C|. The first
digit of the position of the hole of a nontrivial first-order context C' is denoted
as firstdpos(C'). If n is a nonnegative integer and C' is a first-order context of
type ¢ with hole of type ¢, then C° := []*, and C"*! := C[C™]. Note that C™ is
of type ¢.

2.3 Measures
For the following proofs, several measures are needed.
Definition 2.4.
— The order ord(7) of a type T is defined as follows:
e ord(:) = 1.
o Ifr=ay > ...an =, then ord(t) = 1 + max{ord(oy), ..., ord(a,)}.
The degree of a term t is deg(t) := maz{(ord(r) — 1) | 7 € subt(t)}. !
— The size of type T is defined as follows:
o size(t) =1
o Ifr=a1 > ...an =, then size(t) = 14+ n+ Z?: size(a;).

— The size of a term t is defined as follows: size(a:]) = 1,size(f) =
1, size(Ax.t) = size(t) + 2, and size(s t) = 1 + size(s) + size(t).

— The length len(t) of a term t is defined as follows ([Bec01]): len(z) =
1,len(f) = 1,len(Az.t) = len(t) + 1, and len(s t) = len(s) + len(t). Note
that len(t) < size(t).

The last measure is used to formally define bounded higher-order unification

problems — it plays a central role:

Definition 2.5. For a termt, we define #bvl(t) to be the number of occurrences
of bound variables in t plus the number of lambda-binders in t. If 7 is a finite
sequence of variables, then #bvl7(t) is defined as #buvl(t), plus the number of

free occurrences of variables from 7 in t.
For example, #bvl(Az.f(Ay.(z y 2))) = 4, and #bvly (Ax1. Azs Axs.y) = 4.

! In [Bec01], the degree of a term is defined similarly as the order in papers on unifi-
cation, however, degree = order — 1.



2.4 Instantiation and Substitutions

An instantiation of a variable 7 in s by the term 7, written s[t/x], replaces
free occurrences of the variable x in s by ¢, where before replacement, the bound
variables in s have to be renamed to avoid variable capture. See, e.g., [HS86]
for a precise definition. After the replacement, it may be necessary to rename
bound variables in the different copies of ¢, since we use the disjoint variable
convention. The notation s[t/«] is only used if ¢ and « have the same type.

A closed substitution is a mapping from terms to closed terms. In the sequel,
with a substitution we always mean a closed substitution. A substitution ¢ can
be represented as {@; = t; |1 =1,...,n}, where t; for i = 1,...,n is a closed
term with type(z;) = type(t;) fori = 1,...,n. To apply the substitution o to the
term s means to simultaneously instantiate each variable z; by ¢; (1 < i < n).
The domain of o is the set {x; | i = 1,...,n}, and the codomain of ¢ (denoted
cod(c))istheset {t; |i=1,...,n}. If all function symbols occurring as subterms
in cod(o) are in the set Xy C X then o is called a Xy-substitution.

We tacitly assume that a substitution o is only applied to terms ¢ where FV(¢)
is a subset of the domain of o, hence we assume that the result of applying a
closed substitution to a term results in a closed term.

2.5 Reduction and Equality

Since we use the fn rules for the simply typed lambda-calculus, there are the
following equations between terms:

(a) Azt = Ay.tly/z] yis a fresh variable
(8) ((Awt) s) =t]s/z]
(n) t =Xe7.(tx) iftype(t) =1 = 7 and x & FV().

Of course we also assume that the thus defined equality =g, is an equivalence
relation and a congruence, i.e. s =g, t = C[s] =g, C[t]. Note that s =, t =
S =pp t.

Usually, the equations for (5), () are directed. We will employ n-expansion,
denoted as 7.

(8) Cl(Az.t) s] = Ct[s/x]] for all contexts C.

(n) ClAy.(t y)] = C[E] If y ¢ FV(t). The rule is applicable for all
contexts C[].
(@) C[t] — C[Ay.(t y)] if t is not an abstraction, type(t) is not an

elementary type, and ¢ in C[t] is a maximal
application. The variable y must be a fresh
variable of appropriate type. This reduction is
valid for all contexts C'.

Since there are wrong definitions in the literature, we give some examples to
clarify what we mean by (7)-reduction.



L=t

Ezample 2.6. The term #'7* can be (7)-reduced (n-expanded) to Ay*.(z'7* y).
The term /\x(lbﬁb)_”_”,xg_”.(xl z2) will be (7)-reduced in two steps to

Az, 2o, Y5 (1 (Ays-(22 ¥2)) 11)-

If a term cannot be further reduced by 37 (resp. 7), then it is in f7-normal
form (resp. 7-normal form). It is well-known that the reduction relation defined
by 3,7 is strongly terminating and Church-Rosser [Wol93 Hue76,Bar84]. Hence
for every term ¢, there is a #7-normal form g5, which is unique up to =,,.

Remark 2.7. Let ¢ be a term in 7-normal form. Let ¢’ result from ¢ by a series
of B-reductions. Then ¢’ is in -normal form.

Remark 2.8. Let t be a term of type 7 in f7-normal form. Let m = ar(r). Then ¢
has the form Ayy, ..., ym.t'. In particular #bvl(¢) > m. The head of any maximal
application in t’ is either a variable or a function symbol f € . Hence maximal
applications can be written in the form x(¢1,...,t,) or f(t1,...,t,). This leads
to a tree representation of terms in S7-normal form that closely resembles the
usual tree representation of terms in first-order logic. Cf. Figure 2 below.

Proposition 2.9. The following equivalence holds:
s =gy L& sbpy =a thpg & sboy =a thay
Lemma 2.10. A term t s in f-normal form, iff the following holds:

— 1t 1s wn G-normal form, and
— every proper subterm s of t such that s is not an abstraction and s has a
non-elementary type is embedded in a superterm of the form (s s').

L=t

Ezrample 2.11. The py-normal form of the term Az x 1s the term
Azt ( Ay (2 y)). The Sp-normal form of the function symbol f*7*7* is the
term Az’ yt . (f @ y).

Proposition 2.12. Let s,t, be terms of equal type, and [ be a function symbol.
Then

*fSI@nftQSI@nt

— If type(s) = type(t) = a1 — ... is not elementary, and f a fresh function
symbol of type ay, then s =g, t < s f=p,1 f.

Proof. The first claim follows from reduction to gn-normal form. In the second
claim, the direction s =g, t = s f =g, t f is trivial, since it follows from the
congruence property. To prove the other direction, let s f =g, ¢ f, where f is
a fresh function symbol. Since reduction makes no difference between function
symbols and free variables, this implies that s © =3, t ¥, where z is fresh variable.
From congruence it follows that Az.(s #) =g, Az.(¢t 2). Then we can use (n) on
both sides of the equation and obtain s =g, t. a



Lemma 2.13. Let x be a variable of type 7. Then the fn-normal form of @ has
size at most 3  size(T).

Proof. We use induction on the size of 7. If z has type ¢, then we are ready.

If © has type 7 = a3 — ... = «, — ¢, then (7)-reductions transform z into
Azt .. z0n (¢ @1 ... 2,). The size is 4n + 1. The final #7-normal form is
Al‘(lxl, R l‘g"(l‘ xliﬁﬁ - l‘n\l,@ﬁ)

This gives a size of 3n + 1 + ), (size(2;lg7)). By induction this is smaller than
3-(n 414> (size(e;))) = 3 - size(r). a

Lemma 2.14. If a ground term t is in f7-normal form, and #bvl(t) = 0, then
t is ground first-order term and of elementary type.

2.6 Upper Bounds on Sizes of Normal Forms

There are estimations on the length of reduction sequences for various lambda-
calculi (see [Bec01,Gan80,5ch82,Sch91]). We adapt this to our purposes and
argue that there is a computable upper bound on the size of a S-normal form of
a term ¢. Note that there are also lower bounds for the complexity [Sta79,Bec01].

We need an estimation on the size of normal forms depending on the start-
ing term. Let 20(n) := n and 2,,(n) = 22»-1(?) for m > 0. Let maxtypesize(t)
be the maximal size of the types of subterms of ¢, i.e. maxtypesize(t) :=
max{size(T) | T € types(t)}.

Lemma 2.15. Let t be a term. Then the size of the 7-normal form of t is at
most seqnf (t) := 3 - size(t) - maxtypesize(t).

Proof. Lemma 2.13 shows the claim for variables. For each subterm of ¢ that
is a non-maximal application in the sense that some arguments are not made
explicit, we may add 7-normal forms of appropriate variables as arguments and
corresponding lambda-binders, as in the proof of Lemma 2.13. The enlargement
of the size that results from treating one subterm in this way is bound by 3 -
maxtypesize(t) — 1. Since the total number of subterms that represent non-
maximal applications in the above sense does not exceed size(t), the size of the
final term is bound by size(t) - (3 - maxtypesize(t) — 1) + size(t) = seqnf (t). O

Theorem 2.16. Let t be a term. Then the size of the fn-normal form of t is
not greater than sbeqnf (t) := seqnf(t)zdeg(tHl(seq”f(t)).

Proof. We first transform ¢ into its J-normal form ¢'. Lemma 2.15 shows that
the size of ¢’ is bound by seqnf(t). Tt is simple to see that deg(t) = deg(t').
Remark 2.7 shows that only S-reductions are needed to reach the f-normal form
t" of t. Using the result in ([Bec01]), who shows that the number of reductions of
a term 7 is at most 24¢4(,)(len(r)), we obtain an upper bound 24.4:)(seqnf (1))
for the number of S-reductions that are needed to reach t”. Since every §-
reduction step may increase the size of a term at most by squaring it it follows
that size(t”) < sbegnf (t). O



3 Bounded Higher-Order Unification Problems

In this section we formally introduce the decision problems that are studied in
this paper. In the sequel, let Xy C 3 denote a subsignature.

Definition 3.1. A higher-order unification problem (HOUP) is a finite set S
of (symmetric) equations {s1 = t1,...,8, = tn} where s;,t; are terms with
type(s;) = type(t;) for all i. A closed (Zy-) substitution ¢ such that o(s;) =g,
o(t;) for 1 < i< nis called a (Xy-) unifier of S.

The symmetry of equations is mainly used for avoiding clumsy statements
such as: “if s =t ort = sisin S Thusif S = {a = b, ¢ = d}, then by symmetry,
it 1s correct to say that b = a1sin 5.

Definition 3.2. Let S be a HOUP, let b : FV(S) — INy be a function. Then
the pair (S,b) is called a bounded HOUP (BHOUP). A (Xy-) substitution o
is a (Xy-) unifier of (S,b) iff all terms in the codomain of o are in B7-normal
form, o is a (Xy-) unifier of S and for every variable x € FV(S) the inequation
#bol(o(x)) < b(x) holds.

Note that in a BHOUP the size of unifiers is not bounded, since for example
fort = Ax. f(...(f =)...) we have #bvl(t) = 2, but the size of t grows with k.
N—_——

2
We remark that the upper bound b also provides an (implicit) upper bound on
the size of types in subt(t) for terms in cod(e) for unifiers o.

Lemma 3.3. Let (S,b) be BHOUP with unifier o. Then for every variable x
with b(x) = 0, the variable x has elementary type and o(x) is a ground first-
order term.

Proof. By assumption, the terms in the codomain of ¢ are ground and in 37-
normal form. The result follows from Lemma 2.14. a

4 Properties of Minimal Unifiers

A minimal unifier o of a BHOUP (S,b) is a unifier such that the sum

> size(o(x)) is minimal with respect to all unifiers of the problem. In this
z€FV(S)
section we describe two properties of minimal unifiers of BHOUPs.

4.1 Sufficient Signatures

First it is shown that for any given BHOUP a finite signature can be described
that suffices to unify the BHOUP if there is any unifier. This result will be
important when formulating non-deterministic transformation rules where we
“guess” function symbols occurring in unifiers. It will lead to a finite branching
of the search tree.

10



Lemma 4.1. Let o be a minimal unifier of the BHOUP (S,b). Then the follow-
ing holds:

1. Every function symbol that is not an elementary constant occurring as a
subterm in the codomain of o also occurs in S.

2. All types of elementary constants, variables and applications occurring as
subterms in the codomain of o are in subt(S).

3. The mazimal arity of types of variables occurring as subterms in cod(o) is
not greater than the mazimal arity of types in subt(S).

4. If Xy C X 1s any subsignature that contains all function symbols occurring in
S and in addition at least one elementary constant a* for each (elementary)
target type ¢ in subt(S), then there exists a minimal unifier o' of (S,b) that
15 a Yo-unifier.

Proof. 1. Let (S,b) be a BHOUP and ¢ be a minimal unifier of (S,5). Assume
there exists a non-elementary function symbol f in the codomain of ¢ that does
not occur in S. Since the terms in the codomain of ¢ are in g7-normal form
each occurrence of f is the head of a term f(t1,...,t4(s)). Let ¢ be the target
type of f, let a* be an elementary constant. Then replace every occurrence of a
term f(t1,...,t4(s) in the codomain of ¢ by a. The constructed substitution o’
remains in f7-normal form. If s = ¢ is an equation of .S, then ¢’(s)] g7 is obtained
from o(s)} g7 by replacing each subterm f(t1,...,t4(s)) by @, and similarly for
o' ()l g7 and o(t)]gy. This follows from the fact that f does not occur in s,t.
Since o(s)lgr =a o(t)lgg also ¢'(s)lgz =a 0'(t)ds7. This shows that ¢ is a
unifier for (S, b). Since ¢’ has a smaller size, this is a contradiction.

2. First of all, the top terms in the codomain have a type in subt(S).

We use induction on the structure of the terms in the codomain. Suppose a sub-
term Ax1,...,&m.f(t1,...,tn) of a term in the codomain has a type in subt(S).
Part 1 shows that for n > 0 we may assume that the type of f, hence the type
of any t; is in subt(S) (1 < i < n). Suppose a subterm Az, ..., 2m.2i(t1,. .., 1)
has a type in subt(S) where 1 < ¢ < n. Then the type of x;, hence the type of
any argument ¢; is in subt(S) (1 <4 < n). The result follows by induction.

3. Follows from the previous part.

4. Let @' be an elementary constant occurring in the codomain of ¢ that does
not occur in S. Part 2 shows that ¢ is a target type in subt(S). Hence, as in
Part 1 of the proof a* can be replaced by an elementary constant b* € Xy. a

4.2 The Exponent of Periodicity

The exponent of periodicity (see also [SSS98]) of a unifier o of (S,b) is the
maximal number n such that for some variable # occurring in S the image o ()
contains a subterm of the form C™[t], where C' is a nontrivial ground first-order
context.

Definition 4.2. Let t be a ground term in 7-normal form. Assume that we
color in t the positions of
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1. each of the n lambda-binders in expressions Axy, ..., &, occurring int,
2. each occurrence of a bound variable in t,

3. each occurrence of a function symbol f in an expression f(t1,...,t,) where
etther

(a) [ contains an argument of non-elementary type, i.e. f is not first-order,
or

(b) there are at least two subterms t;,,t;, (i1 # i2) such that t;; for j =1,2
contains an occurrence of a vartable or a lambda.

The uncolored positions of t can be considered as the nodes of a graph where
links correspond to immediate subterm relationship. Fach mazrimal connected
uncolored component either defines a ground first-order term or a ground first-
order context. They are called the maximal first-order subterms/subcontexts of
t. The representation size of t, repsize(t) is defined similarly as the size of t, but
each mazimal first-order subterm/subcontext yields a uniform contribution of 1.

Intuitively, in the repsize-measure, maximal first-order subterms/subcontexts
are treated as primitive symbols.

Ezrample 4.3. The ground term ¢ depicted in Figure 2 is colored in the
above sense. There are two occurrences of the maximal first-order subterm
fla,a,a), one occurrence of the maximal first-order subterm «, one occur-
rence of the maximal first-order context f(a, f(a,[],¢),¢), and one occurrence
of the maximal first-order context f(a,[],¢). Hence the maximal first-order sub-
terms/subcontexts yield a contribution of 5 to repsize(t).

a f

Fig. 2. Colored positions and maximal first-order subterms and subcontexts.
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Lemma 4.4. Let t be a ground term in [n-normal form, colored as above.
Let k = #bvl(t). Then there are at most 3k colored positions. The num-
ber of mazimal first-order (uncolored) subcontexts of t does not exceed 3k.
The number of mazimal first-order (uncolored) subterms of t does not exceed
143k - (14 maxar(t)) where maxar(t) is the marimal arity of a type in subt(t).
The representation size repsize(t) does not exceed 2 + 22k + 6k - maxar(t).

Proof. In t we have at most k colored positions corresponding to lambda-binders
or occurrences of bound variables. If f has an argument of non-elementary type,
then this argument starts with a lambda-binder. Hence there are at most &
colored positions of type 3 (a). In addition there are at most k colored positions
of type 3 (b). This gives a total of at most 3k colored positions. For each colored
position, there is at most one maximal first-order subcontext of ¢ that ends at
the position. Hence the number of maximal first-order subcontexts of ¢ does not
exceed 3k. The number of maximal first order subterms of ¢ is at most 1 (for the
root) plus the sum of the number of immediate subterms of colored positions. Tt
can be estimated by 1+3k-(1+maxar(t)). As to repsize(t), the total contribution
of maximal first-order subterms/subcontexts is 3k + 1 + 3k - (1 + maxar(t)) =
3k-maxar(t)+6k+1. The maximal contribution of A-binders and bound variables
is < 2k (recall that a binder Az yields a size contribution of 2). The function
symbols at colored positions can contribute 3k. Ignoring applications, this yields
a total bound of 3k-maxar(t)+11k=+1. Since each application yields an additional
contribution of 1, a bound for repsize(t) is 6k - maxar(t) + 22k + 2. a

Definition 4.5. Let (S, b) be a BHOUP. Let maxar(S) denote the mazimal arity
of a type in subt(S), let maxb be the mazrimal value b(x) for variables in FV(S).
Then the number

repn(S, b) := 6 - maxb - maxar(S) + 22 - maxb + 2
is called the representation number of (S, b).

Lemma 4.6. Let (S,b) be a BHOUP, and ¢ be a minimal unifier of (S,b). Then
the representation size of any term in the codomain of o is at most repn(S,b).

Proof. This follows from lemma 4.4 and lemma 4.1. a

The important point to note is that the above estimate for the representation
size does not depend on . In the sequel we use some of the previously introduced
measuring functions also for HOUPs S as follows. If S = {s1 =11,...,8, = {n},
then terms(S) is the multiset of all terms s; and ¢; (i = 1,...,n). Now we
can use the functions ord, deg, size, maxtypesize, subt, seqnf, sbeqnf also for S
by applying them to terms(S), and use the obvious operators for extending the
functions to multisets.

Lemma 4.7. There is a positive real constant co such that for every unifiable
BHOUP (S,b) the exponent of periodicity of a minimal unifier of (S,b) is less
than 2(CD+2,14~finsize(S))’ where

finsize(.S) 1= 2geq(s5)+1(repn(S, b) - sbeqnf (S)).
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Proof. Let (S,b) be a BHOUP and let ¢ be a minimal unifier of (S,b). Let
terms(o(S)) denote the multiset of image terms {o(s) | s € terms(S)}. In each
term o (s) we consider the occurrences of codomain terms o () that represent the
images of the variables occurring in s under o. For each such occurrence we con-
sider the maximal first-order subterms/subcontexts of the respective codomain
term as primitive symbols. Each such subterm/subcontext will be called an in-
ner codomain subterm/subcontext, stressing their origin in codomain terms. By
Lemma 4.6, the sum of the sizes of all terms in terms(o(S)) with respect to this
representation is bound by size(S) - repn(S, b).

When we compute the g7-normal form of the terms in terms(o(S)), the inner
codomain subterms/subcontexts are not destroyed. For the reduction they can
be considered as primitive symbols as well. Hence it follows from Theorem 2.16
that the corresponding representation for the normalized image terms in the set
{o(s)lgy | s € terms(S)} has representation size not exceeding finsize(S) as
defined in the lemma.

Now we use the fact that the f7-normal forms of the left- and right-hand side
of equations are a-equal to extract a context unification problem [SS99b,SSS00].
This can be done by equating the following:

— the maximal ground first-order terms in equations ¢(s)lgy =a o(t)lgy at
corresponding positions,

— the maximal ground first-order contexts in equations o(s)l gy =« o(t)ls7 at
corresponding positions,

for s = ¢t € S. Note that all the inner codomain subterms/subcontexts are
contained in some maximal first-order term/context. The context unification
problem CUP is formed from the equations o(s)lgy = o(t)lgg (s =1t € 9)
as follows: The inner codomain contexts are replaced consistently by context
variables, and the inner codomain terms are consistently replaced by first-order
variables.

The total number of occurrences of variables and function symbols in CUP
does not exceed finsize(S). The results in [SSS98] show that there exists a fixed
real constant c¢g such that the exponent of periodicity of a minimal unifier for
CUP is smaller than 200+214-finsize(5)

We consider the unifier ¢’ of CUP that assigns to each context variable
the corresponding inner codomain context, and to each first-order variable the
corresponding inner codomain term. We show that ¢’ is a minimal unifier for
CUP. It then follows that the exponent of periodicity of ¢/, hence the exponent
of periodicity of o, does not exceed 2¢0t214 finsize(5)

Assume that ¢’ is not a minimal unifier for CUP. In [SSS98], in order to turn
a non-minimal unifier for CUPs into a minimal one, subcontexts of the form
C'C™C' occurring in the images of variables are replaced by similar subcontexts
of the form CC™C'. An appropriate selection of the numbers n guarantees that
the new values define a unifier for the CUP that satisfies the above bound. Since
for a context C' of type ¢ always C* has type ¢ for & > 0 this shows that the
same techniques for modifying non-minimal unifiers can be applied in situation
of bounded higher-order unification, where types have to be respected. This
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shows that a smaller unifier of CUP could be retranslated into a smaller unifier
for (S, b) and yields a contradiction. O

5 The Decision Algorithm

In this section we first introduce the concepts that yield the background for the
transformation rules of the decision algorithm for bounded higher-order unifica-
tion. The structure of the algorithm is explained in the last subsection.

5.1 Surface Positions and Cycles

In order to describe the main reduction techniques, the following notions play a
central role.

Definition 5.1. Let t be a term. The surface positions of t are defined as fol-
lows:

— g, ift is elementary’.

— ift is elementary, and t = f(t1,...,t,), then for every surface position p of
t;: i.p 1s a surface position of t.
In this case we also say f is on the surface of t.

— if t is elementary, and t = x t1 ... {4r(s), then 0, the position of x, is a
surface position of t.

The depth of a surface position p is the length of p.

We use the notation ¢|s| to indicate that ¢ has a surface occurrence of the term
s.

Ezample 5.2. Let f be of type (¢ = (¢ = ¢) — ¢) and ¢ be of type ¢ — ¢. Then the
surface positions of f(z",y" ") are {g, 1}, the term f #* has no surface positions,
the term f(z',g) has {£,1} as surface positions, f(g(z"),¢) has {,1,1.1}, and
Fy'~" o', g) has {e,1,1.0} as surface positions.

Remark 5.3. Assume that the variable x occurring on the surface of ¢ is replaced
by a term s of type type(x) where the variable y occurs on the surface of s. Then
y occurs on the surface of {[s/x].

Note that every position in a first-order term is a surface position, and that
every surface position is elementary or the position of a variable representing the
head of an elementary term. Moreover, in the latter case, each node on the path
from the root to the variable is labeled by a function symbol, and the argument
positions determined by the direction of this path are of elementary type. In
the sequel, to simplify index notation for cycles of equations we use expressions
¢ modx n where . o

imod*n:{lmOdn}f i mod n # 0,
n if 2 mod n=0.

2 & denotes the empty sequence.
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The algorithm that is used to analyze BHOUPs does not operate on single
equations. Rather it tries to reduce combinations of equations of a particular
form, called cycles.

Definition 5.4. Let S be a BHOUP. A cycle is a sequence s; = t1,..., sy
ty of length h > 1 of equations from S, such that for all 1 < i < h: s

Ty 51 ... Tim,, and x; occurs on the surface of t;_1 moas n. Moreover, there
should be at least one term t; of the form f(ti1,... tin) and at least one term
s; of the form x; 71 ... rim, with ar(x;) > 1.

A cycle 1s path-unique if for every 1 < i < h there is only one occurrence of
z; on the surface of t(;_1) noax -

Let L be a cycle in S of the form sy =t1,...,sp = tp, For each of the terms
ti, 1 <1 <h, let C; be the context determined as follows: Let q; be the smallest
subterm of t; such that all surface occurrences of x(i41 modax ny from t; are also
contained wn q;. The relevant context C; of equation t is uniquely determined by
ti = Cilg:].

The length of a cycle is the number of equations in it. If for some cycle L,
there s no other cycle in S with a smaller length, then we say L is a minimal-
length cycle.

A cycle sy = t1,...,s5 =ty is called compressed, iff there is no i such that
s; ort; is a first-order variable.

Ezxample 5.5. We give some examples for cycles and non-cycles.

The sequence # = h(y s1),y s2 = « is a (non-compressed) cycle of length 2,
provided z,y s1,y s» are terms of elementary type. When instantiating = by
h(y s1) we receive from the second equation a shorter cycle of the form y s} =
h(y s1) which is compressed. The sequence x; s1 = f(x1 s2,22(x1 s3)) is a
path-unique and compressed cycle of length 1, provided that z; s1,2; sy are
elementary. The sequence x1 y; = x5 @1 y; 18 not a cycle.

5.2 Definitions of Soundness and Completeness

Definition 5.6. Let Xy C X be a fixed subsignature, let E be a natural number.
A non-deterministic transformation rule T that transforms a BHOUP (S,b) into
another BHOUP (S',V'), offering a finite number of alternatives, is called

— sound (for subsignature Xy), if whenever (S,b) is transformed by T into
(S',0), and (S, b)) is unifiable using a Xy-unifier, then (S,b) is unifiable
using a Xg-unifier.

— complete (for bound E and subsignature Xy), iff the following holds: If (S, b)
has a Xy-unifier o with exponent of periodicity not greater than F, then
T can transform (S,b) into a BHOUP (S',V') that has a Zy-unifier with

exponent of periodicity not greater than F.

In the following sections, the upper bound E and the signature X are often
fixed. In such a context we may simply talk about “soundness” and “complete-
ness”.
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5.3 A Well-Founded Measure for Termination

We now introduce the measure that is used to prove termination of the decision
algorithm.

Definition 5.7. The lexicographic measure (L) = (¢¥1(L),¥2(L), ¥s(L))
of a cycle L of a BHOUP (S,b) has the following three components:
W = the length h of L.

Yo = 0, if L is non-path-unique, 1, if L s path-unique.

s = — if L is non-path-unique, then the minimal main depth of the rele-
vant conterts C; of L where t; contains at least two different surface-
occurrences of T(j11) moas h-

— if L 1s path-unique, then the number of indices 1 < i < h such that C;
s not trivial.

Definition 5.8. The  measure pu of a BHOUP (S)b) is o«

lexicographic one with the components 15 2, 3, Ha, 15, 16 -

p1 = the multiset {b(z) | € FV(S),b(x) > ar(x)}. This component is ordered
by the multiset ordering (see [DM79,BN9S]).

Ho = the multiset {b(x) — ar(x) | © € FV(S),b(x) > ar(z)}. This component
1s ordered by the multiset ordering.

pz = if there is a cyele in S, then min{y(L) | L is a eycle in S}; Otherwise,
0.

pq = the multiset {size(t) | t is a top-level term in S that is not a first
order variable}. This component is ordered by the multiset ordering.

s = the number of occurrences of function symbols in S on surface positions.

e = the number of first-order variables in S.

Lemma 5.9. The measure p for BHOUPs s well-founded.

5.4 Decomposition Rules

The decision algorithm for BHOU operates on systems of a special kind, called
“decomposed” BHOUPs. The decomposition of an intermediate system consti-
tutes the final step of each transformation rule. The decomposition rules are
described in Table 1. In every application of decomposition the failure rules
have highest priority. For the application of the rules we presuppose that all
terms in the BHOUP are in g7-normal form.

Note that the selection of the function symbol in rule (extend) is “don’t
care”.

Definition 5.10. A BHOUP (S, b) is decomposed if no decomposition rule and
no failure rule is applicable.

Remark 5.11. Let S be a decomposed BHOUP and L be a minimal-length cycle
in S of the form x1 = t1,...,xy = t;,. Then the relevant context C; of equation
¢ does not have any surface-occurrence of a variable z; for j = 1,... h. In fact,
by definition, C; cannot contain a surface occurrence of z;41. If C; would have
a surface occurrence of a variable z; # 2;41, then L cannot be length-minimal.
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{f51 Sniftl tn}US

d
(decomp) {s1 =t1,...,80 =t} US
AuT s = AuT U S
(extend) {u S; u’.t} 3 where f € 2\ X is a fresh func-
{slf/ul = (e /ul)} L tion symbol of type 7.
constantify i Where S’ is constructed from S as follows: Let x be a
S/
variable with ar(z) > 1 and b(z) = ar(z). Let ' be a fresh
first-order variable. Replace all subterms (z t1 ... tar(s))
by z'. Let ¥'(z) := 0.
repvv M If &,y are first-order variables. S’ is constructed
S
from S by replacing all occurrences of & by y. &' (y)
is defined as min{b(z),b(y)}.
decomp-repvt M If « is a first-order variable. S’ is constructed from
_ S/
le=t}u S by replacing all surface occurrences of = by ¢.
Conditions for applications are: There must be a
minimal-length cycle L that is not compressed,
and x = t must be an equation in the cycle L.
Failure rules:
{fs1 ... sn=gt1 ... tm,}US .
(clash) Fail iff#g
(occurs-check) FS 7 if there is a chain of equations z1 = t1|z2],...,n-1 =
a tn—1|Tn],n = tn|z1], such that for all 1 = 1,...,n, =
is a first-order variable, and #; occurs on the surface of
t(i—1) modw n; and for some ¢ = 1,...,n, the term ¢; is of
the form f i1 ... & ar(p)-
(inconsistent-bound) S.l if there is a variable = with b(z) < ar(z).
at

Table 1. The decomposition rules
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Lemma 5.12. The decomposition rules are sound and complete.

Proof. Soundness of (decomp), (repvv) and (decomp-repvt) is trivial. Let (S’, b')
result from (S,b) by an application of (extend), and let o be a Xy-unifier for
(S7,b). Then the substitution does not use the symbol f. Since ¢ is ground it
does not use u. We have o(s[f/u]) =p, o(t[f/u]). We can replace all symbols
f by u, and obtain o(s) =g, o(t), hence o(Au.s) =g, Au.o(s) =g, Au.c(t) =,
o(Au.t).

Let (S7,4') result from (S,6) by an application of (constantify). Let ¢’ be
a Yp-unifier for (S',6'). Then t := ¢'(2') is a first-order ground term, by
Lemma 3.3. We define o(x) 1= Ayi, ..., Yar(e)t and o(y) := o'(y) for all free
variables y # x in S. Obviously ¢ is a Zyp-unifier for (S5, ).

For completeness first note that if a failure rule applies, then the input sys-
tem does not have a unifier. For (inconsistent-bound) recall Remark 2.8. Com-
pleteness of rules (decomp), (repvv) and (decomp-repvt) is trivial. Let o be a
Yo-unifier of the input system.

First assume that (extend) is applied in the form described in Table 1. We
have o(s) =g, o(t), where u is a free variable in ¢(s) and o (). Since ¢ is ground,
variable u does not occur in its codomain. It follows that o (s[f/u]) =, o(t[f/u]).
This shows that ¢ unifies the system reached with (extend). Completeness of
(extend) follows.

Assume now that (constantify) is applied. In the situation of the rule,
o(x) has the form Ayi, ..., Yar(s).t Where #bvl7(t) = 0 (cf. Remark 2.8). By
Lemma 2.14, ¢ is a ground first-order term. Hence, for all subterms « ¢, ...1,
occurring in the input system we have o(x t1...t,) = t. Let ¢/(y) := o(y) for
all y # x occurring in S, let ¢/(z') := t. Then o’ satisfies the bounds . Since ¢’
is a Xy-unifier of S’ and the exponent of periodicity of ¢’ does not exceed the
exponent of periodicity of ¢ completeness of (constantify) follows. O

Ezrample 5.13. Soundness of the algorithm is an issue. In particular the rule
(extend) enforces a careful usage of signatures. Consider the equation

Ay = Ax.fx,

where y is a free (first-order) variable, and f is a function symbol. This equation
has no unifier, since y cannot be instantiated with a term containing the free
variable z, since instantiation is capture-free.

After applying (extend), the new equation is

y=1ryg
where g is a function symbol from X'\ Xy.
After an imitation instantiation y — f 3’ and a subsequent decomposition
the system is:
vy =g
This 1s unifiable as a first-order unification problem, but there is no unifier
using symbols from .
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Hence soundness of decomposition requires restricting imitation instantia-
tions to symbols from Xj.

Lemma 5.14. If in (S,b) all terms are in f7-normal form, then each non-
failing decomposition rule reduces the measure p. Thus the repeated application
of decomposition rules terminates.

Proof. Rule (decomp) does not modify p, pt2. Since equations f sy...s, =
f t1...t, do not occur in cycles, us can only be decreased. The rule strictly
reduces fia, pt5.

Rule (extend) does not modify py, pa. It strictly reduces ji4. It may also decrease
3.

Rule (constantify) does not modify 1, po. In a term x ¢1 ... t4.(,), variable
occurrences in the subterms t; are not on the surface and do not participate to
cycles. This shows that also us is not modified. The size of some term 1s strictly
reduced, hence py is strictly decreased.

Rule (repvv) does not modify 1, pia, fta, pts. It may reduce pz in different
ways: A minimal-length cycle may become shorter after application, a path-
unique cycle may become non path-unique. Rule (repvv) also reduces the number
of first-order variables, i.e. pg.

Rule (decomp-repvt) does not modify g1, pa. If (decomp-repvt) is applied,
then & = ¢ is an equation of a minimal-length cycle L. The term ¢ has a surface
occurrence of a variable y which is distinct from # since otherwise (occurs-check)
would lead to fail. Looking at the predecessor and successor equations of x = ¢
in L it is obvious that S’ has a shorter cycle, cf. Remark 5.3. Hence pj strictly
decreases. a

Lemma 5.15. Let (S, b") result from (S,b) by applying one non-failing decom-
position rule. If S contains a cycle L, then also (S',b') contains a cycle L' such

that (L") < 4(L).

Proof. The equations that are manipulated in (decomp) and (extend) do not
contribute to cycles. For applications of (constantify) note that the subterms
t; of a term of the form x ¢; ... {4.(;) do not contain surface occurrences of
terms. Hence replacing x by z’ cannot discard surface occurrences of variables
y # x. Since (constantify) replaces all surface occurrences of z (together with
the arguments) by «’ it follows that any existing cycle L is preserved with the
same t-measure. Applications of (repvv) preserve cycles. A path-unique cycle
may be shortened, and a path-unique cycle may be transformed into path that
1s non path-unique. Both effects cannot increase the measure . The situation
where (decomp-repvt) is applied leads to a shorter cycle, as we have seen in the
previous proof. O

Lemma 5.16. Let the BHOUP (5',V') result from the BHOUP in 37-normal
form (S,b) by applying one non-failing decomposition rule. Then all terms of
(S',b") are in f-normal form.
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Proof. Tt is simple to check that the non-failing rules do not enable any new
application of S-reduction or n-expansion. For (decomp-repvt) note that ¢ cannot
be an abstraction since x has elementary type. O

The following example shows that a unifiable BHOUP may have surface oc-
currences of a variable and also an occurrence on a non-surface position. More-
over, it shows that the rule (decomp-repvt) does not necessarily eliminate all
occurrences of a variable z.

Ezample 5.17. The BHOUP ({#" = y*7* #,...},b) with appropriate b is unifi-
able. A unifier is: {¢ — a,y — Au}.a}, where a is a constant of type ¢. In this
BHOUP it is not possible to eliminate all the occurrences of # by a variable
replacement using = y x.

5.5 Different Types of BHOUPs
Definition 5.18. A decomposed BHOUP (S, b) is of

— type “xy” if S does not have any cycles, and if there s no function symbol f
on the surface of S, (also called pre-unified in the literature on higher-order
unification )®

— type “nocycle” if S does not have any cycles, and if there exists a function
symbol f on the surface of S,

— type “amb” «f S contains a cycle and if there s a Y-minimal cycle that is
non-path-unique,

— type “unique” if S contains a cycle and if all Y-minimal cycles are path-
unique.

Lemma 5.19. Let (S,b) be a decomposed BHOUP (S,b) of type “ry”, and let
X% be a signature such that X}, contains only constants and for every elementary
type 1 € subt(S) there is a constant of type + in XK. Then (S,b) is unifiable by a
Xy -unifier.

Proof. Let (S,b) be decomposed and of type “xy”. Since decomposition rule
(extend) replaces equations between abstractions, all equations of S are of the
formz ty...t, =y s1...s, where z and y have the same target type. Instantiate
every variable x with a constant function of the form Ayy, ..., ya,(s).a" where ¢
is the target type of #. This is a unifier since it transforms every equation into
an identity between elementary constants. The bound b is also satisfied since the
rule (inconsistent-bound) is not applicable, which implies ar(z) < b(x) for all
variables x. a

Lemma 5.20. Let (S, B) be a BHOUP in f7j-normal form. After decomposi-
tion, the resulting BHOUP (S',b') has either type “rvy”, or type “nocycle”, or
type “amb”, or type “unique”.

® Since constant symbols count as function symbols, this includes that there is also no
constant symbol on the surface of 5.
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5.6 The Algorithm BHU
The main backbone of our algorithm is the following observation.

Proposition 5.21. For each of the types “nocycle”, “amb”, or “unique”, a
transformation rule can be given that accepts a BHOUP (S,b) of the given type
and nondeterministically computes a successor system (S',b') such that the fol-
lowing properties hold:

1. The rule leads to a finite branching, i.e., for each input BHOUP there is only
a finite set of possible successor systems.

2. Bach successor BHOUP s decomposed and in fn-normal form.

3. For every successor BHOUP (S',b') we have u(S',b") < u(S,b),

4. The transformation rules are sound and complete, for any finite signature
Yy that contains all function symbols from S and an elementary constant
of type ¢ for every elementary type ¢ € subt(S) and any bound E for the
exponent of periodicity,

5. For every successor BHOUP (S5',b') we have subt(S") C subt(S5).

The transformation rule for BHOUPs of type “nocycle” is described in Section 7.
The above properties for the rule are proved in Lemma 7.3, Lemma 7.5 and
Lemma 7.4. The transformation rule for BHOUPs of type “amb” is given in
Section 8. The above properties are shown in Lemmas 8.2, 8.3 and 8.4. The
transformation rule for BHOUPs of type “unique” is given in Section 8. The
above properties are shown in Lemmas 9.9, 9.11, 9.12 and 9.14.

On the basis of the Proposition we have the following algorithm for deciding
unifiability of BHOUPs.

Definition 5.22. (Algorithm BHU for finite signature Xy)

The input s a BHOUP (Sinp, binp), and a finite signature Xy such that Xy
contains at least one elementary constant a* for each (elementary) target type 1
in subt(S;np), and every function symbol from Sip, is in Zy.

The first step in the algorithm is to apply [-reduction and 7-reduction to (-
normal form resulting in (Sp, by) where by = bipnyp.

The second step is to decompose the BHOUP (Sy, by). We fix a number E for
(So,bo) according to Lemma 4.7 that is used as a bound for the erponent of
pertodicity. Then the following steps are performed:

1. Iteratively transform the current BHOUP (S,b) using the appropriate trans-
formation rule as described in Sections 7-9 into a successor problem (S*,b*),
which is again in f7-normal form.

2. The repetition stops if either a fail occurs or it signals success: a BHOUP of
type ‘“xy” is generated.

The input (Sinp, binp) is recognized as unifiable iff there is an execution possibility
of BHU such that success results.

Theorem 5.23. Unifiability of BHOUPs s decidable.
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Proof. We claim that BHU yields “success” iff the input problem (Sinp, binp)
is unifiable. First note that (Sjn,, binp) is unifiable iff (Sp, bg) is unifiable: this
follows, since [ and 7-reduction do not change the equality, using Lemma 5.12.
If (So,bo) is unifiable, then there exists a Zp-unifier oy with exponent of
periodicity not exceeding E (cf. Part 4 of Lemma 4.1 and Lemma4.7). Since the
transformation rules are complete w.r.t. £/ and Xy and reduce the well-founded
measure u there exists an execution possibility where after a finite number of
steps a BHOUP of type “xy” is reached. Hence BHU yields “success”. Every
transition sequence terminates and each transformation rule is finitely branching,
hence by Konig’s Lemma the search tree is finite and the execution strategy that
yields success is effectively found.
Conversely, if BHU yields “success”, then a BHOUP (Syin, byin) of type “cy” has
been found. Since we have subt(Syin) C subt(Sy) C subt(Sinp) it follows from
Lemma 5.19 that (Sfin, brin) has a Zp-unifier. Soundness of the transformation
rules shows that (Sp, bg) has a Zy-unifier.0

6 Reduction Rules

Before we discuss the treatment of BHOUPs of specific types we describe some
rules that represent possible alternatives in various situations and immediately
lead to a reduced p-measure of the resulting BHOUP. The background signature
Yy 1s assumed to be finite. We start with a remark on the possible values of
variables under Xy-unifiers.

Remark 6.1. Consider the value o(xz) of a variable x of arity m under a Xy-
unifier o of a decomposed BHOUP (S,b). As always we assume o(z) to be in
fn-normal form. As a simple consequence of Lemma 3.3, the following four cases
represent an exhaustive subcase analysis.

(1) o(x) has the form Ayy, ..., ym.vi(t1,...,t;) for some 1 < ¢ < m. This en-
forces b(xz) > ar(z).

(2) o(x) has the form Ayy, ..., ym.f(t1,...,1;) where f € Xy and there are two
subterms ¢;,¢; such that #bvl7(ti) +0# #bvl7(tj) (i, €{1,... k},i#
7). Here again b(z) > ar(z).

(3) o(x) has the form Ayy, ..., ym.f(t1, ..., tg) for some f € Xy and there exists
a unique subterm ¢; (1 < ¢ < k) of non-elementary type. All subterms ¢; for
j # i are ground first-order terms. Here t; must have the form A7 .t} where
7 is non-empty. Again we have b(z) > ar(z).

(4) o(x) has the form Ayy, ..., ym . f(t1,...,tk) where fis an elementary constant
or f € Xy, all arguments of f have elementary type, and there exists at most
oneindex ¢ € {1,..., k} such that #bvl7(ti) # 0. All arguments ¢; for j # ¢

are ground first-order terms.
The following three reduction rules respectively refer to situations (1)-(3).

Definition 6.2. (reduce-bv)
The input is a decomposed BHOUP (S,b) together with a variable ¥ € FV(S)
with b(z) > ar(x) = m.
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(a) Select some 1 < i < m and instantiate x by the S7-normal form of

Ao Um ¥ (2 v Ym) o (B Y o Ym)

where x; for j=1,... k= ar(y;) are fresh variables of the appropriate type.
(b) Select bounds V' (x;) for j = 1,...,k such that m < b'(z;) < b(z) for all

k
variables x; and furthermore 5 (b'(z;) — m) < b(z) —m — 1.
j=1
(¢) Beta-reduce the terms until a fij-normal form is reached.
(d) Decompose the resulting BHOUP.

Definition 6.3. (reduce-split)
The input is a decomposed BHOUP (S,b) together with a variable ¥ € FV(S)
with b(z) > ar(x) = m.

(a) select some f € Xy, and instantiate x by the i-normal form of

Ay, Um Sy ym) (@R v Ym)

where x; for j =1,...,k are fresh variables of the appropriate type.
(b) Select bounds V' (x;) for j = 1,...,k such that m < b'(z;) < b(z) for all

k
variables x; and furthermore 5 (V' (z;) —m) < b(z) — m.
j=1
(¢) Beta-reduce the terms until a fi-normal form is reached.

(d) Decompose the resulting BHOUP.

Definition 6.4. (reduce-binder)
The input is a decomposed BHOUP (S,b) together with a variable ¥ € FV(S)
with b(z) > ar(x) = m.

(a) select some f € Xy with a unique non-elementary argument position, say,
posttion i, and instantiate x by the fn-normal form of

Ay Ym S (z0, - zien, (8 Y o Um), Fig, - 2R)

where z; for j=1,...i—1,i+1,...k are fresh first-order variables and &'
1s a fresh variable of the appropriate type.

(b) Define b/ (2') :==b(z) and ¥/'(%;) =0 forj=1,...,i—Li+1 .. k.

(¢) Beta-reduce the terms until a fij-normal form is reached.

(d) Decompose the resulting BHOUP.

For proving soundness of the three rules (reduce-bv), (reduce-split), and
(reduce-binder), the following lemma is needed.

Lemma 6.5. Let s be a term in fij-normal form of type a1 — ... = am — ¢,
for1 <i<mlety bea fresh variable. Then #bvl7((5 Yider - Ymdsr)lan) =

#bol(s) — m.
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Proof. 1t is sufficient to show this for m = 1, and then use induction. As-
sume that s = Auy.s’. Then #bvl(s) — 1 = #bvly, (s'). We have [s y1lgpllsm =
(8'[y1d g7/ u1]) gz Since s’ is in f7-normal form, each occurrence of u; represents
the head of a maximal application. The replacements of u; by y1|s7 and the sub-
sequent beta-reductions have the effect of exactly replacing the variable u; by
the variable yy, i.e., s'[y1lgn/ui]lsr =« 8'[y1/u1]. Hence #buly, ((s y1dsq)dsm) =
#bvly, (s'[y1 /u1]) = #buly, (s") = #bvl(s) — 1. O

Example 6.6. Let s = x(b_”)_”i@ﬁ = A7 (w Azt (w7 2)). We have #bol(s) =
4. Let y*7* be a fresh variable. Applying s to ylgy; = Aw'.(y w) yields after a
first G-reduction & Az*.((Aw'.(y w)) z). A second fB-reduction gives (s ylgn)lsnr =
x Az.(y z). We have #bvly((s ylgm)lsm) = 3.

Lemma 6.7. (a) The three reduction rules (reduce-bv), (reduce-split), and
(reduce-binder) are sound.

(b) Fach reduction rule (reduce-bv), (reduce-split), and (reduce-binder) fails or
leads to a decomposed BHOUP (S*,b*) such that p(S*,b*) < p(S,b).

Proof. (a) Let ¢* be a Xy-unifier for the output system (S*,5*). Soundness of
decomposition shows that there exists a Xy-unifier ¢’ for the system (5, 5')
reached before decomposition. Obviously, if ¢ denotes the substitute for z as
defined in Step (a) of the respective rule, then o(z) := ¢’/ (t)| g7 and o (y) := ¢’ (y)
for all free variables y # x of S defines a Xy-unifier for S. To prove soundness it
remains to show that ¢ respects bound b.

First assume that rule (reduce-bv) is used. Then x is replaced by the term

AV .y (Mt .y Waﬁ) urlgg) .. (Aug.ap Waﬁ) U d ) s

the length [; of the lambda-binders /\u_>j depending on the arity of the j-th
argument type of y;. Hence

o(x) = Xy (NTL[0"(01) whm wibamlbon) - @[ (21) wlar wnlon)lom).
Lemma 6.5 shows that #bvl7u—>j([a’(1‘j) m uilanldan) = #bvl(o’ (x;)—m—1;).

It follows that #bvl(o(z)) = m+ 1+ Z?Il(#bvl7(a’(xj)) -m)<m+1+4

Z§:1(b/($j) —m). Now the condition in Part (b) of the rule shows #buvl(c(x)) <
b(x). The proof for rule (reduce-split) is analogous. For rule (reduce-binder) note
that o/(z;) is a ground first-order term, for j = 1,...,4p — 1,ip + 1,...k. The
rest is as before.

(b) Assume that the final decomposition step in Part (d) does not lead to
failure. Rules (reduce-bv) and (reduce-split) reduce p; since z is replaced by a
finite number of variables with smaller bound. Rule (reduce-binder) does not

modify p1. Since ar(z’) > ar(xz) it follows that pg is decreased. O

Lemma 6.8. [Weak completeness of reduction] Let (S,b) be a decomposed
BHOUP with a Xy-unifier o with exponent of periodicity e. Let M # 0 be any
subset of FV(S). Then either
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1. it is possible to reach via application of one of the rules (reduce-bv), (reduce-
split) or (reduce-binder) to some x € M a decomposed BHOUP (S*, b*) such
that p(S*,6%) < p(S,b) and (S*,b*) has a Zy-unifier o* with exponent of
periodicity < e, or

2. each value o(x) for x € M has the form (4) described in Remark 6.1.

Proof. Case 1. 1If there is any variable x € M where o(x) has the form (1)
described in Remark 6.1, then we apply (reduce-bv) using  (Alternative 1). For
the new variables we define b'(z;) := m+ #bvl7(tj) (1 < j < k). This choice is
consistent with the condition in Step (b) of (reduce-bv) since Z?Il(b’(xj) —m) =
Z?:l #bvl7(tj) = #bvl(o(x)) — 1 —m < b(x) — 1 — m, which also implies that
b'(xz;) < b(z) for 1 < j <k. Wedefine o/(x;) := Ay1, ..., Ym-t; and o' (y) := o(y)
for # # y € FV(S). Obviously this definition is compatible with bound §’ defined
in Step (b). It is trivial to verify that ¢’ is a Xy-unifier for the system reached
after Step (c). Clearly the exponent of periodicity of ¢’ does not exceed the
exponent of periodicity of ¢. Using completeness of decomposition we are done.

In the remaining cases, some variable # € M has a value o(x) of the form
AYL, - Ym S (t1,. .-, t) where f e Xy,

Case 2. If there exists a variable + € M where o(z) has the form (2) described
in Remark 6.1, then we apply (reduce-split) using # (Alternative 2). For the new
variables we define ¥'(z;) := m + #bvl7(tj) (1 < j < k). The assumptions
on form (2) show that b'(x;) < m + #bvl(o(z)) — m = #bvl(o(z)) < b(2)
for j = 1,...,k. In addition we have Z§:1(b/($j) -m) = Zle #bvl7(tj) =
#bvl(o(x)) — m < b(x) — m. Defining o’(z;) as A7 .t; is consistent with b’. It
is trivial to verify that ¢’ is a Zp-unifier for the system reached after Step (c).
The exponent of periodicity of ¢’ does not exceed the exponent of periodicity of
o. Using completeness of decomposition we are done.

In the remaining case, some variable # € M has a value o(z) of the form
AY1, - Ym-S (1, ... 1) where f € X, and for at most one subterm t; we have
#bvl7(ti) #0.

Case 3. Tf there exists a variable # € M where o(z) has the form (3)
described in Remark 6.1, then we apply (reduce-binder) using # (Alternative 3).
Here f and i are as above. We define ¢/(z') := A¥.t; and o/(z;) := t; for
j=1,...,i—1,4+1,... k. The definition respects b’. It is trivial to verify that o’
is a Xy-unifier for the system reached after Step (c). The exponent of periodicity
of ¢’/ does not exceed the exponent of periodicity of o. Using completeness of
decomposition we are done.

In the remaining Case 4, every value o(z) for £ € M is of the form (4)
described in Remark 6.1. The result follows.O

7 Rules for Type “nocycle”

Let (S,0) denote a BHOUP of type “nocycle”, with a set of variables Vg :=
FV(S). Let the relations “~1” and “>1” on Vg be defined as follows: if there
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exists an equation x s; ...s, =y ty... t;, € 5, then © ~q y. If there exists an
equation z s; ...s, =t € 5, and ¢t has some function symbol f as head, y is on
the surface of ¢, then © > y.

Let “~” denote the equivalence relation in Vg generated by ~;. Denote the
equivalence class of a variable @ by [z]~. For equivalence classes Dy, Dy of Vg/ ~
define Dy t>1 Do if there exist x; € D; for i = 1,2 such that xy >; z5. Let “p”
denote the transitive closure of “r>1”.

Lemma 7.1. If the decomposed BHOUP (S,b) is of type “nocycle”, then the
relation ‘" is an irreflexive partial order on Vg/ ~.

Proof. Assume that “t>” is not irreflexive. Then there exists a sequence z; 57 =
t1,...,xp 54 =t of length h > 1 of equations from S such that z; occurs on
the surface of #;_1 noas » for 1 < ¢ < h. Moreover, there is at least one term #;
of the form f(¢;1,...,%i ). Since the sequence does not represent a cycle, all z;
have arity 0. But then decomposition rule (occurs-check) would lead to failure,
a contradiction.O

Definition 7.2. (Imitation) Let (S,b) be a decomposed BHOUP of type
“nocycle”. Select a 1>-mazrimal ~-equivalence class D and a function symbol f
according to the following conditions: There must be an equation z ... = f...in
S where z € D. Let k := ar(f). Select one of the following two alternatives. The
second alternative is only possible if f € Xy has arity k > 1 and if all arguments
of f have elementary type, i.e. f is a first-order function symbol.

1. Apply (reduce-bv), (reduce-split) or (reduce-binder) using a variable x € D
with b(x) > ar(x).
2. Apply the following steps:
(a) For every variable x € D select an index j, with 1 < j, < k. Instantiate
z by the fn-normal form of

Ayt .. ~,yar(x)~f(21, sy Rje—1s (l‘/ Y- ~yar(x))azjz+1 . ~~,Zk)

where the z;,i=1,...k,i # j. are fresh first-order variables and ¢’ is a
new variable of appropriate type. Define b'(z') := b(x) and b(z;) =0 for
ie {1, k)i e

(b) Use (B3)-reduction to transform the terms into 37-normal form.

(¢) Decompose the resulting BHOUP.

Lemma 7.3. Application of the the rule (imitation) to a decomposed BHOUP
(S,b) of type “nocycle” either fails or results in a BHOUP (S*,b%), such that
p(S*, b*) < pu(S,h).

Proof. A I>-maximal equivalence class with the required properties exists, since
there are no cycles, there is no occurs-check failure, and the BHOUP is not of
type xy.

If Alternative 1 is selected, then the result follows from Lemma 6.7. If Al-
ternative 2 is selected, since all arguments of f have elementary type, each
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z € D is instantiated with a term A\¥.f(z1,..., 251, 2’ m, Zjudls -y %n)-
Since b'(2') = b(x) and ar(2’) = ar(z) neither gy nor ps are affected. If S* con-
tains a cycle, then us is reduced. Hence we may assume that S* does not have
a cycle. Then none of the systems reached before or during Step (d) has a cycle,
by Lemma 5.15. Hence rule (decomp-repvt) is not applied.

Note that all surface occurrences of variables z € D are the distinguished
occurrences in equations £ 7 = 8 or 7 = 5. We consider the modifications
of p4, pts that result from the treatment of each equation. We first consider the
equations of the form 7 = y# in S for 2,y € D. The instantiation of x,y,
after G-reduction yields equations

fle, ... 2 7,...,,2”) = flel, Y ?,,zé)

Via decomposition both occurrences of f are removed. The decomposition of the
successor equations only uses (repvv). We do not obtain new function symbols
on the surface, perhaps some first-order variables are added. Replacements of
variable occurrences in 7 = y§ that are not on the surface do not modify
4, ps. Hence, after Step (d), we do not have any new contribution to measure
components fiq, it5 from equations 7 = y% .

For the equation(s) 7 = f¥ in S the instantiation of = after B-reduction
yields

fle, ... 2 7,...,,2”)if(sl,...,siu,...,sn).

Via decomposition both occurrences of f are removed. The rest is as above.
Hence, after Step (d), there is one term that is replaced by some terms of a
smaller size, and at least one surface occurrence of f is removed. Hence p4 and
w5 are strictly decreased. O

Lemma 7.4. The rule (imitation) is sound and complete.

Proof. Let (S,b) be a BHOUP before application of the rule.
Soundness. Assume there is a Xy-unifier ¢* of the BHOUP (S*,b*) reached
after the transformation. If Alternative 1 is selected, then Lemma 6.7 shows
that (S, 6) has a Xy-unifier.

If Alternative 2 1s used, soundness of decomposition shows that there exists
a Xp-unifier ¢’ of the BHOUP (5,1') reached before the final decomposition.
We now show that there is a Xp-unifier for (S,b). For each # € D, let m = ar(x)
and define () as the f7-normal form of the o’-image of the g7-normal form of
Ay, - Ym Sz, 21, (8 Y1 Ym) s Zjaga - -, 2n). I8 Is trivial to see that
o is a Xy-unifier for S. Since for ¢ # j, always ¢/(z;) is a ground first-order
term (cf. Lemma 3.3) we see as in the proof of Lemma 6.7 (Soundness) that
#bol(o(x)) < m+b(2') — m = b(z). Tt follows that ¢ is a Zy-unifier for (S, b).

Completeness. Let o be a Xp-unifier of (S,b). It follows from Lemma 6.8
that it suffices to consider the case where each variable # € D has a value o(x)
of the form Ayi, ..., ¥ar(e).f (t1,...,1) Wwhere for at most one subterm ¢; we
have #bvl7(ti) # 0 and every argument of f has elementary type. Obviously

f must be the function symbol mentioned in the rule (Imitation). Here we use
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Alternative 2. Let € D and let o(x) = AY.f(t1,...,t,). In Step (a), if there
exists a term ¢; such that #bvl7(ti) # 0, then select j, := 4, in the other case
the selection of j, is arbitrary. We define o/(z') := A% ¢; and ¢/(z) := o(y) for
z # y. Images of fresh first-order variables are obvious. The definition respects b’.
It is trivial to verify that ¢’ is a Xy-unifier for the system reached after Step (b).
The exponent of periodicity of ¢’ does not exceed the exponent of periodicity of
o. Since decomposition is complete we are done. O

Lemma 7.5.  The rule (Imitation) either fails or transforms a decomposed
BHOUP (S5,b) in f7-normal form into a decomposed BHOUP (S',b') in [7-
normal form. Moreover, subt(S’) C subt(S).

Proof. By inspecting the rule. O

8 Rules for Type “amb”

Before we describe the treatment of BHOUPs of type “amb” we introduce a rule
that is used to replace surface occurrences of first-order variables by a term t, if
the equation # = t is in the problem set. It is not used for decomposition, since
for BHOUPs of type “nocycle” it would in general increase the measure.

{e=t}uUS
{le =tuy

S’ 1s constructed from S by replacing all surface oc-
currences of # by t. The variable # must be a first-
order variable.

(repvt)

Now let (S, b) denote a problem of type “amb”. Recall that S is decomposed
and has a ¢¥-minimal cycle L that is non-path-unique. We may assume that L
has the form 1 57 =t1,..., 25 5, = ts. The cycle could as well be represented
as @1 51 = Cy[th],...,zn 5% = Cu[t,], where C; are the relevant contexts (see
Definition 5.4).

Definition 8.1.  (solve-ambiguous-cycle). The inpul is the decomposed
BHOUP (S,b) of type “amb” with a -minimal cycle I as described above. Select
one of the following two alternatives.

1. Apply (reduce-bv), (reduce-split) or (reduce-binder) using a variable x €
{1,...,zp} with b(x) > ar(x).

2. Select an index j such that J:js_} = 1; 15 an equation in L where x(j 41 noax h)
occurs at least twice on the surface of t; = f t;1 ... t; and the man
depth of the relevant context C; 1s minimal in L. If f has an argument with
non-elementary type, then fail.

Now apply the following steps:

(a) Select an index v € {1,...,k}. In the special situation where h = 1, the
selection of r is subject to the following condition: all surface occurrences
of x1 in f(t11,...,t1 %) have to be intq .. If this is not possible since Cy
1s trivial, then stop with fail.

29



(b) Instantiate x; by N7 .f(z1,..., -1, i ylpg, zr41 ... 2x) where the z;
are fresh first-order variables (1 < i < k,i # r), and @ is a fresh
variable.

(c) Define b'(z;) := 0 and b'(x}) := b(z;).

(d) Use B-reduction until a S7-normal form is reached for every term in the
system.

(e) Apply rule (decomp) to the equation that is obtained from the equation
257 =t; in Step (d).

(f) Apply (reput) for all the new equations z; =t;; (1 < i < k,i# r) that
are obtained from the previous step.

(9) Then decompose the resulting BHOUP.

Lemma 8.2. Application of the the rule (solve-ambiguous-cycle) to a BHOUP
(S,b) of type “amb” either fails or results in a BHOUP (S*,b*), such that
p(S*, b*) < pu(S,h).

Proof. If Alternative 1 is selected, then the result follows from Lemma 6.7.
Assume that Alternative 2 is selected. By Lemma 5.14 it suffices to show that
the system (S’ b') reached after Step (f) satisfies (S, 6') < p(S,b). Obviously
Steps (a)-(f) do not affect the measures p; and ps. Note that in (b) we have
ar(z};) = ar(z;). We now show that 3 is reduced.
We first assume that A > 1 and consider the relevant equation, its predecessor
and successor equation (for h = 2, the first and the third equation are identical).

Tj1 T =t
;7= st 2]
Tjp1 T =l

Instantiating z; plus beta-reductions yields the equations

xj_1? = t}_ltf(zl, e 21, x; T zeg1 e 2k)]
Fle, ooy 2rmn, x; 77, Zrgl -.. ZR) = f(t‘/jyl, .. ~at},k)[l°j+1J
xj+1? = t}+1.
Here primed terms are obtained from unprimed predecessors via instantiation.
The arguments represented as " depend on the arguments of the respective

surface occurrence(s) of x; in t;_q. Decomposition of the central equation in
Step (e) yields

ﬁ
Tji—14 It]_1[f(21,~~~,2r—1,l‘] T Ar4l Zk)J
/ 7»; /
r;r —tj,r
A
Tiy18 =1549.
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plus the equations z; =t} ; (i # r). Replacing the z; by ¢} ; in Step (f) now yields
ﬁ

. (AR / / I — gl /
Lj-19 —tj—ﬂf(tj,la~~~,tj,r—1al‘j RCL7 P IS tj,k)J
/ 7 7]
133 T _tj,T
%

~.

T 1
Tiy1s =1j4.
First assume that there exists at least one index { # r such that ¢;; has a
surface occurrence of x; ;. Since the cycle has minimal length and A > 1 we
have x;41 # x;. It follows that t},l has a surface occurrence of z;4;. This shows
that the equations
ﬁ

. (AR / / I — gl /
$]_1q = tj—ltf(tj,l’ . "tj,T—l’ 133 . .’tj,T+1 e t],k‘)J
% .
a:j_|_15” :t}’_l_l.

together with the images of the remaining equations of L represent a cy-
cle of length i — 1. Note that the conditions for a cycle are satisfied since
@G, g, ) = g - t;’,k)J contains a function symbol as head.
Hence, after Steps (a)-(f) we reach a system with smaller ¢1-measure.

Now assume that all surface occurrences of ;41 belong to ¢; , . This means that
xj41 occurs at least twice on the surface of t},r Together with the images of the
remaining equations of L the equations

/A / / e /
l‘j_lq :tj—ltf(tj,l’""tj,r—1’$j ...’tj,T+1 t],k‘)J
ﬁ .
o 7=t )

j Ly
418 =1544-

represent a cycle of the system reached after Step (d). The main depth of the
relevant context of the equation with index j is decreased. Note that if z; has two
surface occurrences in ¢;_1, the main depth of the relevant context of equation
j — 1 1s not affected. The new cycle is non-path-unique, hence it has smaller
¢-measure than L. Hence after Steps (a)-(d) we reach a system with smaller
1-measure.

It remains to consider the case A = 1. Let the equation be

1‘17> = f(tl, . .,tm)Ll‘lJ.

Here x; has at least two surface occurrences in ¢,. Instantiation and beta-
reductions yield

fler, ooy zemn, (2 77),,27«4_1 ce Zh)
=@, Gt Fe, e, (2] T ey Zm) ] thgts )

Decomposition gives

z) 7itﬂf(z1,...,z7«_1,(x/1 ), g1 - 2k) ]
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We have a non-path-unique cycle where the depth of the main context is smaller
than before. As above it follows that we reach a system with smaller ¢-measure.
O

The following figure illustrates the first situation considered in the preceding
proof where h = 3 and j = 2.

X - X e

Lemma 8.3. The rule (solve-ambiguous-cycle) is sound and complete.

Proof. Let (S,b) be a BHOUP before application of the rule.
Soundness. Assume there is a Xy-unifier ¢* of the BHOUP (S*,b*) reached
after the transformation. If Alternative 1 is selected, then Lemma 6.7 shows
that (S, 6) has a Xy-unifier.

If Alternative 2 1s used, soundness of decomposition shows that there exists
a Xp-unifier ¢’ of the BHOUP (S,1') reached before the final decomposition.
Obviously, if t = XY . f(21, ..., 2r—1, 4 m, Zr41 - .. 2g) denotes the substitute
for x; as defined in Step (b) of Alternative 2, then o(z;) := ¢'(t)} g7 and o(y) :=
o'(y) for all free variables y # x; of S defines a Xy-unifier for S. To prove
soundness 1t remains to show that ¢ respects bound . We have

—

o(2;) =AY f(0' (1), 0" (zr=1), [0 (25) whprllpm o' (zr41) .. 07 (2k))
where #bvl7(o"(zi)) =0 fori e {l,...,k},i # r. Lemma 6.5 shows that
#bvl7([0’(r}) ylgller) = #bvl(o'(2})) — m; where mj is the length of 7. It
follows that #bvl(o(x;)) = m; + #bvl(a’(x})) — m; = Fbvl(a' (x})) < V' (2)) =
b(x;), which shows that ¢ respects b.

Completeness. Let o be a Xp-unifier of (S,b). It follows from Lemma 6.8
that it suffices to consider the case where any variable # € {x1,..., 25} has a

value o(z) of the form Ay1,..., ym.f(t1, ..., ) where for at most one subterm
t; we have #bvl7(ti) # 0 and every argument of f has elementary type. Here

we use Alternative 2. We select an index j such that J:js_} = t; is an equation in
L where (41 noas n) 0occurs at least twice on the surface of t; = Ftia, - tik)
and the main depth of the relevant context C; is minimal in L. Let o(x;) =
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AYL, - Ym-S(t1, ... k), let r be an index such that #bvl7(t7«) = #bvl(o(x)) —
m. We select this index in Step (a).

We have to show that for A = 1 all surface occurrences of x; in
f(ti1,...,t1x) are in ¢, ,. For index ¢ # r, the subterms ¢; of o(x1) =
Y1, Ym-f(t1, ..., 1) are ground first-order terms. Hence we have o(z1357) =
Flta,. o tem U by, . tk) = flo(tia),...,0(t1 k). Assume that for some
¢ # r varlable z; occurs on the surface of ¢; ;. Since ¢; is a proper subterm of
o(z1) and o(z1) is a subterm of ¢(t1 ;) = ¢; we obtain a contradiction.

Returning to the general case with j,r as above it is simple to see that
o'(xh) = MYt and o(z) = t; for i # r,1 < i < k defines a Zp-unifier
for (S7,b'). Tt obviously satisfies bound &’ and has an exponent of periodicity
that does not exceed the exponent of periodicity of ¢. From completeness of
decomposition rules it follows that we are done. O

Lemma 8.4.  The rule (solve-ambiguous-cycle) either fails or transforms a
decomposed BHOUP (S, b) in f7-normal form into a decomposed BHOUP (5',b')
in f-normal form. Moreover, subt(S") C subt(S).

Proof. By inspecting the rule. O

9 Rules for Type “unique”

In this section we distinguish between two types of path-unique cycles.

Definition 9.1. Let (S,b) be a BHOUP. A term t occurring in S is b-
constrained iff either t € FV(S) is a first-order variable with b(t) = 0,

or there erists an equation z = ¢ in S such that b(z) = 0. A contert
Fl, . tem1, [ teg1, - - -, te) appearing in S is called b-constrained iff f is a
first-order function symbol, and every subterm t; (i=1,...,r—1,r+1,... 1)

15 b-constrained. A non-empty context C' is b-constrained iff every subcontext of
main depth 1 is b-constrained.

Definition 9.2. A cycle L of length h is special path-unique if the following
holds:

— 1t 1s path-unique,
— only the relevant context of the last equation C}, 1s non-trivial,
— the context Cy, 1s b-constrained.

The following rule (shuffle) does not necessarily decrease y; it may increase
the ¢3- component of the measure component ps. It can be applied to a BHOUP
and a cycle L only in the context of a larger procedure where we will be able to
decrease u eventually.

Definition 9.3. Sub-rule (shuffle) The input is a decomposed BHOUP (S, b)
and a path-unique cycle L in (S,b) of length h > 2 of the form x5 =
C’l[ajzt—f], .. xRFL = C’h[ajlﬁ] where L contains at least two non-trivial rele-
vant contexts C; and Cjr. Select one of the following alternatives.
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1. Apply (reduce-bv), (reduce-split) or (reduce-binder) using a variable x €
{z1, ..., xh}_t>uith b(x) > ar(z).
2. Let Cj[l‘j+1tj] have the form f(tjyl, .. ~,tj,s—l,tj,sL$j+1J,tj,s+1, . .,tjyk).
(a) Fail, if f has an argument position of non-elementary type, or if f & .
Select an index 1 <r <k.
(b) Instantiate x; by X7 .f(z1,.. ., 2r-1, T Ybpms Zra1, - - o, 2k), where the z;
(1 <i < k,i#r)are fresh first-order variables and x; is a fresh variable.
(c) Define b'(z;) :=0 (1 <i < k,i#r)and b'(2) = b(z;).
(d) Use (-reduction to reach a fij-normal form.
(e) Apply (decomp) to the j'* equation of L after the instantiation, i.e. to

f(zla . "ZT—1a$} 5_]},Zr+1, . 'azk‘)
Fia, - tis—ttisleir ]l tisers k).

(f) Apply (reput) or (repvv) for all equations z; =t;; for i # r added by the
last step.
(9) Then decompose the resulting BHOUP.

Lemma 9.4. The rule (shuffle) is sound and complete.

Proof. The reader should note that the procedure in Alternative 2 is the same
as in Alternative 2 of the rule (solve-ambiguous-cycle), modulo the irrelevant
origin of the variable x;. For (shuffle), the situation 2 = 1 does not occur by
assumption. Hence soundness and completeness of (shuffle) can be shown exactly
as in the proof of Lemma 8.3. O

In the following, let 1z be the measure with the three components p1, pis, and
as third component, the minimal length of a cycle in (5, b).

Lemma 9.5. Let (S,b) be a decomposed BHOUP with a path L of minimal
length h > 2 that is path-unique. Let (S',b") be obtained from (S,b) by an appli-
cation of (shuffle) using L. Then one of the following cases holds:

1o (8", b') < (S, b),

2. r = s, the system (S',b') is decomposed and contains a path-unique cycle
L' of length h such that the relevant contests C1,...,C} have main depth
corresponding to C, ..., Cy except for indices j and j — 1 modx h. We have
|C}—1 mods* h| = |Cj—1 mods h| +1 and |C‘;| = |C]| = 1. In C‘;—l modx A’ the
suffix subcontext of main depth 1 ts b-constrained.

Proof. Tf Selection 1 is used, then m(S’,0") < m(S,b) (cf. Lemma 6.7).

Assume that Selection 2 is used. Then gy and ps are not affected since
ar(zj) = ar(z’;). First consider the case where r # s. Let the equations with
indices j — 1 modx h,j and j + 1 modx* h be

. —
wj1 Tt = Cjalzj 41
2 TP = fa, ot ts e s, k)

Tjp1 Tl =t
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Path uniqueness and length-minimality imply that L contains only the explicit-
ly indicated surface occurrences of z;. Instantiation (b) and S-reductions give
successor equations of the form

— . ——
i1 r}_l = C}_ltf(zl, ey Zro1, (l‘; t}_l),2r+1, -l
FGr e ot (8 70 2o 20) = P 1ot @it st

. TR ;t/
Tit1 Tjp1 =1

Applying (decomp) to the middle equation yields (among others) the equation
zs =1 [x;j41]. Applying (repvt) or (repvv) we obtain a cycle L; of length h—1:

— —
wja iy =Ch [ f(zr, o zemn, (8 50), gy -y 2sm 1, U gl @1 ] 2, 2k)]
——

Y
i1 Ty =1

After decomposition we have a successor cycle L’ of length h — 1 in the system
(S7,b') that is reached (cf. Lemma 5.15). Hence (S, 0’) < (S, b).

It remains to consider the case where r = 5. If (5", V') < (S, b) we are done.
Assume that (S, b") > 7(S, b). Since r = s, instantiation (c) and F-reductions
lead to

— . ——
i1 r}_l = C}_ltf(zl, ey Zro1, (l‘; t}_l),2r+1, -l
FCrr ety @5 7Y 2t k) = FEns ot it Leii [ s o 1)

7 Y,
i1 Ty =1

Applying (decomp) to the middle equation yields a variant Ly of L of length h
with equations

— . —
i1 7“3'—1 = C}_ltf(zl, ey Er1, (l‘; t}_l),2r+1, cey Z) ]
< .
o 7 2 L)

. TR . t/
Tit1 Tjp1 =t

(S7,6") is the system reached after decomposition. As we have seen in
Lemma 5.15, S’ contains a cycle L’ of length h corresponding to L. Note that
the variables @1, ...,z cannot be first-order since (S, b) is decomposed. Hence
possible application of decomposition rules (repvv) and (decomp-repvt) do not
affect path-uniqueness and I’ is again path-unique. Obviously ' has the prop-
erties demanded in Situation 2 above. Note that f(z1,...,zr—1,[], Zr 41, - - -, &)
is b-constrained. Decomposition does not affect this property. Hence the result
follows. O

Definition 9.6. (shuffle*) Let (Sg, by) be a BHOUP and let L be a y-minimal
path-unique cycle of length h with at least two non-trivial relevant contexts C}

and Cji. Let (S,b) = (So,bo). Iterate (shuffle) as follows:
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Farst select an index j in the cycle L such that C; s non-trivial.

Apply (shuffle) for index j, yielding the BHOUP (S, V).

If u(S',0) < w(So, bo), then return (S7,V).

Otherwise, let L' be the path-unique cycle obtained from L. IfC'} 15 nontrivial,
then go to 2 using the same index.

If C’} is trivial, but still L' has at least two non-trivial relevant contexts, then
go to 2, replacing (S,b) by (S',V') and using the index j — 1 modx h instead
of j. Otherwise stop.

o o~

Definition 9.7. (shuffle**) Let (S,b) be a BHOUP, let L be a minimal-length
cycle of S of length h that is path-unique and contains exactly one non-trivial
relevant context, say Ch. If L is not special path-unique, then iterate (shuffle) as
follows:

1. Apply (shuffle) for index h, yielding the BHOUP (S',b).
2. If p(S7,6") < pu(S,b), then return (S, V).
3. Otherwise, let L' be the cycle obtained from L.

If C}, is nontrivial, then go to 1 using the same index.
If C} is trivial, then return (S, V).

Remark 9.8. (shuffle*) is intended to operate on a -minimal path-unique cycle
L, where several relevant contexts are non-trivial. The application of (shuffle)
shuffles subcontexts of main depth 1 of a relevant context to another index, until
two relevant contexts are merged into one.

The rule (shuffle**) should operate in the situation as above, when exactly
one relevant context is in the cycle. The operation shuffles the relevant context
to the next index, with the intention to clean it, such that after the shuffle, every
subcontext of the relevant context is b-constrained.

Lemma 9.9. Given a BHOUP (S,b) of type “unique” with a y-minimal cycle
L that is not special path-unique, it is possible using (shuffle*) and (shuffle**) to
either reach failure or @ BHOUP (S, V') with u(S',b') < p(S,b), or a BHOUP
(S7,6") with a ¢-minimal and special path-unique cycle. The whole transforma-
tion 1s sound and complete.

Proof. Tf I has at least two non-empty relevant contexts we first apply (shuffle*).
If there is no failure and measure p is not decreased, then we reach the BHOUP
(S*,0*) with a path-unique cycle L* with the same length as I that has less
non-empty relevant contexts. (If L has only one non-empty relevant context,
then let S* := S, b* := b and L* := L.) If L* is already special path-unique,
then we are ready. In the other case we apply (shuffle**). If there is no failure
and measure g is not decreased, then we eventually reach the BHOUP (5, 5')
with a special path-unique cycle L’ with the same length as L. This holds, since
after application of (shuffle**) the new relevant context has only b-constrained
subcontexts, and is thus itself b-constrained. Soundness and completeness of the
complete procedure directly follow from Lemma 9.4. O
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9.1 The Rule for Special Path-unique Cycles

Now we consider the case that there 1s a ¢-minimal special path-unique cycle.
L.e. there is a ¥-minimal cycle with exactly one non-trivial relevant context C},
of the form

2151 = 2okt ., wh_15h] = eala_l, €nSE = Ch[l’lﬁ]a
where C}, is a b-constrained. Since the BHOUP is decomposed it follows that
for the variables » € {#1,..., x5} we have b(x) > ar(z).

Recall that F is the upper bound on the exponent of periodicity fixed in the
algorithm BHU. Recall also that C* for a context C' and a positive integer e
means the expanded form C'...C,

N —

€

Definition 9.10. (solve-special-cycle) The inpul is a decomposed BHOUP
(S,b) with a Y-minimal special path-unique cycle L of the form described above.
Select one of the following alternatives.

1. Apply (reduce-bv), (reduce-split) or (reduce-binder) using a variable x €

{e1, ..., 2p}.
2. (a) Select some 0 < e < E and some (possibly trivial) prefic Cp, 1 of Cj. Let
Cp=Ch1Ch2.

(b) Fori = 1,...,h, replace z; by AyF.CECh [z} M] where ! is new,
define b'(x}) 1= b(x;).

(¢) Use B-reduction to transform the system into B7-normal form.

(d) Select an index 1 < j < h and apply (reduce-bv), (reduce-split) or
(reduce-binder) using z’;.

3. This selection is only applicable if h > 1.

(a) Select e < E and some (possibly trivial) prefic Cip1 # Ch of Cy, such
that Cp, = Cp1Ch 2 and Cp 2 has a top level function symbol f € Xy of
arity n > 1. If this is not possible, then fail.

(b) For i = 1,...,h select an index k; with 1 < k; < n and instantiate

— .
x; by Ag.CsChalf(zin, -, 2i g1, @ Yidsi, Zi k41, - - - Zin)] with new
first-order variables z; ;. At least one index k; should be different from
firstdpos(Ch 2Ch,1). Define V' (x}) := b(x;) fori=1,... h and b/ (z;) :=
0 for the new first-order variables. Use (-reduction to reach a f7-normal
form of all terms in S.

(¢) Apply (decomp) to the equations obtained from the equations of L by
instantiation.

(d) Apply (repvt) or (repvv) to all the equations z;; = t;; obtained from
repeated (decomp) in (c) for the first h — 1 equations of L,

(e) Then decompose the resulting BHOUP.

Lemma 9.11. Application of the the rule (solve-special-cycle) to a BHOUP
(S,b) with a Y-minimal special path unique cycle either fails or results in a

BHOUP (S*,b%) such that p(S*,6%) < pu(S,b).
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Proof. If Alternative 1 is selected, then the result follows from Lemma 6.7.

First assume that Alternative 2 is selected. Since the hole [-] of the context
C5Ch 1 has elementary type it follows that each variable #} has the same arity as
its predecessor ;. Since b’ (#}) = b(x;) fori = 1, ..., hit follows that Steps (a)-(c)
do not affect the measure components g1 and ps. The application of a reduction
rule in (d) decreases {(uy, o), hence we arrive at a BHOUP (S*,6*) such that
pu(S*,b%) < (S, b).

Assume now that Alternative 3 is selected. As above we see that the steps
do not affect the measure components p; and ps. From the cycle equations

o e . —
2151 = xoly, ..., 2p_15n-1 = xplp—1, 2454 = Cplz1ls)

we obtain after Step (b)

C;Ch,l[f(zl,la sy Rlk1—1, xll ﬁa Rl k115 - Zlyn)]
. -
= C;Ch,l[f(zlla sy R2,ka—1, x/Z ty y #2 ka1 - s ZZ,”)]a
ChCuAlF(Zh=1,1 - s Zhm 1 hony =15 Thot Shols 2Rt kp_s 415 - -5 Zh1,n)]
- —
= Cichyl[f(zhyl’ co oy Rhkp—1; x?zth—la Rhkp+1y - Zh,”)]a
Cgchyl[f(zhyl’ co oy Rhkp—1; x;zﬁa Rhkp+1y - Zhyn)]
. —
= CZ+1Ch71[f Bl 1y ey Rl k=1, xllth y ALkl - o Zlyn)].

Decomposition yields (among others) the equations

f(zl,la cey Zl,k‘l—la lJl ﬁa Zl,k‘l-l—la R Zl,n)
. -
= f(220, s 22,ham1, 5 U1, 22 ky1s - -+, Z2.0),
J(Zh=11, o Zh 1 kp =15 Th—1 STy Zhet Jop_ 11y - Zhe1,)
. —
= f(Zh1s o Zhhn—1, Thlhe1, Zh hpt1s - - - Zhon)s
f(zh,la cey Zh,k‘h—la x;zﬁa Zh,k‘h-l—la R Zh,n)
. —
= Ch,ZCh,l[f(Zl,l, ce AL k-1 xllth y Rl E1+Ls - oy Zlyn)].

