Skip to main content

Cellular Automata Approaches to Enzymatic Reaction Networks

  • Conference paper
  • First Online:
Cellular Automata (ACRI 2002)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2493))

Included in the following conference series:

Abstract

Cellular automata simulations for enzymatic reaction networks differ from other models for reaction-diffusion systems, since enzymes and metabolites have very different properties. This paper presents a model where each lattice site can can contain at most one enzyme molecule, but many metabolite molecules. The rules are constructed to conform to the Michaelis-Menten kinetics by modeling the underlying mechanism of enzymatic conversion. Different possible approaches to rule construction are presented and analyzed, and simulations are shown for single reactions and simple enzyme networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hans Bisswanger. Enzymkinetik. Wiley-VCH, Weinheim, 2000.

    Book  Google Scholar 

  2. Jean Pierre Boon, David Dab, Raymond Kapral, and Anna Lawniczak. Lattice gas automata for reactive systems. Physics Reports, 273(2):55–147, 1996.

    Article  MathSciNet  Google Scholar 

  3. B. Chopard and M. Droz. Cellular automata approach to diffusion problems. In P. Manneville, N. Boccara, G. Y. Vichniac, and R. Bidaux, editors, Cellular automata and modelling of complex physical systems, pages 130–143, Berlin, Heidelberg, 1989. Springer-Verlag.

    Google Scholar 

  4. David Dab and Jean-Pierre Boon. Cellular automata approach to reaction-diffusion systems. In P. Manneville, N. Boccara, G. Y. Vichniac, and R. Bidaux, editors, Cellular automata and modelling of complex physical systems, pages 257–273, Berlin, Heidelberg, 1989. Springer-Verlag.

    Google Scholar 

  5. David Dab, Jean-Pierre Boon, and Yue-Xian Li. Lattice-gas automata for coupled reaction-diffusion equations. Phys. Rev. Lett., 66(19):2535–2538, 1991.

    Article  Google Scholar 

  6. Micheal A. Gibson. Computational Methods for Stochastic Biological Systems. Phd thesis., Calif. Inst. Technology, 2000.

    Google Scholar 

  7. D. T. Gillespie. A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J. Computational Physics, 22:403–434, 1976.

    Article  MathSciNet  Google Scholar 

  8. D. T. Gillespie. Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem, 81:2340–2361, 1977.

    Article  Google Scholar 

  9. M. Kanehisa. Kegg. http://www.genome.ad.jp/kegg/.

  10. M. Kanehisa. Toward pathway engineering: a new database of genetic and molecular pathways. Science & Technology Japan, 59:34–38, 1996.

    Google Scholar 

  11. M. Kanehisa and S. Goto. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res., 28:27–30, 2000.

    Article  Google Scholar 

  12. Norman Margolus and Tomaso Toffoli. Cellular automata machines. A new environment for modeling. MIT Press, Cambridge, MA, USA, 1987.

    Google Scholar 

  13. Gerhard Michal. Boehringer Mannheim Biochemical Pathways Map. Roche and Spektrum Akademischer Verlag.

    Google Scholar 

  14. Stefan Schuster. Studies on the stoichiometric structure of enzymatic reaction systems. Theory Biosci., 118:125–139, 1999.

    Google Scholar 

  15. Stefan Schuster and Claus Hilgetag. On elementary flux modes in biochemical reaction systems at steady state. J. Biol. Syst., 2:165–182, 1994.

    Article  Google Scholar 

  16. T. Toffoli and N. Margolus. Invertible cellular automata: a review. Physica D, 45:229–253, 1990.

    Article  MATH  MathSciNet  Google Scholar 

  17. N. G. van Kampen. Stochastic Processes in Physics and Chemistry. Elsevier, 1992.

    Google Scholar 

  18. Jörg R. Weimar. Cellular Automata for Reactive Systems. PhD thesis, Université Libre de Bruxelles, Belgium, 1995.

    Google Scholar 

  19. Jörg R. Weimar. Simulation with Cellular Automata. Logos-Verlag, Berlin, 1998.

    Google Scholar 

  20. Jörg R. Weimar. Simulating reaction-diffusion cellular automata with JCASim. In T. Sonar, editor, Discrete Modelling and Discrete Algorithms in Continuum Mechanics, pages 217–226. Logos-Verlag, Berlin, 2001.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Weimar, J.R. (2002). Cellular Automata Approaches to Enzymatic Reaction Networks. In: Bandini, S., Chopard, B., Tomassini, M. (eds) Cellular Automata. ACRI 2002. Lecture Notes in Computer Science, vol 2493. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45830-1_28

Download citation

  • DOI: https://doi.org/10.1007/3-540-45830-1_28

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44304-9

  • Online ISBN: 978-3-540-45830-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics