Abstract
This article introduces a rough set approach to measuring of information granules derived from performance maps. A performance map employs intuitive color-coding to visualize the behavior of system dynamics resulting from variations in system parameters. The resulting image is developed algorithmically via digital computation. With only moderate á priori knowledge, mathematical analysis of a performance map provides an immediate wealth of information. This study is motivated by an interest in measuring the separation between “islands” (collections of pixels with the same color) representing normal (e.g., black pixels) and potentially chaotic (e.g., red pixels) system behavior. A performance map island or sector is identified with groupings of cells in a mesh resulting from the partition of a performance map into equivalence classes. The information granules considered in this paper are associated with a feature set in an information system. The contribution of this article is the application of a measures of granule closeness based on an indistinguishability relation that partitions performance maps intervals into sub intervals (equivalence classes). Such partitions are useful in measuring closeness of map cells containing color-coded pixels used to visualize dynamical system behavior.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Z. Pawlak, Rough Sets: Theoretical Aspects of Reasoning About Data, Boston, MA, Kluwer Academic Publishers, 1991.
J.F. Peters, A. Skowron, Z. Suraj, W. Rzasa, M. Borkowski, Clustering: A rough set approach to constructing information granules. In: Z. Suraj (Ed.), Soft Computing and Distributed Processing (SCDP’02), Rzeszów, Poland, 24–25 June 2002 [to appear].
A. Skowron, Toward intelligent systems: Calculi of information granules. In: S. Hirano, M. Inuiguchi, S. Tsumoto (Eds.), Bulletin of the International Rough Set Society, vol. 5, no. 1/2, 2001, 9–30.
A. Skowron, J. Stepaniuk, J.F. Peters, Extracting patterns using information granules. In: S. Hirano, M. Inuiguchi, S. Tsumoto (Eds.), Bulletin of the International Rough Set Society, vol. 5, no. 1/2, 2001, 135–142.
A. Skowron, J. Stepaniuk, J.F. Peters, Hierarchy of information granules. In: H.D. Burkhard, L. Czaja, H.S. Nguyen, P. Starke (Eds.), Proc.of the Workshop on Concurrency, Specification and Programming, Oct. 2001, Warsaw, Poland, 254–268.
J.F. Peters, T.C. Ahn, M. Borkowski, V. Degtyaryov, S. Ramanna, Line-crawling robot navigation: A rough neurocomputing approach. In: D. Maravall, D. Zhou (Eds.), Fusion of Soft Computing and Hard Computing Techniques for Autonomous Robotic Systems. Studies in Fuzziness and Soft Computing, J. Kacprzyk (Ed.). Berlin: Physica-Verlag, 2002 [to appear].
J.J. Alpigini, J.F. Peters, Dynamic visualization with rough performance maps. In: W. Ziarko, Y. Yao (Eds.), Rough Sets and Current Trends in Computing, Lectures Notes in Artificial Intelligence 2005. Berlin: Springer-Verlag, 2001, 90–97.
J.J. Alpigini, The evaluation and visualization of system performance in chaotic dynamical systems. Information Sciences, Volume 127(3–4), 2000, 173–192.
J.J. Alpigini, A Paradigm for the Visualization of Dynamic System Performance Using Methodologies Derived from Chaos Theory, Ph.D. Thesis, University of Wales, Swansea, UK, 1999.
J.F. Peters, A. Skowron, Z. Suraj, M. Borkowski, W. Rzasa, Measures of closeness and inclusion of information granules: A rough set approach. In: RSCTC’02 [to appear].
F.R. Rubio, J. Aracil, E.F. Camacho, Chaotic Motion in an Adaptive Control System, International Journal of Control, vol. 42(2), 1985, 353–360.
G. Julia, Memoire sur l’iteration des fonctions rationnelles. J. de Math., vol. 8, 1918, 47–245.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2002 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Alpigini, J.J. (2002). Closeness of Performance Map Information Granules: A Rough Set Approach. In: Alpigini, J.J., Peters, J.F., Skowron, A., Zhong, N. (eds) Rough Sets and Current Trends in Computing. RSCTC 2002. Lecture Notes in Computer Science(), vol 2475. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45813-1_37
Download citation
DOI: https://doi.org/10.1007/3-540-45813-1_37
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-44274-5
Online ISBN: 978-3-540-45813-5
eBook Packages: Springer Book Archive