Let k = firstdpos(Ch 2Ch 1). Decompose the above equations and collect the
equations that result from pairing terms at index k. Let Cj, 2Cj 1 = C'C" where
C" has main depth 1. Then in the interval 2 < j < h all pairs of consecutive
equations have either the form

or

The final equation 1s either

. —
Zhg = C [ f(Z1 15 21 k=1, TR 20 gy - - o5 210)]
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or
: -
2,55 = C"[f (210, -5 21 k=1, T, 21415 - 210
If there are only equations z;; = zj41% for all 1 < j < h, then there is a fail
due to occurs-check. In the remaining case there occurs at least one pair
. — .
:x; ti_1, x;?}:

for some 2 < j < h. Then the series of equations represents a cycle of length h.
Moreover, there is at least one pair

ce e = %5k, Zik =

in the cycle since for at least one index j we have k; # & (cf. (b)). Using (repvt)
for indices j < h this yields a cycle of length A — 1. Then also the BHOUP
(S*,b*) reached after decomposition has a cycle of length A — 1. This shows that
p(S*,b*) < pu(S,6). O

Lemma 9.12. The rule (solve-special-cycle) is sound and complete.

Proof. Soundness. Assume there is a Xy-unifier ¢* of the BHOUP (S*,6%)
reached after the transformation. If Alternative 1 is selected, then Lemma 6.7
shows that (S,b) has a Xy-unifier. Assume that Alternative 2 is selected. By
Part (a) of Lemma 6.7 the BHOUP (S7,8') reached after Step (c) has a Xy-
unifier ¢’. For each »; € {x1,..., 25} define o(x;) as the f7-normal form of
A?.U’(CﬁChyl)[U’(l‘;)M]. For the remaining free variables z of S let o(z) :=
o'(z). It is simple to show that ¢’ is a Xy-unifier for S. Since the context C;C} 1 s
b-constrained, the ground context o/(C};C} 1) does not contribute to the #bvl7—
measure. Lemma 6.5 shows that #bvl7([o"(x§) M]iﬁﬁ) = #bvl(o'(2})) —m
where m is the length of . It follows that #bvl(o(z;)) = Fbvl(d'(z})) <
b (x;) = b(x;) for i = 1,..., h. Hence ¢ is a Xy-unifier of (S, 4). If Alternative 3
is selected, the proof is analogous.

Completeness. Let o be a Yg-unifier for (S,b) with exponent of periodicity
not exceeding E. For i = 1,...,h let o(z;) = Ay{.t; be represented in the form
A D;[s}] where s¢ is the minimal subterm of ¢; that contains all subterms ¢’
such that #bvlw(t’) # 0 or t' has the form f(...) where f has an argument
of non-elementary type. In the case where ¢; is a ground first-order term let D;
denote the maximal prefix of o(C;)E+?! such that ¢; can be represented in the
form D;[s7] for a ground first-order term s?.

Looking at Alternative 1 it follows from Lemma 6.8 that it suffices to consider

the case where any variable #; € {z1,...,2p} has a value o(x;) of the form
/\@}.f(tiyl, ..., ti ;) where for at most one subterm ¢;; we have #bvlw(tiyl) #+0

and every argument of f has elementary type. Hence D; is non-empty for all
1 < i < h. Let Dy denote the maximal common prefix of all contexts D; and
O'(Ch)E+1 .

If Dy = Dy for some j,1 < j < h, then we select Alternative 2. The number
e and the prefix C} 1 are chosen in such a way that the main depth of Dy and
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C°Ch 1 are identical. Reduction rules in (d) use variable 2. The selection of
the appropriate reduction rule is described below. For i = 1,... A let o(z;) =
/\E}.DQ[SEO)]. Define o¢'(2%) = /\@}.52(»0). It is trivial to verify that o' is a Xj-
unifier of the BHOUP (5’, b') reached after Step (c). The exponent of periodicity
of o' does not exceed the exponent of periodicity of o. Moreover, by choice of
the Dj, for index j we know o'(z}) has one of the types (1)-(3) described in
Remark 6.1. Hence, applying (reduce-bv), (reduce-split) or (reduce-binder) we
reach the BHOUP (S*,6*). As in the proof of Lemma 6.8 (Cases 1,2,3) it follows
that (S*,6*) has a Zp-unifier 6* such that the exponent of periodicity of ¢ does
not exceed the exponent of periodicity of .

In the remaining case, Dy is a proper prefix of all Dy, ..., Dy. We first verify
that A # 1. Assume otherwise. Let Dy be represented in the form Df D, ; where
Dy = D1 = o(Ch), let Dy = Dy1D1 5. Then there must be an index k #
firstdpos(D1,2D1 1) such that o(z1) = /\yﬁ.DfDlyl[f(rl, N A P |
The equation z,57 = C} [a:lt_1>] after applying o plus beta-reductions has the
form

DDy a[f(r1, .. .,TkLST/J, oo t)] = D1 DDA [f(r, .., TkLST//J, oo )]
This implies that

flr,.. .,TkLST/J, ooy tn) = Dy oDy a[f(r,. ..,TkLST//J, o)l

By assumption we have Di2Di1 = flai,...,a-1, E[[]], ¢j41, .-, an)
where k1 # j. Then by decomposition we get that r; has a subterm
Fre, .. rilst”], ..., rn) on the surface, which is impossible.

Now assume that h > 2. Then each value o(x;) can be represented
in the form /\@}.Do[f(riyl, e i k=1, Ti ki 5T ], i kit1s - - -, Tin)] Where k; £
firstdpos(D1,2D1 1) for at least one index k;. Here f is the topmost function
symbol of D; > which has arity > 1. We select Alternative 3. The choice of
e is as in the previous case. The indices k; in Step (b) are triggered by the
above representation. The choice of s} shows that the terms r;; for [ # k; do
not contribute to the #bvlw—measure. It is now straightforward to see that the

BHOUP (57,b') reached after Step (d) has a Zy-unifier ¢’ where the exponent
of periodicity does not exceed E. The rest is standard. O

Remark 9.13. With a more detailed analysis it can be shown that the second
alternative in the rule (solve-special-cycle) can be simplified in the sense that
in Step (d) we only apply (reduce-bv) or (reduce-split). To see this one has to
reconsider in the above proof the situation where Dy = D; for some 1 < j < h.
It can be seen, using appropriate sequences of imitation steps, that for at least
one index j with Do = Dj the value o(x;) has the form Ay_]}.Dj[sgo)] where

/\W.s‘go) has one of the types (1)-(2) described in Remark 6.1. Hence, applying
(reduce-bv) and (reduce-split) suffices.
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Lemma 9.14.  Every application of the rules (shuffle*), (shuffle**), or (solve-
special-cycle) either fails or transforms a decomposed BHOUP (S,b) in [7-
normal form into a decomposed BHOUP (S', V') in f7-normal form. Moreover,
subt(S") C subt(S).

Proof. By inspecting the rule. O

10 Results and Corollaries

We summarize the decidability results and also describe some improvements and
reformulations of the theorems.

10.1 Higher-Order Unification
The main goal of the paper 1s to prove Theorem 5.23:
Theorem 10.1. Unifiability of BHOUPs s decidable.

The decision procedure BHUP is very careful with the origin of used function
symbols. If unifiability in a given signature is an issue, then we can specialize
the claim:

Theorem 10.2. Let Xy be a signature that contains at least one constant symbol
for every elementary type from Ty. Then unifiability of BHOUPs w.r.t. Xy is
decidable.

Proof. We have to inspect the decision algorithm BHUP, in particular the rules
that instantiate variables with terms containing function symbols and/or con-
stants. It can be seen, that given a unifiable BHOUP (S, b), the algorithm BHUP
constructs only instantiations for the free variables using symbols from Y. The
completeness proof shows that there are only final systems of type “xy”. The
soundness proofs show that we can then reconstruct a unifier of the input system
that uses only Yy-symbols. a
Note that the theorem above holds also for BHOUPs containing symbols not
n ZO.
A further issue is to avoid the condition that unifiers must be in g7-normal
form. Since the algorithm BHUP is not complete in the sense that it computes
all unifiers, only a sufficient condition for non-unifiability can be derived: This
can be avoided at the cost of slightly increasing the bounds.

Proposition 10.3. Let S be a higher-order unification problem and b be a
bounding function. Let a be the maximal size of types in subt(S), let b’ be the
funetion © — 3 % a x b(x). Then the following holds: If (S,b') is not unifiable
as a BHOUP, then there is no unifier o of S (as ¢ HOUP)* such that for all
variables © € FV(S) : #bvl(o(x)) < V' (x).

* The unifier ¢ is not forced to be in B7-normal form.
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Proof. This follows from Theorem 5.23, and Lemma 2.13. a
The other direction does not follow from the results and techniques in this
paper, since the algorithm BHUP is not designed to compute a complete set of

unifiers of a BHOUP.

Remark 10.4. Whether it is possible to use a binding function that only refers
to the number of bound variables (in contrast to the sum of the number of
bound variables and the number of lambdas) is an open question. One obstacle
is the construction in Lemma 4.4, which constructs first-order contexts. It is not
obvious how to generalize this construction to a measure ignoring the number
of lambdas, since a context of the form Azy.fi(Aza.fa(... (Azn.fo(...[])))) may
be constructed. However, this context is not a first-order context, and moreover,
it may be destroyed during reduction of terms o(s) to their normal form.

10.2 Higher-Order Matching

Currently, it 1s not known whether higher-order matching is decidable, how-
ever there is some knowledge about decidability and complexity of special cases
[Wol93 Dow92,CJ97,Wie99,Pad00]. The techniques in this paper permit to show
that a variant of higher-order matching with a bound on the instantiation is
decidable:

Let S be a HOUP in S7-normal form, such that in every equation s = ¢ in
S, the right hand side ¢ has no occurrences of free variables. Then S is called
a higher-order matching problem. Let b be a function from free variables to IN.
Then (S,6) is called a bounded higher-order matching problem (BHOMP). A
substitution ¢ in F7-normal form is a solution of a (BHOMP), iff & is a unifier
of S, and furthermore, for every free variable # in S, the number of bound
variables in o (x) is not greater than b(z).

Theorem 10.5. Bounded higher-order matching is decidable

Proof. Using a similar technique as in the proof of soundness and completeness
of (constantify) (see 5.12), it is easy to prove that in a minimal unifier o the
number of occurrences of function symbols is not greater than the number of
occurrences of function symbols in the right hand side of S. Lemma 4.1 shows
that the types of subterms of terms in the codomain of ¢ are already in subt(S).
Hence, lambda-prefixes in the codomain are bounded by the maximal arity of
types in subt(S). Since codomain terms are in §7- normal form, we conclude that
the following holds: there is a constant ¢(5), such that size(c(x)) < ¢(S) * b(z).
In summary, decidability follows, since it is only necessary to test a finite number
of potential unifiers, which are effectively enumerable. a

10.3 Bounded Second-Order Unification

The results in this paper are a generalization of the decidability result for
bounded second-order unification [SS99a,SS01]. The specializations for second-
order are:
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— There is exactly one elementary type ¢.

— All function symbols in the signature have type of the form ¢ — ... — ¢.

— In unification problems, every type of subterms is either ¢ or a function
type of the form + — ... — ¢. In particular, every free variable has type
tor ¢ — ... — ¢, which corresponds to the distinction between first-order
variables and second-order variables. The only subterms of function type are
the second-order variables. It follows also that every bound variable has type

L.

It 1s now easy to see that second-order unifiers may either instantiate variables
by a ground first-order term, or by a term with a lambda-prefix and a first-order
term as body.

The bound on the number of bound variables in the codomain terms can eas-
ily be translated into an equivalent bound for a higher-order unification problem.
We obtain as corollary of Theorem 5.23.

Corollary 10.6. Bounded second-order unification is decidable.
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