Skip to main content

Universality Class of Probabilistic Cellular Automata

  • Conference paper
  • First Online:
Cellular Automata (ACRI 2002)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2493))

Included in the following conference series:

Abstract

The Ising-like phase transition is considered in probabilistic cellular automata (CA). The nonequilibrium CA with Toom rule are compared to standard equilibrium lattice systems to verify influence of synchronous vs asynchronous updating. It was observed by Marcq et al. [Phys.Rev.E 55(1997) 2606] that the mode of updating separates systems of coupled map lattices into two distinct universality classes. The similar partition holds in case of CA. CA with Toom rule and synchronous updating represent the weak universality class of the Ising model, while Toom CA with asynchronous updating fall into the Ising universality class.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lenz, W.: Phys. Zeitschrift 21 (1920) 613

    Google Scholar 

  2. Binney, J.J., Dowrick, N.J., Fisher, A.J., Newman, M.E.J.: The Theory of Critical Phenomena (Oxford University Press, Oxford, 1992)

    MATH  Google Scholar 

  3. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.M., Teller, E.: J. Chem. Phys. 21 (1953) 1087; Glauber, R.J.: J. Math. Phys. 4 (1963) 294; Crutz, M.: Phys. Rev. D 21 (1980) 2308

    Article  Google Scholar 

  4. Matsubara, F., Sato, A., Koseki, O., Shirakura, T.: Phys. Rev. E 78 (1997) 3237

    Google Scholar 

  5. Landau, D.P., Binder, K.: A Guide to Monte Carlo Simulations in Statistical Physics (Cambridge University Press, Cambridge, 2000)

    MATH  Google Scholar 

  6. Wolfram, S.: Rev. Mod. Phys. 55(3) (1984) 601

    Article  MathSciNet  Google Scholar 

  7. Herrmann, H.J.: J. Stat. Phys. 45 (1986) 145

    Article  Google Scholar 

  8. Stauffer, D.: Int. J. Mod. Phys. C 8 (1997) 1263; Stuffer, D.: Commput. Phys. Commun. 127 (2000) 113

    Google Scholar 

  9. Domany, E., Phys. Rev. Lett. 52 (1984) 871; Domany, E., Kinzel, W.: Phys. Rev. Lett. 53 (1984) 311

    Article  MathSciNet  Google Scholar 

  10. Bennett, Ch.H., Grinstein, G.: Phys. Rev. Lett. 55 (1985) 657

    Article  Google Scholar 

  11. Lebowitz, J.L., Maes, Ch., Speer, E.R.: J. Stat. Phys. 59 (1990) 117

    Article  MATH  MathSciNet  Google Scholar 

  12. Makowiec, D.: Phys. Rev. E 60 (1999) 3787

    Article  Google Scholar 

  13. Grinstein, G.C., Jayaparash, C., Hu, Ye,: Phys. Rev. Lett. 55 (1985) 2527; Gonzaléz-Miranda, J.M., Garrido, P.L., Marro, J., Lebowitz, J.: Phys. Rev. Lett. 59 (1987) 1934; Wang, J-S., Lebowitz, J.: J. Stat. Phys. 51 (1988) 893; Grandi, B.C.S., Figueiredo, W., Phys. Rev. E 53 5484 (1996)

    Article  MathSciNet  Google Scholar 

  14. Marcq, D., Chaté, H., Manneville, P.: Phys. Rev. Lett. 77 (1996) 4003; Marcq, D., Chaté, H., Manneville, P.: Phys. Rev. E 55 (1997) 2606

    Article  Google Scholar 

  15. Schmuser, F., Just, W., Kantz, H.: Phys. Rev. E 61 (2000) 3675

    Article  MathSciNet  Google Scholar 

  16. Korneta, W.: Phys. Rev. E 64 (2001) (to appear); Szolnoki, A.: Phys. Rev. E 62 (2000) 7466

    Google Scholar 

  17. Toom, A.L., Vasilyev, N.B., Stavskaya, O.N., Mityushin, L.G., Kurdyumov G.L., Prigorov, S. A.: Stochastic Cellular Systems: Ergodicity, Memory, Morphogenesis. Eds Dobrushin, R.L., Kryukov, V.I., Toom, A.L. (Manchester University Press, Manchester, 1990)

    Google Scholar 

  18. Maes, Ch., Vande Velde, K.: Physica A 206 (1994) 587; Maes, Ch., Vande Velde, K.: Commun. Math. Phys. 189 (1997) 277; Makowiec, D.: Phys. Rev. E 55 (1997) 582; Fernandez, R.: Physica A 263 (1999) 117

    Article  Google Scholar 

  19. Munkel, Ch., Heermann, D.W., Adler, J., Gofman, M., Stauffer, D.: Physica A 193 (1993) 540

    Article  Google Scholar 

  20. Binder, K.: Z. Phys. B 43 (1980) 119

    Article  MathSciNet  Google Scholar 

  21. Chen, K., Ferrenberg, A.M., Landau, D.P.: Phys. Rev. B 48 (1993) 3249

    Article  Google Scholar 

  22. Zinn-Jistin, J.: Quantum Field Theory and Critical Phenomena (Oxford University Press, Oxford, 1989)

    Google Scholar 

  23. Suzuki., M.: Prog. Theor. Phys. 51 (1974) 1992

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Makowiec, D., Gnaciński, P. (2002). Universality Class of Probabilistic Cellular Automata. In: Bandini, S., Chopard, B., Tomassini, M. (eds) Cellular Automata. ACRI 2002. Lecture Notes in Computer Science, vol 2493. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45830-1_10

Download citation

  • DOI: https://doi.org/10.1007/3-540-45830-1_10

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44304-9

  • Online ISBN: 978-3-540-45830-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics