Skip to main content

Learning Preference Relations from Data

  • Conference paper
  • First Online:
  • 916 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2486))

Abstract

A number of learning tasks can be solved robustly using key concepts from statistical learning theory. In this paper we first summarize the main concepts of statistical learning theory, a framework in which certain learning from examples problems, namely classification, regression, and density estimation, have been studied in a principled way. We then show how the key concepts of the theory can be used not only for these standard learning from examples problems, but also for many others. In particular we discuss how to learn functions which model a preference relation. The goal is to illustrate the value of statistical learning theory beyond the standard framework it has been used until now.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ben-Akiva, M. E. and S. R. Lerman. Discrete Choice Analysis: Theory and Application to Travel Demand. MIT Press, Cambridge, Ma., 1995.

    Google Scholar 

  2. Alon, N., S. Ben-David, N. Cesa-Bianchi, and D. Haussler. ‘Scale-sensitive dimensions, uniform convergence, and learnability’. Symposium on Foundations of Computer Science, 1993.

    Google Scholar 

  3. Carroll, J. D. and P. Green. “Psychometric Methods in Marketing Research: Part I, Conjoint Analysis”. Journal of Marketing Research, 32, November 1995, p. 385–391.

    Google Scholar 

  4. Cortes, C. and V. Vapnik. “Support Vector Networks’. Machine Learning 20, 1–25, 1995.

    Google Scholar 

  5. Devroye, L., L. Györfi, and G. Lugosi. A Probabilistic Theory of Pattern Recognition, No. 31 in Applications of mathematics. New York: Springer, 1996.

    MATH  Google Scholar 

  6. Evgeniou, T., M. Pontil, and T. Poggio. “Regularization Networks and Support Vector Machines’. Adv. In Computational Mathematics, 13, pp 1–50, 2000.

    MATH  MathSciNet  Google Scholar 

  7. Girosi, F., M. Jones, and T. Poggio. “Regularization theory and neural networks architectures”. Neural Computation 7, 219–269, 1995.

    Article  Google Scholar 

  8. Green, P. and V. Srinivasan. “Conjoint Analysis in Marketing: New Developments with Implications for Research and Practice” Journal of Marketing, 54,4, p. 3–19, 1990.

    Article  Google Scholar 

  9. Jaakkola, T. and D. Haussler. “Probabilistic Kernel Regression Models”. In: Proc. of Neural Information Processing Conference, 1998.

    Google Scholar 

  10. Kearns, M. and R. Shapire “Efficient distribution-free learning of probabilistic concepts” Journal of Computer and Systems Sciences 48(3), 464–497, 1994.

    Article  MATH  Google Scholar 

  11. Oppewal, H., J. Louviere, and H. Timmermans. “Modeling Hierarchical Conjoint Processes with Integrated Choice Experiments” Journal of Marketing Research, 31, p. 92–105, 1994.

    Article  Google Scholar 

  12. Sawtooth Software, ‘HB-Reg: Hierarchical Bayes Regression’. URL: http://www.sawtoothsoftware.com/hbreg.shtml

  13. Srinivasan, V., A. Jain, and N. Malhotra. “Improving the Predictive Power of Conjoint Analysis by Constrained Parameter Estimation” Journal of Marketing Research, 20,(November), p. 433–438, 1983. [14] Srinivasan, V. and A. Shocker. “Linear Programming Techniques for Multidimensional Analysis of Preferences” Psychometrica, 38,3, p. 337-369, 1973.

    Article  Google Scholar 

  14. Stone, C. J. “Additive Regression and Other Nonparametric Models” Annals of Statistics, 13, p. 689–705, 1985.

    Article  MATH  MathSciNet  Google Scholar 

  15. Tikhonov, A. N. and V. Y. Arsenin. Solutions of Ill-posed Problems. Washington, D. C.: W. H. Winston, 1977.

    MATH  Google Scholar 

  16. Vapnik, V. N. Statistical Learning Theory. New York: Wiley, 1998.

    MATH  Google Scholar 

  17. Vapnik, V. N. and A. Y. Chervonenkis. “On the Uniform Convergence of Relative Frequencies of events to their probabilities”. Th. Prob. and its Applications 17(2), 264–280, 1971.

    Article  MathSciNet  Google Scholar 

  18. Wahba, G. Splines Models for Observational Data. Philadelphia: Series in Applied Mathematics, Vol. 59, SIAM, 1990.

    Google Scholar 

  19. Wittink, D. and P. Cattin. “Commercial Use of Conjoint Analysis: An Update” Journal of Marketing, 53,3, p. 91–96, 1989.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Evgniou, T., Pontil, M. (2002). Learning Preference Relations from Data. In: Marinaro, M., Tagliaferri, R. (eds) Neural Nets. WIRN 2002. Lecture Notes in Computer Science, vol 2486. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45808-5_2

Download citation

  • DOI: https://doi.org/10.1007/3-540-45808-5_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44265-3

  • Online ISBN: 978-3-540-45808-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics