Skip to main content

Logical Relations for Monadic Types

  • Conference paper
  • First Online:
Computer Science Logic (CSL 2002)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2471))

Included in the following conference series:

  • 611 Accesses

Abstract

Logical relations and their generalizations are a fundamental tool in proving properties of lambda-calculi, e.g., yielding sound principles for observational equivalence. We propose a natural notion of logical relations able to deal with the monadic types of Moggi’s computational lambda-calculus. The treatment is categorical, and is based on notions of subsconing and distributivity laws for monads. Our approach has a number of interesting applications, including cases for lambda-calculi with non-determinism (where being in logical relation means being bisimilar), dynamic name creation, and probabilistic systems.

The first author acknowledges partial support by the RNTL project EVA. The first and third authors acknowledge partial support by the ACI jeunes chercheurs “Sécurité informatique, protocoles cryptographiques et détection d’intrusions”. The second author acknowledges partial support by the post-doc fellowship of the Foundation for Polish Science and by the Polish KBN grant 7 T11C 002 21.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. J. Adamek, H. Herrlich, and G. Strecker. Abstract and Concrete Categories. Wiley, New York, 1990.

    MATH  Google Scholar 

  2. M. Alimohamed. A characterization of lambda definability in categorical models of implicit polymorphism. Theoretical Computer Science, 146:5–23, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  3. R. Crole and A. Pitts. New foundations for fixpoint computations: Fix-hyperdoctrines and the fix-logic. Information and Computation, 98:171–210, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  4. M. Fiore and A. Simpson. Lambda definability with sums via Grothendieck logical relations. In TLCA’99, pages 147–161. Springer Verlag LNCS 1581, 1999.

    Google Scholar 

  5. J. Goubault-Larrecq and E. Goubault. On the geometry of intuitionistic S4 proofs. Research Report LSV-01-8, LSV, CNRS & ENS Cachan, 2001. To appear in Homology, Homotopy and Applications.

    Google Scholar 

  6. J. Goubault-Larrecq, S. Lasota, and D. Nowak. Logical relations for monadic types. Research Report, LSV, CNRS & ENS Cachan, 2002.

    Google Scholar 

  7. F. Honsell and D. Sannella. Pre-logical relations. In CSL’99, pages 546–561. Springer Verlag LNCS 1683, 1999.

    Google Scholar 

  8. C. Jones. Probabilistic Non-Determinism. PhD thesis, University of Edinburgh, 1990. Technical Report ECS-LFCS-90-105.

    Google Scholar 

  9. A. Jung and J. Tiuryn. A new characterization of lambda definability. In TLCA’93, pages 245–257. Springer Verlag LNCS 664, 1993.

    Google Scholar 

  10. K. G. Larsen and A. Skou. Bisimulation through probabilistic testing. Information and Computation, 94:1–28, 1991.

    Article  MATH  MathSciNet  Google Scholar 

  11. R. Lazić and D. Nowak. A unifying approach to data-independence. In CON-CUR’2000, pages 581–595. Springer Verlag LNCS 1877, 2000.

    Google Scholar 

  12. Q. Ma and J. C. Reynolds. Types, abstraction, and parametric polymorphism, part 2. In MFPS’91, pages 1–40. Springer-Verlag LNCS 598, 1992.

    Google Scholar 

  13. J. C. Mitchell. Foundations for Programming Languages. MIT Press, 1996.

    Google Scholar 

  14. J. C. Mitchell and A. Scedrov. Notes on sconing and relators. In CSL’92, pages 352–378. Springer Verlag LNCS 702, 1993.

    Google Scholar 

  15. E. Moggi. An abstract view of programming languages. Technical Report ECS-LFCS-90-113, LFCS, Department of Computer Science, University of Edinburgh, 1990.

    Google Scholar 

  16. E. Moggi. Notions of computation and monads. Information and Computation, 93:55–92, 1991.

    Article  MATH  MathSciNet  Google Scholar 

  17. A. Pitts and I. Stark. Observable properties of higher order functions that dynamically create local names, or: What’s new? In MFCS’93, pages 122–141. Springer-Verlag LNCS 711, 1993.

    Google Scholar 

  18. G. Plotkin, J. Power, D. Sannella, and R. Tennent. Lax logical relations. In ICALP’2000, pages 85–102. Springer Verlag LNCS 1853, 2000.

    Google Scholar 

  19. G.D. Plotkin. Lambda-definability in the full type hierarchy. In To H.B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism, pages 363–373. Academic Press, 1980.

    Google Scholar 

  20. N. Ramsey and A. Pfeffer. Stochastic lambda calculus and monads of probability distributions. In POPL’02, pages 154–165, 2002.

    Google Scholar 

  21. J. C. Reynolds. Types, abstraction and parametric polymorphism. In IFIP’83, pages 513–523. North-Holland, 1983.

    Google Scholar 

  22. J. Rutten. Relators and metric bisimulations. In CMCS’98, volume 11 of Electronic Notes in Theoretical Computer Science, pages 1–7. Elsevier Science, 1998.

    Google Scholar 

  23. I. Stark. Names, equations, relations: Practical ways to reason about new. Fundamenta Informaticae, 33(4):369–396, April 1998.

    Google Scholar 

  24. R. Statman. Logical relations and the typed λ-calculus. Information and Control, 65(2–3):85–97, 1985.

    Article  MATH  MathSciNet  Google Scholar 

  25. D. Turi. Functorial Operational Semantics and its Denotational Dual. PhD thesis, Free University, Amsterdam, June 1996.

    Google Scholar 

  26. P. Wadler. Comprehending monads. Mathematical Structures in Computer Science, 2:461–493, 1992.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Goubault-Larrecq, J., Lasota, S., Nowak, D. (2002). Logical Relations for Monadic Types. In: Bradfield, J. (eds) Computer Science Logic. CSL 2002. Lecture Notes in Computer Science, vol 2471. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45793-3_37

Download citation

  • DOI: https://doi.org/10.1007/3-540-45793-3_37

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44240-0

  • Online ISBN: 978-3-540-45793-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics