Skip to main content

Generalized Independent Component Analysis as Density Estimation

  • Conference paper
  • First Online:
Neural Nets (WIRN 2002)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2486))

Included in the following conference series:

Abstract

We propose a new generalized ICA framework in the form of a multi-layer perceptron as a density estimator. We adopt an optimization strategy based on two criteria: a minimum reconstruction error and a minimum distance from a uniform distribution. Some simulation results are also reported to validate the proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Karhunen J. and Joutsensalo J.: Representation and separation of signals using nonlinear PCA type learning, Neural Networks, vol. 7:113–127, (1994).

    Article  Google Scholar 

  2. Kramer M. A.: Nonlinear principal component analysis using autoassociative neural networks, AIChE J., vol. 37, n. 2:233–243, (1991).

    Article  Google Scholar 

  3. Magnus J. R. and Neudecker H.: Matrix Differential Calculus with Applications in Statistics and Econometrics, John Wiley & Sons Ltd, (1988).

    Google Scholar 

  4. Marques G. C. and Almeida L. B.: Separation of nonlinear mixtures using pattern repulsion, Proc. of Int. Worksh. on ICA and BSS, Aussois, France, (1999).

    Google Scholar 

  5. Palmieri F., Mattera D., and Budillon A.: Multilayer Independent Component Analysis, Proc. of Int. Worksh. on ICA and BSS, Aussois, Francia, (1999).

    Google Scholar 

  6. Palmieri F. and Budillon A.: Multi-Class Independent Component Analysis (MUCICA) for Rank-deficient Distributions. Advances in Independent Component Analysis, Ed. M. Girolami, Springer Verlag, (2000).

    Google Scholar 

  7. Principe J.C., Xu D., Fisher J.: Information Theoretic Learning. Unsupervised Adaptive Filtering, vol 1, Simon Haykin Editor, Wiley, (2000).

    Google Scholar 

  8. Taleb A. and Jutten C.: Source separation in post nonlinear mixtures, IEEE Transactions on Signal Processing, vol. 47, n. 10:2807–2820, (1999).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Palmieri, F., Budillon, A. (2002). Generalized Independent Component Analysis as Density Estimation. In: Marinaro, M., Tagliaferri, R. (eds) Neural Nets. WIRN 2002. Lecture Notes in Computer Science, vol 2486. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45808-5_8

Download citation

  • DOI: https://doi.org/10.1007/3-540-45808-5_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44265-3

  • Online ISBN: 978-3-540-45808-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics