
Dynamic Scheduling via Polymatroid
Optimization

David D. Yao

Columbia University, New York, NY 10027, USA,
yao@ieor.columbia.edu,

http://www.ieor.columbia.edu/∼yao

Abstract. Dynamic scheduling of multi-class jobs in queueing systems
has wide ranging applications, but in general is a very difficult control
problem. Here we focus on a class of systems for which conservation laws
hold. Consequently, the performance space becomes a polymatroid — a
polytope with a matroid-like structure, with all the vertices correspond-
ing to the performance under priority rules, and all the vertices are easily
identified. This structure translates the optimal control problem to an
optimization problem, which, under a linear objective, becomes a special
linear program; and the optimal schedule is a priority rule. In a more
general setting, conservation laws extend to so-called generalized conser-
vation laws, under which the performance space becomes more involved;
however, the basic structure that ensures the optimality of priority rules
remains intact. This tutorial provides an overview to the subject, fo-
cusing on the main ideas, basic mathematical facts, and computational
implications.

1 Polymatroid

1.1 Equivalent Definitions and Properties

We start with three equivalent definitions of a polymatroid. Definition 1 is the
most standard one; Definition 2 will later motivate the definition for EP; Defini-
tion 3 provide a contrast against the structure of the EP in §4 (refer to Definition
7).

Throughout, E = {1, ..., n} is a finite set; Ac denotes the complement of set
A: Ac = E \ A; and the terms, “increasing” and “decreasing” are used in the
non-strict sense, meaning “non-decreasing” and “non-increasing”, respectively.

Definition 1. (Welsh [47], Chapter 18) The following polytope

P(f) = { x ≥ 0 :
∑
i∈A

xi ≤ f(A), A ⊆ E } (1)

is termed a polymatroid if the function f : 2E 	→ �+ satisfies the following
properties:
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(i) (normalized) f(∅) = 0;
(ii) (increasing) if A ⊆ B ⊆ E, then f(A) ≤ f(B);
(iii) (submodular) if A,B ⊆ E, then f(A) + f(B) ≥ f(A ∪B) + f(A ∩B).

In matroid parlance, a function f that satisfies the above properties is termed
a “rank function.” Also note that a companion to submodularity is supermod-
ularity, defined as when the inequality in (iii) holds in the opposite direction
(≤).

We now present the second definition for polymatroid. Given a set function
f : 2E 	→ �+, with f(∅) = 0, and a permutation π of { 1, 2, · · · , n }, the elements
of the set E, we define a vector xπ with the following components (to simplify
notation, xπi below is understood to be xππi):

xπ1 = f({π1})
xπ2 = f({π1, π2})− xπ1 = f({π1, π2})− f({π1})

...
xπn = f({π1, π2, · · · , πn})− f({π1, π2, · · · , πn−1})

xπ is termed a “vertex” of the polytope P(f) in (1). Note, however, that this
terminology could be misleading, since a priori there is no guarantee that xπ

necessarily belongs to the polytope, since we simply do not know, as yet, whether
or not xπ defined as above satisfies the set of inequalities that define P(f) in
(1). In fact, this is the key point in the second definition of polymatroid below.

Definition 2. P(f) of (1) is a polymatroid if xπ ∈ P(f) for all permutation π.
Here is a third definition.

Definition 3. P(f) of (1) is a polymatroid if for any A ⊂ B ⊆ E, there exists
a point x ∈ P(f), such that∑

i∈A
xi = f(A) and

∑
i∈B

xi = f(B).

Below we show the three definitions are equivalent.

Theorem 1. The above three definitions for polymatroid are equivalent.

Proof. ( Definition 1 =⇒ Definition 2 )
That xπi ≥ 0 for all i follows directly from the increasing property of f .
For any A ⊆ E and πi ∈ A, since f is submodular, we have

f(A ∩ {π1, · · · , πi}) + f({π1, · · · , πi−1})
≥ f(A ∩ {π1, · · · , πi−1}) + f((A ∩ {π1, · · · , πi}) ∪ {π1, · · · , πi−1})
= f(A ∩ {π1, · · · , πi−1}) + f({π1, · · · , πi}),

which implies

f({π1, · · · , πi})− f({π1, · · · , πi−1})
≤ f(A ∩ {π1, · · · , πi})− f(A ∩ {π1, · · · , πi−1}).
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Summing over πi ∈ A, we have∑
πi∈A

xπi =
∑
πi∈A

(f({π1, · · · , πi})− f({π1, · · · , πi−1})

≤
∑
πi∈A

f(A ∩ {π1, · · · , πi})− f(A ∩ {π1, · · · , πi−1}) = f(A).

Hence, xπ ∈ P(f), and Definition 2 follows.

(Definition 2 =⇒ Definition 3)
For any given A ⊂ B ⊆ E, from Definition 2, it suffices to pick a vertex

xπ, such that its first |A| components constitute the set A, and its first |B|
components constitute the set B.

( Definition 3 =⇒ Definition 1 )
Taking A = ∅ in Definition 3 yields f(∅) = 0. Monotonicity is trivial, since

xi ≥ 0. For submodularity, take any A,B ⊆ E, A �= B; then there exists
x ∈ P(f) such that∑

A∪B
xi = f(A ∪B), and

∑
A∩B

xi = f(A ∩B),

since A ∩B ⊂ A ∪B. Therefore,

f(A ∪B) + f(A ∩B) =
∑
A∪B

xi +
∑
A∩B

xi =
∑
i∈A

xi +
∑
i∈B

xi ≤ f(A) + f(B),

where the inequality follows from x ∈ P(f).

1.2 Optimization

Here we consider the optimization problem of maximizing a linear function over
the polymatroid P(f).

(P) max
∑
i∈E

ci xi

s.t.
∑
i∈A

xi ≤ f(A), for all A ⊆ E,

xi ≥ 0, for all i ∈ E.

Assume

c1 ≥ c2 ≥ · · · ≥ cn ≥ 0, (2)

without loss of generality, since any negative ci clearly results in the correspond-
ing xi = 0. Let π = (1, 2, · · · , n). Then, we claim that the vertex xπ in Definition
2 is the optimal solution to (P).
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To verify the claim, we start with writing down the dual problem as follows:

( D) min
∑
A⊆E

yA f(A)

s.t.
∑
A�i

yA ≥ ci, for all i ∈ E,

yA ≥ 0, for all A ⊆ E.

Define yπ, a candidate dual solution, componentwise as follows:

yπ{1} = c1 − c2,
yπ{1,2} = c2 − c3,

...
yπ{1,...,n−1} = cn−1 − cn,
yπ{1,...,n} = cn;

and set yπA = 0, for all other A ⊆ E.
Now the claimed optimality follows from

(1) primal feasibility: xπ is a vertex of the polymatroid P(f), and hence is
feasible by definition (refer to Definition 2);

(2) dual feasibility: that yπ is feasible is easily checked (in particular, non-
negativity follows from (2));

(3) complementary slackness: also easily checked, in particular, the n binding
constraints in (P) that define the vertex xπ correspond to the n non-zero
(not necessarily zero, to be precise) components of yπ listed above.

It is also easy to verify that the primal and the dual objectives are equal: letting
cn+1 := 0, we have∑

i∈E
ci x

π
i =

∑
i∈E

ci [f({1, · · · , i})− f({1, · · · , i− 1})]

=
n∑
i=1

(ci − ci+1)f({1, · · · , i}) =
∑
A⊆E

yπAf(A).

To summarize, xπ is optimal for (P) and yπ is optimal for (D). It is important
to note that

(a) Primal feasibility is always satisfied, by definition of the polymatroid.
(b) It is the dual feasibility that determines the permutation π, which, by way

of complementary slackness, points to a vertex of P(f) that is optimal.

More specifically, the sum of the dual variables yields the cost coefficients:

yπ{1,...,i} + · · ·+ yπ{1,...,n} = ci, i = 1, ..., n; (3)

the order of which [cf. (2)] decides the permutation π.



Dynamic Scheduling via Polymatroid Optimization 93

2 Conservation Laws

2.1 Polymatroid Structure

To relate to the last section, here E = {1, 2, ..., n} denotes the set of all job
classes, and x denotes the vector of performance measures of interest. For in-
stance, xi is the (long-run) average delay or throughput of job class i.

The conservation laws defined below were first formalized in Shanthikumar
and Yao [39], where the connection to polymatroid was made. In [39], as well as
subsequent papers in the literature, these laws are termed “strong conservation
laws.” Here, we shall simply refer to these as conservation laws.

Verbally, conservation laws can be summarized into the following two state-
ments:

(i) the total performance (i.e., the sum) over all job classes in E is invariant
under any admissible policy;

(ii) the total performance over any given subset, A ⊂ E, of job classes is mini-
mized (or maximized) by offering priority to job classes in this subset over
all other classes.

As a simple example, consider a system of two job classes. Each job (of either
class) brings a certain amount of “work” (service requirement) to the system.
Suppose the server serves (i.e., depletes work) at unit rate. Then it is not difficult
to see that (i) the total amount of work, summing over all jobs of both classes
that are present in the system, will remain invariant regardless of the actual
policy that schedules the server, as long as it is non-idling; and (ii) if class 1
jobs are given preemptive priority over class 2 jobs, then the amount of work
in system summing over class 1 jobs is minimized, namely, it cannot be further
reduced by any other admissible policy.

We now state the formal definition of conservation laws. For any A ⊆ E, de-
note by |A| the cardinality of A. Let A denote the space of all admissible policies
— all non-anticipative and non-idling policies (see more details below), and xu

the performance vector under an admissible policy u ∈ A. As before, let π denote
a permutation of the integers {1, 2, ..., n}. In particular, π = (π1, ..., πn) denotes
a priority rule, which is admissible, and in which class π1 jobs are assigned the
highest priority, and class πn jobs, the lowest priority.

Definition 4. (Conservation Laws) The performance vector x is said to satisfy
conservation laws, if there exists a set function b (or respectively f): 2E 	→ �+,
satisfying

b(A) =
∑
i∈A

xπi , ∀π : {π1, ..., π|A|} = A, ∀A ⊆ E; (4)

or respectively,

f(A) =
∑
i∈A

xπi , ∀π : {π1, ..., π|A|} = A, ∀A ⊆ E; (5)
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(when A = ∅, by definition, b(∅) = f(∅) = 0); such that for all u ∈ A the
following is satisfied:

∑
i∈A

xui ≥ b(A), ∀A ⊂ E;
∑
i∈E

xui = b(E); (6)

or respectively,

∑
i∈A

xui ≤ f(A), ∀A ⊂ E;
∑
i∈E

xui = f(E). (7)

Note that whether the function b or the function f applies in a particular
context is determined by whether the performance in question is minimized
or maximized by the priority rules. (For instance, b applies to delay, and f
applies to throughput.) It is important to note that this minimal (or maximal)
performance is required to be independent of the priority assignment among
the classes within the subset A on the one hand and the priority assignment
among the classes within the subset E \ A on the other hand, as long as any
class in A has priority over any class in E \ A. This requirement is reflected
in the qualifications imposed on π in defining b(A) and f(A) in (4) and (5).
In particular, the definition requires that b(A) and f(A) be respectively, the
minimal and the maximal total performance summing over all job classes in the
subset A that are given priority over all the other classes.

For the time being, ignore the b part of Definition 4. It is clear that when x
satisfies the conservation laws, the performance space, as defined by the polytope
in (7), is a polymatroid. This is because following (5) and (7), all the vertices
xπ indeed, by definition, belong to the polytope. In fact, the polytope in (7)
is the polymatroid P(f) of (1) restricted to the hyperplane

∑
i∈E xi = f(E)

(instead of the half-plane
∑
i∈E xi ≤ f(E)), and is hence termed the base of the

polymatroid P(f), denoted B(f) below. Furthermore, following Theorem 1, we
know that when x satisfies conservation laws, the function f(·) as defined in (5)
is increasing and submodular.

Next, consider the b part of Definition 4. Note that subtracting the inequality
constraint from the equality constraint in (6), we can express these constraints
in the same form as in (7), by letting f(A) := b(E)− b(E \ A), or equivalently,
b(A) := b(E) − f(E \ A). Hence, the polytope in (6) is also (the base of) a
polymatroid. Furthermore, the increasingness and submodularity of f translate
into the increasingness and supermodularity of b.

To sum up the above discussion, we have

Theorem 2. If the performance vector x satisfies conservation laws, then its
feasible space (i.e., the achievable performance region) constitutes the base poly-
tope of a polymatroid, B(f) or B(b), of which the vertices correspond to the
priority rules. Furthermore, the functions f and b, which are the performance
functions corresponding to priority rules, are, respectively, increasing and sub-
modular, and increasing and supermodular.
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2.2 Examples

Consider a queueing system with n different job classes which are denoted by the
set E. Let u be the control or scheduling rule that governs the order of service
among different classes of jobs. Let A denote the class of admissible controls,
which are required to be non-idling and non-anticipative. That is, no server is
allowed to be idle when there are jobs waiting to be served, and the control is
only allowed to make use of past history and current state of the system. Neither
can an admissible control affect the arrival processes or the service requirements
of the jobs. Otherwise we impose no further restrictions on the system. For
instance, the arrival processes and the service requirements of the jobs can be
arbitrary. Indeed, since the control cannot affect the arrival processes and the
service requirements, all the arrival and service data can be viewed as generated
a priori following any given (joint) distribution and with any given dependence
relations. We allow multiple servers, and multiple stages (e.g., tandem queues
or networks of queues). We also allow the control to be either preemptive or
non-preemptive. (Some restrictions will be imposed on individual systems to be
studied below.)

Let xui be a performance measure of class i (i ∈ E) jobs under control u.
This need not be a steady-state quantity or an expectation; it can very well
be a sample-path realization over a finite time interval, for instance, the delay
(sojourn time) of the first m class i jobs, the number of class i jobs in the system
at time t, or the number of class i job completions by time t. Let xu := (xui )i∈E
be the performance vector.

For any given permutation π ∈ Π, let xπ denote the performance vector
under a priority scheduling rule that assigns priority to the job classes according
to the permutation π, i.e., class π1 has the highest priority, ..., class πn has the
lowest priority. Clearly any such priority rule belongs to the admissible class.

In all the queueing systems studied below, the service requirements of the
jobs are mutually independent, and are also independent of the arrival processes.
(One exception to these independence requirements is Example 1 below, where
these independence assumptions are not needed.) No independence assumption,
however, is required for the arrival processes, which can be arbitrary. When a
performance vector satisfies conservation laws, whether its state space is B(b)
(6) or B(f) (7) depends on whether the performance of a given subset of job
classes is minimized or maximized by giving priority to this subset. This is often
immediately evident from the context.

Example 1 Consider a G/G/1 system that allows preemption. For i ∈ E, let
Vi(t) denote the amount of work (processing requirement) in the system at time
t due to jobs of class i. (Note that for any given t, Vi(t) is a random quantity,
corresponding to some sample realization of the work-load process.) Then it is
easily verified that for any t, x := [Vi(t)]i∈E satisfies conservation laws.

Example 2 Continue with the last example. For all i ∈ E, let Ni(t) be the
number of class i jobs in the system at time t. When the service times follow
exponential distributions, with mean 1/µi for class i jobs, we have ENi(t) =
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µiEVi(t). Let Wi be the steady-state sojourn time in system for class i jobs.
From Little’s Law we have EWi = ENi/λi = EVi/ρi, where λi is the arrival rate
of class i jobs, ρi := λi/µi, Ni and Vi are the steady-state counterparts of Ni(t)
and Vi(t), respectively. Hence, the following x also satisfies conservation laws:
(i) for any given t, x := [ENi(t)/µi]i∈E ;
(ii) x := [ρiEWi]i∈E .

Example 3 In a G/M/c (c > 1) system that allows preemption, if all job classes
follow the same exponential service-time distribution (with mean 1/µ), then it
is easy to verify that for any t, x := [ENi(t)]i∈E satisfies conservation laws. In
this case, EVi(t) = ENi(t)/µ and EWi = ENi/λi. Hence, x defined as follows
satisfies conservation laws:
(i) for any given t, x := [ENi(t)]i∈E , x := [EVi(t)]i∈E ;
(ii) x := [λiEWi]i∈E .

(If the control is restricted to be non-preemptive, the results here still hold true.
See Example 6 below.)

Example 4 The results in Example 3 still hold when the system is a network
of queues, provided all job classes follow the same exponential service-time dis-
tribution and the same routing probabilities at each node (service-time distri-
butions and routing probabilities can, however, be node dependent); (external)
job arrival processes can be arbitrary and can be different among the classes.

Example 5 Another variation of Example 3 is the queue, G/M/c/K, where
K ≥ c denotes the upper limit on the total number of jobs allowed in the system
at any time. In this system, higher priority jobs can preempt lower priority jobs
not only in service but also in occupancy. That is, whenever a higher priority
job finds (on its arrival) a fully occupied system, a lower priority job within the
system (if any) will be removed from the system and its occupancy given to the
higher priority job. If there is no lower priority job, then the arrived job is rejected
and lost. As in Example 3, all jobs follow the same exponential service-time
distribution. Let Ri(t) and Di(t) (i ∈ E) denote, respectively, the (cumulated)
number of rejected/removed class i jobs and the (cumulated) number of class i
departures (service completions) up to time t. Then, for any given t, (i) x :=
[ERi(t)]i∈E and (ii) x := [EDi(t)]i∈E satisfy conservation laws.

We next turn to considering cases where the admissible controls are restricted
to be non-preemptive.

Example 6 Consider the G/G/c system, c ≥ 1. If all job classes follow the same
service-time distribution, then it is easy to see that the scheduling of the servers
will not affect the departure epochs of jobs (in a pathwise sense); although
it will affect the identity (class) of the departing jobs at those epochs. (See
Shanthikumar and Sumita [38], §2, for the G/G/1 case; the results there also
hold true for the G/G/c case.) Hence, for any given t, x := [Ni(t)]i∈E satisfies
conservation laws.
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Example 7 Comparing the above with Example 3, we know that the results
there also hold for non-preemptive controls. However, in contrast to the extension
of Example 3 to the network case in Example 4, the above can only be extended
to queues in tandem, where overtaking is excluded. Specifically, the result in
Example 6 also holds for a series of G/G/c queues in tandem, where at each
node all job classes have the same service-time distribution, which, however, can
be node dependent. External job arrival processes can be arbitrary and can be
different among classes. The number of servers can also be node dependent.

Example 8 With non-preemptive control, there is a special case for the G/G/1
system with only two job classes (n = 2) which may follow different service-time
distributions: for any given t, x := [Vi(t)]i∈E satisfies conservation laws.

For steady-steady measures, from standard results in GI/G/1 queues (see,
e.g., Asmussen [1], Chapter VIII, Proposition 3.4), we have

EVi = µ−1i [ENi − ρi] + ρiµimi/2

and
EVi = ρi[EWi − µ−1i + µimi/2],

wheremi is the second moment of the service time of class i jobs. Hence, following
the above, we know that x = [ENi/µi]i∈E and x = [ρiEWi]i∈E also satisfy
conservation laws.

Example 9 Two more examples that satisfy conservation laws:

(i) for the G/G/1 system with preemption,

x := [
∫ t

0
exp(−ατ)Vi(τ)dτ ]i∈E ;

(ii) for the G/M/1 system with preemption,

x := [E
∫ t

0
exp(−ατ)Ni(τ)dτ/µi]i∈E ,

where in both (i) and (ii) α > 0 is a discount rate, and t is any given time.

Finally, note that in all the above examples, with the exception of Exam-
ple 5, whenever [ENi(t)]i∈E satisfies conservation laws, [EDi(t)]i∈E also satisfies
conservation laws, since in a no-loss system the number of departures is the dif-
ference between the number of arrivals (which is independent of the control) and
the number in system.

Evidently, based on the above discussions, the state space of the performance
vectors in each of the examples above is a polymatroid.
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2.3 Optimal Scheduling

Theorem 3. Consider the optimal control (scheduling) of n jobs classes in the
set E:

max
u∈A

∑
i∈E

cix
u
i [ or min

u∈A

∑
i∈E

cix
u
i ],

where x is a performance measure that satisfies conservation laws, and the cost
coefficients ci (i ∈ E) satisfy, without loss of generality, the ordering in (2).
Then, this optimal control problem can be solved by solving the following linear
program (LP):

max
x∈B(f)

∑
i∈E

cixi [ or min
x∈B(b)

∑
i∈E

cixi ].

The optimal solution to this LP is simply the vertex xπ ∈ B(f), with π = (1, ..., n)
being the permutation corresponding to the decreasing order of the cost coeffi-
cients in (2). And the optimal control policy is the corresponding priority rule,
which assigns the highest priority to class 1 jobs, and the lowest priority to class
n jobs.

Example 10 (cµ-rule) Consider one of the performance vectors in Example 2,
x := [E(Ni)/µi]i∈E , where Ni is the number of jobs of class i in the system (or,
“inventory”) in steady state, and µi is the service rate. Suppose our objective is
to minimize the total inventory cost,

min
∑
i∈E

ciE(Ni),

where ci is the inventory holding cost rate for class i jobs. We then rewrite this
objective as

min
∑
i∈E

ciµixi.

(Note that (Ni)i∈E does not satisfy conservation laws; (xi)i∈E does.) Then, we
know from the above theorem that the optimal policy is a priority rule, with the
priorities assigned according to the ciµi values — the larger the value, the higher
the priority. This is what is known as the “cµ-rule”. When all jobs have the same
cost rate, the priorities follow the µi values, i.e., the faster the processing rate (or,
the shorter the processing time), the higher the priority, which is the so-called
SPT (shortest processing time) rule.

The connection between conservation laws and polymatroid, as specified in
Theorem 2, guarantees that any admissible control will yield a performance
vector that belongs to the polymatroid. Furthermore, the converse is also true:
any performance vector that belongs to the polymatroid can be realized by an
admissible control. This is because since B(f) (or B(b)) is a convex polytope, any
vector in the performance space can be expressed as a convex combination of
the vertices. Following Caratheodory’s theorem (refer to, e.g., Chvátal [8]), any
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vector in the performance space can be expressed as a convex combination of no
more than n+1 vertices. In other words, any performance vector can be realized
by a control that is a randomization of at most n + 1 priority rules, with the
convex combination coefficients being the probabilities for the randomization.

In terms of implementation, however, randomization can be impractical.
First, computationally, there is no easy way to derive the randomization co-
efficients. Second, in order to have an unbiased implementation, randomization
will have to be applied at the beginning of each regenerative cycle, e.g., a busy
period. In heavy traffic, busy periods could be very long, making implementation
extremely difficult, and also creating large variance of the performance.

In fact, one can do better than randomization. It is known (e.g., Federgruen
and Groenevelt [16]) that any interior point of the performance space can be
realized by a particular dynamic scheduling policy, due originally to Kleinrock
[30,31], in which the priority index of each job present in the system grows
proportionately to the time it has spent waiting in queue, and the server always
serves the job that has the highest index. This scheduling policy is completely
specified by the proportionate coefficients associated with the jobs classes, which,
in turn, are easily determined by the performance vector (provided it is at the
interior of the performance space). In terms of practical implementation, there
are several versions of this scheduling policy, refer to [18,19].

3 Generalized Conservation Laws

3.1 Motivation and Definition

Although conservation laws apply to the many examples in the last section, there
are other interesting and important problems that do not fall into this category.
A primary class of such examples includes systems with feedback, i.e., jobs may
come back after service completion. For example, consider the so-called Klimov’s
problem: a multi-classM/G/1 queue in which jobs, after service completion, may
return and switch to another class, following a Bernoulli mechanism. Without
feedback, we know this is a special case of Example 1, and the work in system,
[Vi(t)]i∈E , satisfies conservation laws. With feedback, however, the conservation
laws as defined in Definition 4, need to be modified.

Specifically, with the possibility of feedback, the work of a particular job class,
say class i, should not only include the work associated with class i jobs that are
present in the system, it should also take into account the potential work that
will be generated by feedback jobs, which not only include class i jobs but also
all other classes that may feedback to become class i. With this modification,
the two intuitive principles of conservation laws listed at the beginning of §2.1
will apply.

To be concrete, let us paraphrase here the simple example at the beginning of
§2.1 with two job classes, allowing the additional feature of feedback. As before,
suppose the server serves at unit rate. Then it is not difficult to see that (i) the
total amount of potential work, summing over both classes, will remain invariant
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regardless of the actual schedule that the server follows, as long as it is a non-
idling schedule; and (ii) if class 1 jobs are given (preemptive) priority over class 2
jobs, then the amount of potential work due to class 1 jobs is minimized, namely,
it cannot be further reduced by any other scheduling rule. And the same holds
for class 2 jobs, if given priority over class 1 jobs.

Another way to look at this example: Let T be the first time there is no class 1
jobs left in the system. Then, T is minimized by giving class 1 jobs (preemptive)
priority over class 2 jobs. In particular, T is no smaller than the potential work
of class 1 generated by class 1 jobs (only); T is equal to the latter if and only if
class 1 jobs are given priority over class 2 jobs.

Therefore, with this modification, the conservation laws in Definition 4 can
be generalized. The net effect, as will be demonstrated in the examples below,
is that the variables xi in Definition 4 will have to be multiplied with different
coefficients aAi that depend on both the job classes (i) and the subsets (A). In
particular, when xi is, for instance, the average number of jobs of class i, aAi
denotes the rate of potential work of those classes in set A that is generated by
class i jobs.

We now state the formal definition of generalized conservation laws (GCL),
using the same notation wherever possible as in Definition 4.

Definition 5. (Generalized Conservation Laws) The performance vector x is
said to satisfy generalized conservation laws (GCL), if there exists a set function
b (or respectively f): 2E 	→ �+, and a matrix (aSi )i∈E, S⊆E (which is in general
different for b and f , but we will not make this distinction below for notational
simplicity) satisfying:

aSi > 0, i ∈ S; and aSi = 0, i �∈ S; ∀S ⊆ E;

such that

b(A) =
∑
i∈A

aAπixπi , ∀π : {π1, ..., π|A|} = A, ∀A ⊆ E; (8)

or respectively,

f(A) =
∑
i∈A

aAπixπi , ∀π : {π1, ..., π|A|} = A, ∀A ⊆ E; (9)

such that for all u ∈ A the following is satisfied:∑
i∈A

aAi x
u
i ≥ b(A), ∀A ⊂ E;

∑
i∈E

aEi x
u
i = b(E); (10)

or respectively,∑
i∈A

aAi x
u
i ≤ f(A), ∀A ⊂ E;

∑
i∈E

aEi x
u
i = f(E). (11)

It is obvious from the above definition that GCL reduces to the conservation
laws if aAi = 1 for all i ∈ A, and all A ⊆ E.
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3.2 Examples

Example 11 (Klimov’s problem [32]) This concerns the optimal control of a
system in which a single server is available to serve n classes of jobs. Class i jobs
arrive according to a Poisson process with rate αi, which is independent of other
classes of jobs. The service times for class i jobs are independent and identically
distributed with mean µi. When the service of a class i job is completed, it either
returns to become a class j job, with probability pij , or leaves the system with
probability 1−∑j pij . Denote α = (αi)i∈E , µ = (µi)i∈E , and P = [pij ]i,j∈E .

Consider the class of non-preemptive policies. The performance measure is

xui = long-run average number of class i jobs in system under policy u.

The objective is to find the optimal policy that minimizes
∑
j cjx

u
j . Klimov

proved that a priority policy is optimal and gave a recursive procedure for ob-
taining the priority indices.

Tsoucas [42] showed that the performance space of Klimov’s problem is the
following polytope:

{x ≥ 0 :
∑
i∈S

aSi xi ≥ b(S), S ⊂ E;
∑
i∈E

aEi xi = b(E)},

where the coefficients are given as aSi = λiβ
S
i , with λ = (λ)i∈E and βS = (β)i∈S

obtained as follows:

λ = (I − P ′)−1α and βS = (I − PSS)−1µS ,
where PSS and µS are, respectively, the restriction of P and µ to the set S. Note
that here, λi is the overall arrival rate of class i jobs (including both external
arrivals and feedback jobs), βSi is the amount of potential work of the classes in
S generated by a class i job. (Hence, this potential work is generated at rate αi
in the system.) Summing over i ∈ S yields the total amount of potential work
of the classes in S (generated by the same set of jobs), which is minimized when
these jobs are given priority over other classes. This is the basic intuition as to
why x satisfies GCL.

Example 12 (Branching bandit process) There are m projects at time 0. They
are of K classes, labeled k = 1, · · · ,K. Each class k project can be in one of a
finite number of states, with Ek denoting the state space. Classifying different
project classes or projects of the same class but in different states as different
“classes,” we denote E = ∪kEk = {1, · · · , n} as the set of all project classes. A
single server works on the projects one at a time. Each class i project keeps the
server busy for a duration of vi time units. Upon completion, the class i project
is replaced by Nij projects of class j. The server then has to decide which
next project to serve, following a scheduling rule (control) u. The collection
{(vi, Nij), j ∈ E}, follows a general joint distribution, which is independent and
identically distributed for all i ∈ E.
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Given S ⊆ E, the S-descendants of a project of class i ∈ S refers to all of its
immediate descendants that are of classes belonging to S, as well as the immedi-
ate descendants of those descendents, and so on. (If a project in S transfers into
a class that is not in S, and later transfers back into a class in S, it will not be
considered as an S-descendant of the original project.) Given a class i project,
the union of the time intervals in which its S-descendants are being served is
called an (i, S) period. Let TSi denote the length of an (i, S) period. It is the
“potential work” of the classes in the set S generated by the class i project. And
we use TSm to denote the time until the system has completely cleared all classes
of projects in S class — under a policy that gives priority to those classes in S
over other classes. Note, in particular, that TEm represents the length of a busy
period.

In the discounted case, the expected reward associated with the control u is∑
i∈E cix

u
i , where

xui = Eu[
∫ ∞
0

e−αtIui (t)dt]

α > 0 is the discount rate and

Iui (t) =
{

1, if a class i project is being served at time t
0, otherwise

Bertsimas and Niño-Mora [3] showed that xu = (xui )i∈E , as defined above,
satisfy the GCL, with coefficients

aSi =
E[
∫ TSci
0 e−αtdt]

E[
∫ vi
0 e−αtdt]

, i ∈ S ⊆ E,

and

b(S) = E

[∫ TEm

0
e−αtdt

]
− E

[∫ TS
c

m

0
e−αtdt

]
.

Intuitively, the GCL here says that the time until all the Sc-descendents of all
the projects in S are served is minimized by giving project classes in Sc priority
over those in S.

An undiscounted version is also available in [3]. (This includes Klimov’s prob-
lem, the last example above, as a special case.) The criterion here is to minimize
the total expected cost incurred under control u during the first busy period (of
the server) [0, T ],

∑
i∈E cix

u
i , with

xui = Eu

[∫ ∞
0

tIui (t)dt
]
.

Following [3], xu satisfy GCL with coefficients

aSi = E[TS
c

i ]/E[vi], i ∈ S ⊆ E,

and
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b(S) =
1
2

E[(TEm)2]− 1
2

E[(TS
c

m )2] +
∑
i∈S

bi(S),

where

bi(S) =
E[vi]E[v2i ]

2

(
E[TS

c

i ]
E[vi]

− E[(TS
c

i )2]
E[v2i ]

)
, i ∈ S.

The intuition is similar to the discounted case.

4 Extended Polymatroid

4.1 Equivalent Definitions

Recall the space of any performance measure that satisfies conservation laws is a
polymatroid. Analogously, one can ask what is the structure of the performance
space under GCL, i.e., what is the structure of the following polytopes:

EP(b) = { x ≥ 0 :
∑
i∈S

aSi xi ≥ b(S), S ⊆ E }, (12)

EP(f) = { x ≥ 0 :
∑
i∈S

aSi xi ≤ f(S), S ⊆ E }. (13)

The most natural route to approach this issue appears to be mimicking Def-
inition 2 of polymatroid (and this is indeed the route taken in [3]). Similar
to the definition of xπ preceding Definition 2, here, given a permutation π (of
{ 1, 2, · · · , n }), we can generate a vertex xπ as follows.

xπ1 = f({π1})/a{π1}
π1

xπ2 =
(
f({π1, π2})− a{π1,π2}

π1
xπ1

)/
a{π1,π2}
π2

...

xπn =

(
f({π1, · · · , πn})−

n−1∑
i=1

a{π1,···,πn}
πi xπi

)/
a{π1,···,πn}
πn .

Same as in the polymatroid case, we should emphasize here that as yet, xπ

does not necessarily belong to the polytope in (13). The vertices for EP(b) are
analogously generated, with f(·) replaced by b(·).
Definition 6. EP(f) (respectively EP(b)) is an extended polymatroid (EP) if
xπ as generated above (respectively with b replacing f) belongs to the polytope
EP(f), (respectively EP(b)), for any permutation π.

(The term, “extended polymatroid,” was previously used to refer to a poly-
matroid without the requirement that x ≥ 0; e.g., see [26], p. 306. Since [3,
42] and other works in the queueing literature, it has been used to refer to the
polytopes defined above. Also, in [3], the EP corresponding to the b function is
termed “extended contra-polymatroid,” with the term “extended polymatroid”
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reserved for the f function. For simplicity, we do not make such a distinction
here and below.)

With the above definition for EP, the right hand side functions b and f are
not necessarily increasing and supermodular/submodular. In other words, we do
not have a counterpart of Definition 1 for EP (more on this later). On the other
hand, the counterpart for Definition 3 does apply.

Definition 7. EP(f) is an extended polymatroid if the following is satisfied: for
any A ⊂ B ⊂ E, there exists a point x ∈ EP(f), such that

∑
i∈A

aAi xi = f(A) and
∑
i∈B

aBi xi = f(B).

Theorem 4. The two definitions of EP in 6 and 7 are equivalent.

Proof. If EP(f) is EP, then the stated condition in Definition 7 is obviously
satisfied: just pick the vertex xπ such that the first |A| components in π constitute
the set A, and the first |B| components constitute the set B.

For the other direction, i.e., if the stated condition in Definition 7 holds, then
EP(f) is EP, we use induction on n = |E|. That this holds for n = 1 is trivial.

Suppose this holds for n = k, i.e. for a polytope of the kind in (13) with k
variables. Now consider such a polytope with k + 1 variables, i.e., |E| = k + 1.
Without loss of generality, consider the permutation π = (1, 2, ..., k + 1). We
want to show that the corresponding xπ (i.e., generated from the triangulation
above)) is in the polytope EP(f).

Since xπ1 = f({1})/a{1}1 , we substitute it into the other xπi expressions, i �= 1,
to arrive at the following polytope of k variables:

EP(f̃) = {x ≥ 0 :
∑

i∈S,i �=1

aSi xi ≤ f̃(S), {1} ∈ S ⊆ E},

where

f̃(S) := f(S)− f({1})
a
{1}
1

aS1 .

Clearly, since the stated condition in Definition 7 is assumed to hold for EP(f)
(the one with k+1 variables), it also holds for EP(f̃) (the one with k variables),
since the equations in question all differ by an amount f({1})a{1}1 /aS1 on both
sides. Hence, the induction hypothesis confirms that EP(f̃) is an EP. This implies
that (xπ2 , ..., x

π
n) ∈ EP(f̃), which is equivalent to xπ = (xπ1 , x

π
2 , ..., x

π
n) satisfying

all the constraints in EP(f) that involve S ⊆ E with 1 ∈ S.
We still need to check that xπ satisfies all the other constraints in EP(f)

corresponding to S ⊆ E with 1 �∈ S. To this end, consider the following polytope:

{x ≥ 0 :
∑
i∈S

aSi xi ≤ f(S), S ⊆ E \ {1}}. (14)
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The above is another polytope with k variables. Obviously the stated condition
in Definition 7, which is assumed to hold for the polytope EP(f), holds for the
above polytope as well (since the defining inequalities in the latter are just part
of those in EP(f)). Hence, based on the induction hypothesis, the polytope in
(14) is also an EP. This implies that (xπ2 , ..., x

π
n), and hence xπ, satisfies all the

inequalities involved in (14).
Hence, we have established that given the stated condition in Definition 7,

xπ does satisfy all the constraints in EP(f), for each permutation π. Therefore,
EP(f) is an EP.

The above theorem leads immediately to the following:

Corollary 1. If EP(f) is an extended polymatroid, then

EP−(f) := {x ≥ 0 :
∑
i∈S

aSi xi ≤ f(S), S ⊆ E \ E0}

is also an extended polymatroid, for any E0 ⊂ E.

Proof. Simply verify Definition 7. Since EP(f) is an EP, we can pick any A ⊂
B ⊆ E \ E0 ⊂ E, and there exists an x ∈ EP(f), such that

∑
i∈A a

A
i xi = f(A)

and
∑
i∈B a

B
i xi = f(B). But this is exactly what is required for EP−(f) to be

EP.

In summary, we have

Theorem 5. If the performance vector x satisfies GCL, then the performance
polytope is an EP, of which the vertices correspond to the performance under
priority rules, and the functions b(A) and f(A) correspond to the performance
of job classes in set A when A is given priority over all other classes in E \A.

5 Optimization over EP

Here we consider the optimization problem of maximizing a linear function over
the EP, EP(f), defined in (13):

(PG) max
∑
i∈E

ci xi

s.t.
∑
i∈A

aAi xi ≤ f(A), for allA ⊆ E,

xi ≥ 0, for all i ∈ E.
The dual problem can be written as follows:

(DG) min
∑
A⊆E

yA f(A)

s.t.
∑
A�i

yAa
A
i ≥ ci, for all ∈ E,

yA ≥ 0, for allA ⊆ E.
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Let us start with π = (1, 2, · · · , n), and consider xπ, the vertex defined at
the beginning part of the last section. Below we write out the objective function
of (PG) at xπ, and use the expression, along with complementary slackness, to
identify a candidate for the dual solution. From dual feasibility, we then identify
the conditions under which π is the optimal permutation. Collectively, these
steps constitute an algorithm that finds the optimal π.

For simplicity, write x for xπ below. We first write out xn in the objective
function:

n∑
i=1

cixi = cn

(
f({1, · · · , n})−

n−1∑
i=1

a
{1,···,n}
i xi

)/
a{1,···,n}n +

n−1∑
i=1

cixi

= y{1,···,n}f({1, · · · , n}) +
n−1∑
i=1

(
ci − y{1,···,n}a{1,···,n}i

)
xi,

where we set
y{1,···,n} = cn/a

{1,···,n}
n .

Next, we write out xn−1 in the summation above, and set

y{1,···,n−1} = (cn−1 − y{1,···,n}a{1,···,n}n−1 )/a{1,···,n−1}n−1 ,

to reach the following expression:

n∑
i=1

cixi = y{1,···,n}f({1, · · · , n}) + y{1,···,n−1}f({1, · · · , n− 1})

+
n−2∑
i=1

(
ci − y{1,···,n}a{1,···,n}i − y{1,···,n−1}a{1,···,n−1}i

)
xπi .

This procedure can be repeated to yield the following:

n∑
i=1

cixi = y{1,···,n}f({1, · · · , n}) + y{1,···,n−1})f({1, · · · , n− 1})

+ · · ·+ y{1,2}f({1.2}) + y{1}f({1}), (15)

where

y{1,···,k}=


ck − n∑

j=k+1

y{1,···,j}a
{1,···,j}
k


/ a

{1,···,k}
k , (16)

for k = 1, ..., n. (When k = n, the vacuous summation in (16) vanishes.) Fur-
thermore, set yA := 0 for all other A ⊆ E.

With the above choice of x and y, it is easy to check that complementary
slackness is satisfied. Also, primal feasibility is automatic — guaranteed by the
definition of EP, since x is a vertex. Hence, we only need to check dual feasibility.
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From the construction of y in (16), we have

n∑
j=i

y{1,···,j}a
{1,···,j}
i = ci, i ∈ E,

satisfying the first set of constraints in (DG). So it suffices to show that the
n non-zero dual variables in (16) are non-negative. To this end, we need to be
specific about the construction of the permutation π = (1, ..., n).

Let us start from the last element in π. Note that from (16), we have

y{1,···,n} =
cn

a
{1,···,n}
n

≥ 0.

Next, to ensure y{1,···,n−1} ≥ 0, the numerator of its expression in (16) must be
non-negative, i.e.,

cn−1
a
{1,···,n}
n−1

≥ y{1,···,n} =
cn

a
{1,···,n}
n

.

Therefore, the index n has to be:

n = argmin
i

ci

a
{1,···,n}
i

.

Note that this choice of n guarantees y{1,···,n−1} ≥ 0, independent of the ordering
of the other n− 1 elements in the permutation.

Similarly, to ensure y{1,···,n−2} ≥ 0, from (16), we must have

cn−2 − y{1,···,n−1}a{1,···,n−1}n−2 − y{1,···,n}a{1,···,n}n−2 ≥ 0,

or
cn−2 − y{1,···,n}a{1,···,n}n−2

a
{1,···,n−1}
n−2

≥ y{1,···,n−1}.

Hence, the choice of n− 1 has to be:

n− 1 = arg min
i≤n−1

ci − y{1,···,n}a{1,···,n}i

a
{1,···,n−1}
i

.

This procedure can be repeated until all elements of the permutation is de-
termined. In general, the index k is chosen in the order of k = n, n−1, ..., 1, and
it has to satisfy:

k = argmin
i≤k

ci −
∑n
j=k+1 y{1,···,j}a

{1,···,j}
i

a
{1,···,k}
i

.

Formally, the following algorithm solves the dual problem (DG) in terms
of generating the permutation π, along with the dual solution yπ. The optimal
primal solution is then the vertex, xπ, corresponding to the permutation π.
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Algorithm 1 [for (DG)]

(i) Initialization: S(n) = E, k = n;
(ii) If k = 1, stop, and output {π, S(k); yπ(S(k)}; else, set

πk := argmin
i

ci −
∑n
j=k+1 y

π
S(j)a

S(j)
i

a
S(k)
i

yπS(k) := min
i

ci −
∑n
j=k+1 y

π
S(j)a

S(j)
i

a
S(k)
i

;

(iii) k ← k − 1, S(k) = S(k + 1) \ {πk}; goto (ii).

Theorem 6. Given an extended polymatroid EP(f), the above algorithm solves
the primal and dual LP’s, (PG) and (DG) in O(n2) steps, with xπ and yπ being
the optimal primal-dual solution pair.

Proof. Following the discussions preceding the algorithm, it is clear that we only
need to check yπS(k) ≥ 0, for k = 1, · · · , n.

When k = n, following the algorithm, we have S(n) = E, and

πn = argmin
i
{ci/aEi }, yπE = cπn/a

E
πn ≥ 0.

Inductively, suppose yπS(j) ≥ 0, for j = k + 1, ..., n, have all been determined.
The choice of πk+1 and hence yπS(k+1) in the algorithm guarantees

ck −
n∑
j=k

yπS(j)a
S(j)
k ≥ 0,

and hence yπS(k) ≥ 0.
That the optimal solution is generated in O(n2) steps is evident from the

description of the algorithm.

To summarize, the two remarks at the end of §1.2 for the polymatroid op-
timization also apply here: (i) primal feasibility is automatic, by way of the
definition of EP; and (ii) dual feasibility, along with complementary slackness,
identifies the permutation π that defines the (primal) optimal vertex.

Furthermore, there is also an analogy to (3), i.e., the sum of dual variables
yields the priority index. To see this, for concreteness consider Klimov’s problem,
with the performance measure xi being the (long-run) average number of class
i jobs in the system. (For this example, we are dealing with a minimization
problem over the EP EP(b). But all of the above discussions, including the
algorithm, still apply, mutatis mutandis, such as changing f to b and max to
min, etc.) The optimal policy is a priority rule corresponding to the permutation
π generated by the above algorithm, with the jobs of class π1 given the highest
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priority, and jobs of class πn, the lowest priority. Let y∗ be the optimal dual
solution generated by the algorithm. Define

γi :=
∑
S�i

y∗S , i ∈ E.

Then, we have

γπi = y∗{π1,···,πi} + · · ·+ y∗{π1,···,πn}, i ∈ E. (17)

Note that γπi is decreasing in i, since the dual variables are non-negative. Hence,
the order of γπi ’s is in the same direction as the priority assignment. In other
words, (17) is completely analogous to (3): just like the indexing role played by
the cost coefficients in the polymatroid case, in the EP case here {γi} is also a
set of indices upon which the priorities are assigned: at each decision epoch, the
server chooses to serve, among all waiting jobs, the job class with the highest γ
index.

Finally, we can synthesize all the above discussions on GCL and its con-
nection to EP, and on optimization over an EP, to come up with the following
generalization of Theorem 3.

Theorem 7. Consider the optimal control problem in Theorem 3:

max
u∈A

∑
i∈E

cix
u
i [ or min

u∈A

∑
i∈E

cix
u
i ].

Suppose x is a performance measure that satisfies GCL. Then, this optimal con-
trol problem can be solved by solving the following LP:

max
x∈EP(f)

∑
i∈E

cixi [ or min
x∈EP(b)

∑
i∈E

cixi ].

The optimal solution to this LP is simply the vertex xπ ∈ B(f), with π being the
permutation identified by Algorithm 1; and the optimal policy is the corresponding
priority rule, which assigns the highest priority to class π1 jobs, and the lowest
priority to class πn jobs.

Applying the above theorem to Klimov’s model we can generate the optimal
policy, which is a priority rule dictated by the permutation π, which, in turn, is
generated by Algorithm 1.

6 Notes and Comments

The materials presented here are drawn from Chapter 11 of the book by Chen
and Yao [7], to which the reader is also referred for preliminaries in queueing
networks. A standard reference to matroid, as well as polymatroid, is Welsh [47].
The equivalence of the first two definitions of the polymatroid, Definitions 1 and
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2, is a classical result; refer to, e.g., Edmonds [13], Welsh [47], and Dunstan and
Welsh [12].

The original version of conservation laws, due to Kleinrock [31], takes the
form of a single equality constraint,

∑
i∈E xi = b(E) or = f(E). In the works

of Coffman and Mitrani [9], and Gelenbe and Mitrani [20], the additional in-
equality constraints were introduced, which, along with the equality constraint,
give a full characterization of the performance space. In a sequence of papers,
Federgruen and Groenevelt [15,16,17], established the polymatroid structure of
the performance space of several queueing systems, by showing that the RHS
(right hand side) functions are increasing and submodular.

Shanthikumar and Yao [39] revealed the equivalence between conservations
laws and the polymatroid nature of the performance polytope. In other words,
the increasingness and submodularity of the RHS functions are not only sufficient
but also necessary conditions for conservation laws. This equivalence is based on
two key ingredients: On the one hand, the polymatroid Definition 2 asserts that
if the “vertex” xπ — generated through a triangular system of n linear equations
(made out of a total of 2n−1 inequalities that define the polytope) — belongs to
the polytope (i.e., if it satisfies all the other inequalities), for every permutation,
π, then the polytope is a polymatroid. On the other hand, in conservation laws
the RHS functions that characterize the performance polytope can be defined
in such a way that they correspond to those “vertices”. This way, the vertices
will automatically belong to the performance space, since they are achievable by
priority rules.

The direct implication of the connection between conservation laws and poly-
matroid is the translation of the scheduling (control) problem into an optimiza-
tion problem. In the case of a linear objective, the optimal solution follows im-
mediately from examining the primal-dual pair: primal feasibility is guaranteed
by the polymatroid property — all vertices belong to the polytope, and dual
feasibility, along with complementary slackness, yields the priority indices.

Motivated by Klimov’s problem, Tsoucas [42], and Bertsimas and Ninõ-Mora
[3] extended conservation laws and related polymatroid structure to GCL and
EP. The key ingredients in the conservation laws/polymatroid theory of [39]
are carried over to GCL/EP. In particular, EP is defined completely analogous
to the polymatroid Definition 2 mentioned above, via the “vertex” xπ; whereas
GCL is such that for every permutation π, xπ corresponds to a priority rule, and
thereby guarantees its membership to the performance polytope. The equivalent
definitions for EP in Definition 7 are due to Lu [34] and Zhang [52] (also see
[51]).

Dynamic scheduling of a multi-class stochastic network is a complex and
difficult problem that has continued to attract much research effort. A sample
of more recent works shows a variety of different approaches to the problem,
from Markov decision programming (e.g., Harrison [27], Weber and Stidham
[45]), monotone control of generalized semi-Markov processes (Glasserman and
Yao [24,25]), to asymptotic techniques via diffusion limits (Harrison [28], and
Harrison and Wein [29]). This chapter presents yet another approach, which is
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based on polymatroid optimization. It exploits, in the presence of conservation
laws and GCL, the polymatroid or EP structure of the performance polytope
and turns the dynamic control problem into a static optimization problem.

The cµ-rule in Example 10 is a subject with a long history that can be
traced back to Smith [40], and the monograph of Cox and Smith [10]; also see,
e.g., [5,6]. More ambitious examples of applications that are based on Theorem
3 include: scheduling in a Jackson network ([36]), scheduling and load balancing
in a distributed computer system ([37]), and scheduling multi-class jobs in a
flexible manufacturing system ([50]).

Klimov’s problem generalizes the cµ-rule model by allowing completed jobs
to feedback and change classes. Variations of Klimov’s model have also been
widely studied using different techniques; e.g., Harrison [27], Tcha and Pliska
[41]. The optimal priority policy is often referred to as the “Gittins index” rule,
as the priority indices are closely related to those indices in dynamic resource
allocation problems that are made famous by Gittins ([21,22,23]).

Klimov’s model, in turn, belongs to the more general class of branching bandit
problems, (refer to §3), for which scheduling rules based on Gittins indices are
optimal. There is a vast literature on this subject; refer to, e.g., Lai and Ying
[33], Meilijson and Weiss [35], Varaiya et al. [43], Weber [44], Weiss [46], Whittle
[48,49]; as well as Gittins [21,22], and Gittins and Jones [23].

GCL corresponds to the so-called “indexable” class of stochastic systems,
including Klimov’s model and branching bandits as primary examples; refer to
[3,4]. Beyond this indexable class, however, the performance space is not even an
EP. There have been recent studies that try to bound such performance space
by more structured polytopes (e.g., polymatroid and EP), e.g., Bertsimas [2],
Bertsimas et al [4], and Dacre et al [11].
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