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Abstract. This paper describes the peculiar behavior observed in a class
of cellular automata that we have defined as dissipative, i.e., cellular au-
tomata that are open and makes it possible for the environment to in-
fluence their evolution. Peculiar in the dynamic evolution of this class
of cellular automata is that stable macro-level spatial structures emerge
from local interactions among cells, a behavior that does not emerge
when the cellular automaton is closed, i.e., when the state of a cell is not
influenced by the external world. Moreover, we observed that Dissipative
Cellular Automata (DCA) exhibit a behavior very similar to that of dis-
sipative structures, as macro-level spatial structures emerge as soon as
the external perturbation exceeds a threshold value and it stays below
the “turbulence” limit. Finally, we discuss possible relations of the per-
formed experiments with the area of open distributed computing, and in
particular of agent-based distributed computing.

1 Introduction

In this paper, we present and discuss a set of experiments that we have per-
formed on a new class of cellular automata that we have defined as Dissipative
Cellular Automata (DCA). DCA differ from “traditional” cellular automata in
two characteristics: while “traditional” cellular automata are composed of cells
that interact with each other in a synchronous way and that are influenced in
their evolution only by the internal state of the automata themselves, dissipative
ones are asynchronous and open. One the one hand, cells update their status
independently of each other, in an “autonomous” way. On the other hand, the
automata live dipped in an environment that can directly influence the internal
behavior of the automata, as in open systems.

The reported experiments show that DCA exhibit peculiar interesting be-
haviors. In particular, during the evolution of the DCA, and despite the out-of-
equilibrium situation induced by the external environment, stable macro-level
spatial structures emerge from local interactions among cells, a behavior that
does not emerge when the cellular automaton is synchronous and closed (i.e.,



when the state of a cell is not influenced by the environment). Furthermore,
ordered patterns emerge, like in dissipative systems [11], when the external per-
turbation is higher than a critical value and they are present for a specific per-
turbation strength range.

On this basis, the paper argues that similar sort of macro-level behaviors
are likely to emerge as soon as multiagent systems (or likes) will start popu-
lating the Internet and our physical spaces, both characterized by intrinsic and
unpredictable dynamics. Such behaviors are likely to dramatically influence the
overall behavior of our networks at a very large scale. This may require new mod-
els, methodologies, and tools, explicitly taking into account the environmental
dynamics, and exploiting it during software design and development either de-
fensively, to control its effects on the system, or constructively, as an additional
design dimension.

This paper is organized as follows. Sect. 2 defines DCA as CA characterized
by asynchronous dynamics and openness. In Sect. 3 we describe experiments and
we discuss the results obtained. In Sect. 4 the relation between DCA and dissi-
pative systems is further investigated, by showing the typical system behavior
as a function of the external perturbation. We conclude with Sect. 5 outlining
potential applications and future work.

2 Dissipative Cellular Automata

In this section we first briefly recall the definition of Cellular Automata (CA)
and introduce the terminology that will be used in the following. Then, we de-
fine Dissipative Cellular Automata (DCA) as CA characterized by asynchronous
dynamics and openness.

A CA is defined by a quadruple A = (S,d,V, f), where S is the finite set
of possible states a cell can assume, d is the dimension of the automaton, V is
the neighborhood structure, and f is the local transition rule. In this work we
assume what follows:

- The automaton structure is a 2-dimensional discrete grid closed to a 2-
dimensional torus (namely, N x N square grids with wraparound borders).

- The neighborhood structure is regular and isotropic, i.e., V' has the same
definition for every cell.

- [ is the same for each cell (uniform CA).

The quadruple A specifies the static characteristics of an automaton. The com-
plete description of a CA requires the definition of its dynamics, i.e., of the
dynamics ruling the update of the state of CA cells. In general, the dynamics of
a CA assumes a discrete time. The usual definition of CA is with synchronous
dynamics: cells update their state in parallel at each time step.

Synchronous CA of this kind have been deeply studied [19,1] and have
also an interesting biological/systemic interpretation: cells can be interpreted
as alive/dead, or system elements active/inactive depending on their state.
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Fig.1. A synchronous CA having Fig.2. A fixed point reached by an
reached a cyclic attractor. asynchronous CA. The initial state is
the same of the synchronous one.

2.1 Asynchronous Dynamics

Accordingly to the most accepted terminology [6,10,13], a CA is asynchronous
if cells can update their state independently from each other, rather than all
together in parallel, according to a dynamics that can be either step-driven or
time-driven.

In step-driven dynamics, a kind of global daemon is introduced, whose job
is to choose at each time step one (and only one) cell to update. In time-driven
dynamics, each cell is assumed to have an “internal clock” which wakes up the cell
and makes it update. Also, time-driven dynamics provides for a more continuous
notion of time. The updating signal for a cell can be either deterministic (e.g.,
every time steps) or probabilistic (e.g., the probability that the cell update its
state is uniformly distributed), and the next state of a cell is selected on the
basis of the current state of neighboring cells.

In the experiments presented in this paper, CA have an asynchronous time-
driven dynamics: at each time step, a cell has a probability A, to wake up and
update its state. The update of a cell has been implemented as atomic and
mutually exclusive among neighbors, without preventing non-neighbor cells to
update their state concurrently.

In general, it has been observed that the asynchronous CA exhibits behaviors
which are very different from the ones of their synchronous counterparts, both
in terms of transient and final attractor. Both the dynamics have the same fixed
points [13], i.e., attractors that are fixed points under synchronous dynamics
are fixed points also under asynchronous dynamics and vice versa. Nevertheless,
trajectories in the state space and basins of attraction can be very different
and some of the final attractors reached under asynchronous dynamics may be
reached with lower probability under synchronous one.



As an example, Fig. 1 and Fig. 2 show the steady states reached by a syn-
chronous and an asynchronous CA, starting from the same initial (random) state.
These are characterized by a Moore neighborhood structure (the neighbors of a
cell are the 8 one defining a 3 x 3 square around the cell itself) and the following
transition rule:

f ={ a dead cell gets alive iff it has 2 neighbors alive; a living cells lives iff it
has 1 or 2 neighbors alive}.

Under asynchronous regime, CA usually reaches a fixed point that its syn-
chronous counterpart has never been observed to be able to reach in all the
experiments we performed.

2.2 Openness

Most of CA studied so far are closed systems, as they do not take into account
the interaction between the CA and an environment. Instead, the class of CA
that we have studied is, in addition to asynchronous, open: the dynamic behavior
of the CA can be influenced by the external environment.

From an operative point of view, the openness of the CA implies that some
cell can be forced from the external to change its state, independently of the
cell having evaluated its state and independently of the transition function (see
Fig. 3).

From a thermodynamic perspective, one can consider this manifestation of
the external environment in terms of energy flows: forcing a cell to change its
state can be considered as a manifestation of energy flowing into the system and
influencing it [11]. This similarity, together with the fact that the activities of
the cells are intrinsically asynchronous and that the externally forced changes in
the state of cells perturb the CA in an irreversible way, made us call this kind
of CA as Dissipative Cellular Automata (DCA).

From a more formal point of view, a DCA can be defined as follows:

-A= (SJdJVJf)a
- asynchronous time-driven dynamics (with probabilityA,),
- a perturbation action p(a, D, \e).

where A is the quadruple defining the CA, the dynamics is the one already
discussed in Subsect. 2.1, and the perturbation action ¢ is a transition function
which acts concurrently with f and can change the state of any of the CA
cells to a given state a € V depending on some probabilistic distribution D,
independently of the current state of the cells and of their neighbors. Specifically,
in our experiments @ = 1 (i.e., the cell if forced to be “alive”) and D is a
distribution such that each cell has probability A, to be perturbed.



External "energy"
influencing cells’ state

Fig. 3. The basic structure of a dissipative cellular automaton: the environment influ-
ences the state of cells by injecting “energy”.

3 Emergent Behaviors

The behavior exhibited by DCA is dramatically different from both their syn-
chronous and closed asynchronous counterparts.

In general, when the degree of perturbation (determined by A.) is high enough
to effectively perturb the internal dynamic of the DCA (determined by the rate
of cell updates A,) but it is still not prevailing over it so as to make the behavior
of the DCA almost random (which happens when )\, becomes comparable \,),
peculiar patterns emerge. Since the external perturbation strength is relative
to the cells update rate, i.e., the amount of perturbation is given by the ratio
between external and internal update rate, the actual control parameter is the
ratio Ae/A,.

We have observed that the perturbation on the cells induced by the external
— while keeping the system out of equilibrium and making impossible for it to
reach any equilibrium situation — makes DCA develop large-scale regular spatial
structures. Such structures show long-range correlation between the state of the
cells, emerged despite the strictly local and asynchronous transition rules, and
break the spatial symmetry of the final state. In addition, such structures are
stable, despite the continuous perturbing effects of the external environment.

Our experiments involved many combinations of rules for cells to live/die
and get alive and number of neighbors. We tested most of the rules which gen-
erate local patterns, excluding those leading to trivial attractors (i.e., all cells
alive/dead). For each combination of rules and neighborhood structures we sim-
ulated the CA dynamics starting from 20 different random initial states. The
interested reader can refer to the Web page: http://polaris.ing.unimo.it/DCA/
to access our simulation files in the form of applets, and appreciate the dynamic
evolution of these DCA by reproducing our experiments. In the following we will
discuss and show some among the typical results of the general phenomenon we
observed.
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Fig. 4. Two Behaviors Evolved in a Dissipative Cellular Automata. Despite the out-
of-equilibrium situation forced by the external environment, stable large-scale and
symmetry-breaking patterns emerge.

For example, Fig. 4 shows two different patterns emerged from a DCA, both
exhibiting stable macro-level spatial structures. For this DCA, the transition
rules and the neighborhood structure are the one described in Subsect. 2.1.
In both cases, the presence of global scale patterns — breaking the rotational
symmetry of the automata — is apparent. By comparing these patterns with the
ones observed in the same CA under asynchronous but close dynamics, one can
see that openness has provided for making small scale patterns, emerged from
local transition rules, enlarge to the whole CA size. Once this global states has
emerged, they are able to restabilize autonomously, despite the fact that the
perturbing effects tends to modify them.

As another example, Fig. 5 shows two typical patterns emerged for a DCA
with a neighborhood structure made up of 12 neighbors (the neighbors of a cell
are all cells having a maximum distance of 2 from the cell itself) and with the
following transition rule:

f = {a dead cell gets alive iff it has 6 neighbors alive; a living cells lives iff it
has 3,4,5, or 6 neighbors alive}

Again, it is possible to see large symmetry-breaking patterns emerge, extending
to a global scale the local patterns that tends to emerge under asynchronous
but closed regime (Fig. 6). The patterns are stable despite the continuous per-
turbing effect of the environment. Moreover, the pattern shown on the left of
Fig. 5 is dynamic. First, the long diagonal stripes change continuously in their
microlevel shape, while maintaining the same global structure. Second, all this
stripes translate horizontally at a constant speed in the DCA lattice.

DCA share common characteristics with Stochastic Cellular Automata [2,
14]). Stochastic Cellular Automata (SCA) are synchronous CA with a transi-
tion function characterized by an outgoing probability distribution, which biases
the choice of the next cell’s state. The main difference between DCA and SCA
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Fig. 5. Two different behaviors evolved in a Dissipative Cellular Automaton, large-scale
patterns emerge. The left picture shows a step of a dynamic pattern, with horizontally
translating diagonal stripes.

is that DCA’s transition function is deterministic and the non-determinism is
introduced by external perturbations. The DCA model enables us to describe
systems composed of several independent interacting entities (asynchronous and
concurrently acting) which can be affected by external perturbations.

Behaviors similar to the ones we observed in DCA have also been obtained
for synchronous CA in [20], where long-range patterns are generated by means of
peculiar transition functions which explicitly introduce symmetry-breaking rules.
Therefore, even though the observed behavior is similar, the emergence of macro-
level spatial structures has a different origin: in our case, no symmetry-breaking
rules are introduced and the regular patterns are generated by the combination
of “symmetric” transition functions, asynchrony and external perturbation.

4 Explaining DCA Dynamics

DCA behavior exhibits a strong analogy with the behavior of dissipative sys-
tems [11], e.g., Benard’s cells. A fluid between two plates is in thermodynamic
equilibrium if no thermal energy flows from the external to perturb the equi-
librium. In presence of small differences between the temperature of the two
plates, the thermal energy is still not enough to perturb the fluid, and energy
flows between the two plates in the form of thermal diffusion. However, as soon
as the temperature gradient reaches a critical point, thermal flow in the fluid
starts occurring via convection. This motion does not occur in a disordered way:
regular spatial patterns of movement emerge, with wide-range and symmetry
breaking correlation among cell movements. This behavior is maintained until
the temperature gradient between the two plates become too high, in which case
the regular patterns disappear and the fluid motion becomes turbulent.

By analogy, we conjecture that the behavior of DCA might be subject to the
same phenomenon, where the temperature gradient between the two plates is



Fig. 6. A stabilized situation in an asynchronous close cellular automaton following
the same rules of the DCA in Fig. 5: no large-scale patterns emerge.

substituted by the ratio A./A,. When this ratio is 0, the system is in equilibrium,
and no perturbation from the external occur. For very small perturbation, the
dynamic behavior of the DCA does not substantially change. As soon as the ratio
becomes high enough, the DCA dynamics changes and regular spatial patterns
appears. For very high ratio, spatial patterns disappear and the DCA dynamics
becomes highly disordered.

A rough measure of the emergence of macro-level structures can be pro-
vided by the compression percentage achieved by compression algorithms. The
higher the compression factor, the lower the randomness of the CA configura-
tion. Although this measure does not directly evidence long-range correlations, it
nevertheless provides meaningful information about the amount of structure of a
CA state. Fig. 7 shows typical results obtained with DCA with different number
of neighbors and transition function. The states of DCA have been measured
once the equilibrium have been reached®. As we can observe, when the ratio
Ae/ Ao approaches a critical value 6; the compression ratio cr abruptly increases.
This corresponds to the onset of structure in the system. cr reaches a maximum
approximately located at A./A, =~ 0.05. Then it decreases till reaching again
the initial values, indicating the disappearance of macro-level structures in DCA
states. We observe that, for the first two DCA in Fig. 7, cr quickly decreases, on
the opposite of the last one, for which it seems that structures are still present
for higher values of the ration A./A,. In general, for all the experiments per-
formed, we observed that the critical value for the onset of structured patterns
is approximately A, /A, = 0.05.

The above similarity suggests that the same causes that determine the be-
havior of Benard cells also determine the behavior of DCA.

3 The compression algorithm used is that provided by usual compression utilities like
gzip, at maximum compression level.
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Fig. 7. Amount of structure as a function of the ratio Ae/Aq. The compression ratio is
evaluated by a usual compression algorithm (gzip). Observe that macro-level structures
appear only in a specific range, as in dissipative structures.



Without any perturbation, or in the presence of small one, each autonomous
component (a molecule or a DCA cell), acting asynchronously accordingly to
strictly local rules, tend to reach a local equilibrium (or a strictly local dynamics),
which produce a global uniform equilibrium of the whole system.

When the system is kept in a substantial out-of-equilibrium situation, the
locally reached equilibrium situations are continuously perturbed, resulting in
continuous attempt to locally reestablish equilibrium. This typically ends up
with cell groups having found new equilibrium states more robust with regard
to the perturbation (or compatible with it). Such stable local patterns start
soon dominating and influencing the surrounding, in a sort of positive feedback,
until a globally coordinated (i.e., with large-scale spatial patterns) and stable
situation emerges.

When the degree of perturbation is high enough to avoid local stable situa-
tions to persist for enough time, they can no longer influence the whole systems,
and the situation becomes turbulent.

5 Conclusion and Future Work

This paper has reported the outcomes of a set of experiments performed on a
new class of cellular automata, DCA, which are open to the environment and
can be perturbed by its dynamics. These experiments have shown that the per-
turbation makes large-scale symmetry breaking spatial structures, not observed
under closed regime, emerge. By introducing a measure of the randomness of
DCA states we have shown that structures emerge when the external perturba-
tion is higher than a critical value and below the turbulence limit.

The experiments reported in this paper are indeed preliminary, and further
work is in progress:

— we are currently exploring different measures for evaluating the emergence of
large-scale patterns. For example, we may consider techniques analogous to
the ones presented in [4, 3, 5], where structure is measured by evaluating the
complexity of the probabilistic automaton reconstructed from the data series
representing the CA evolution. Other possibilities rely on the application of
techniques derived from image analysis (for example, we may use spatial
correlation measures);

— we are extending our DCA simulation framework so as to study the behavior
of network structures other than the regular ones of DCA, such as small-
world graphs [18] and boolean networks [9], as well as networks with mobile
nodes;

— we intend to perform further experiments to evaluate the behavior of DCA
under different perturbation regimes and to experiment with more complex
DCA, i.e., DCA with large set of states and/or with non-uniform transition
functions [17,16].

The results presented in this paper promise to have several potential implica-
tions in the area of distributed computing. In fact, DCA exhibit characteristics



(i-e., autonomy of components, locality in interactions, openness to the envi-
ronment) that are typical of modern distributed computing environments, e.g.,
sensor networks and multi-agent systems.

Agents are autonomous entities [7], as their execution is not subject to a
global flow of control. Indeed, the execution of an agent in a multiagent system
may proceed asynchronously, and the agent’s state transition occur according
to local internal timings. This is actually what happens in DCA, because of the
adopted time-driven dynamics. Moreover, agents are situated entities that live
dipped in an environment, whether a computational one, e.g., a Web site, or a
physical one, e.g., a room or a manufacturing unit to be controlled. The agent
is typically influenced in its execution (i.e., in its state transitions) by what it
senses in the environment. In this sense, agents and multi-agent systems are
”open systems”: the global evolution of a multi-agent system may be influenced
by the environment in which it lives. And, in most of the cases, the environment
possesses a dynamics which is not controllable or foreseeable. For instance, com-
putational resources, data, services, as well as the other agents to be found on a
given Web site cannot be predicted and they are likely to change in time. This
sort of openness is the same that we can find in DCA, where the perturbation
of the environment, changing the internal state of a cell, can make us consider
the cell as situated in an environment whose characteristics dynamically change
in an unpredictable way.

Given the above similarities, we argue that similar sort of macro-level behav-
iors are likely to make their appearance also in such systems, raising the need
for models, methodologies, and tools, explicitly taking into account the auton-
omy and environmental dynamics and exploiting them either constructively, to
achieve globally coordinated behaviors, or defensively, to control the behavior
of the system. On the one hand, one could think at exploiting the environmen-
tal dynamics to control and influence a multi-agent system from ”outside the
loop” [15], that is, without intervening on the system itself. In a world of con-
tinuous computations, where decentralized software systems are always running
and cannot be stopped (this is already the case for Internet services and for em-
bedded sensors) changing, maintaining and updating systems by stopping and
re-installing them is not the best solution, and it could not be always feasible.
On the other hand, the reported experiments open up the possibility that a soft-
ware system immersed in a dynamic environment may exhibit behaviors very
different from the ones it was programmed for. Obviously, this is not desirable
and may cause highly damaging effects.

Of course, we are not the first discussing the possibility of emergence of
complex self-organizing behaviors in multi-agent systems. However, most of the
studies (apart from a few exceptions [12]) have focused on ”closed” agent sys-
tems, in which the internal dynamics of the systems totally drive its behavior.
Instead, we have shown, via a very simple and ”minimal” multi-agent system,
as a DCA can be considered, that complex non-local behaviors can emerge due
to the influence of the environmental dynamics. The impact of this observation



in the modeling, engineering, and maintaining of distributed agent systems may
be dramatic [8,21].
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