Skip to main content

Hypercomputation in the Chinese Room

  • Conference paper
  • First Online:
  • 442 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2509))

Abstract

I rehearse a number of objections to John Searle’s famous Chinese room argument. One is the ’hypercomputational objection’ (Copeland 2002a). Hypercomputation is the computation of functions that cannot be computed in the sense of (Turing (1936)); the term originates in (Copeland and Proudfoot (1999)). I defend my hypercomputa tional objection to the Chinese room argument from a response recently developed by (Bringsjord, Bello and Ferrucci (2001)).

Good Old Fashioned AI: John Haugeland,s excellent term for traditional symbolprocessing AI (Haugeland 1985).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ambrose, A. (1935), ‘Finitism in Mathematics (I and II)’, Mind, 35: 186–203 and 317–40.

    Article  Google Scholar 

  2. Benacerraf, P. (1962), ‘Tasks, Super-Tasks, and the Modern Eleatics’, Journal of Philosophy, 59: 765–84.

    Article  Google Scholar 

  3. Blake, R.M. (1926), ‘The Paradox of Temporal Process’, Journal of Philosophy, 23: 645–54.

    Article  Google Scholar 

  4. Boolos, G.S., Jeffrey, R.C. (1980), Computability and Logic, 2nd edition, Cambridge: Cambridge University Press.

    Google Scholar 

  5. Bringsjord, S., Bello, P., Ferrucci, D. (2001) ‘Creativity, the Turing Test, and the (Better) Lovelace Test’, Minds and Machines, 11,1.

    Google Scholar 

  6. Bunge, M,, Ardila, R. (1987), Philosophy of Psychology, New York: Springer-Verlag.

    Google Scholar 

  7. Church, A. (1936), ‘An Unsolvable Problem of Elementary Number Theory’, American Journal of Mathematics, 58: 345–363.

    Article  MATH  MathSciNet  Google Scholar 

  8. Church, A. (1936), ‘A Note on the Entscheidungsproblem’, Journal of Symbolic Logic, 1: 40–41.

    Article  MATH  Google Scholar 

  9. Church, A. (1937), Review of Turing (1936), Journal of Symbolic Logic, 2: 42–43.

    Google Scholar 

  10. Copeland, B.J. (1993), Artificial Intelligence: a Philosophical Introduction, Oxford: Blackwell.

    Google Scholar 

  11. Copeland, B.J. (1993), ‘The Curious Case of the Chinese Gym’, Synthese, 95: 173–86.

    Article  Google Scholar 

  12. Copeland, B.J. (1997), ‘The Broad Conception of Computation’, American Behavioral Scientist, 40: 690–716.

    Article  Google Scholar 

  13. Copeland, B.J. (1998), ‘Turing’s O-machines, Penrose, Searle, and the Brain’, Analysis, 58: 128–138.

    Article  MATH  MathSciNet  Google Scholar 

  14. Copeland, B.J. (1998), ‘Even Turing Machines Can Compute Uncomputable Functions‘. In Calude, C., Casti, J., Dinneen, M. (eds) (1998), Unconventional Models of Computation, London: Springer-Verlag: 150–164.

    Google Scholar 

  15. Copeland, B.J. (1998), ‘Super Turing-Machines’, Complexity, 4: 30–32.

    Article  MathSciNet  Google Scholar 

  16. Copeland, B.J. (2000), ‘Narrow Versus Wide Mechanism’, Journal of Philosophy, 96: 5–32.

    Article  MathSciNet  Google Scholar 

  17. Copeland, B.J. (2002), ‘The Chinese Room from a Logical Point of View’. In Preston, J., Bishop, M. (eds) Views into the Chinese Room: New Essays on Searle and Artificial Intelligence, Oxford: Oxford University Press.

    Google Scholar 

  18. Copeland, B.J. (2002), ‘Accelerating Turing Machines’, Minds and Machines, Special Issue on Effective Procedures (forthcoming).

    Google Scholar 

  19. Copeland, B.J., Proudfoot, D. (1999), ‘Alan Turing’s Forgotten Ideas in Computer Science’, Scientific American, 280 (April): 76–81.

    Google Scholar 

  20. Copeland, B.J., Sylvan, R. (1999), ‘Beyond the Universal Turing Machine’, Australasian Journal of Philosophy, 77: 46–66.

    Article  Google Scholar 

  21. da Costa, N.C.A., Doria, F.A. (1991), ‘Classical Physics and Penrose’s Thesis’, Foundations of Physics Letters, 4: 363–73.

    Article  MathSciNet  Google Scholar 

  22. Doyle, J. (1982), ‘What is Church’s Thesis?’ Laboratory for Computer Science, MIT.

    Google Scholar 

  23. Earman, J. (1986), A Primer on Determinism, Dordrecht: D. Reidel.

    Google Scholar 

  24. Earman, J., Norton, J.D. (1993), ‘Forever is a Day: Supertasks in Pitowsky and Malament-Hogarth Spacetimes’, Philosophy of Science, 60: 22–42.

    Article  MathSciNet  Google Scholar 

  25. Earman, J., Norton, J.D. (1996), ‘Infinite Pains: The Trouble with Supertasks’. In Morton, A., Stich, S.P. (eds) (1996), Benacerraf and his Critics, Oxford: Blackwell.

    Google Scholar 

  26. Geroch, R. (1977), ‘Prediction in General Relativity’. In J. Earman, C. Glymour, J. Stachel (eds) (1977), Foundations of Spabilityce-Time Theories, Minnesota Studies in the Philosophy of Science, 8, Minneapolis: University of Minnesota Press.

    Google Scholar 

  27. Geroch, R., Hartle, J.B. (1986), ‘Computability and Physical Theories’, Foundations of Physics, 16: 533–550.

    Article  MathSciNet  Google Scholar 

  28. Gold, E.M. (1965), ‘Limiting Recursion’, Journal of Symbolic Logic, 30: 28–48.

    Article  MATH  MathSciNet  Google Scholar 

  29. Hamkins, J.D., Lewis, A. (2000), ‘Infinite Time Turing Machines’, Journal of Symbolic Logic, 65: 567–604.

    Article  MATH  MathSciNet  Google Scholar 

  30. Haugeland, J. (1985), Artificial Intelligence: the Very Idea, Cambridge, Mass.: MIT Press.

    Google Scholar 

  31. Hogarth, M.L. (1992), ‘Does General Relativity Allow an Observer to View an Eternity in a Finite Time?’, Foundations of Physics Letters, 5: 173–181.

    Article  MathSciNet  Google Scholar 

  32. Hogarth, M.L. (1994), ‘Non-Turing Computers and Non-Turing Computability’, PSA 1994, 1: 126–38.

    Google Scholar 

  33. Kleene, S.C. (1967), Mathematical Logic, New York: Wiley.

    MATH  Google Scholar 

  34. Komar, A. (1964), ‘Undecidability of Macroscopically Distinguishable States in Quantum Field Theory’, Physical Review, second series, 133B: 542–544.

    Article  MathSciNet  Google Scholar 

  35. Kreisel, G. (1967), ‘Mathematical Logic: What has it done for the philosophy of mathematics?’ In Bertrand Russell: Philosopher of the Century, ed. R. Schoenman, London: George Allen and Unwin.

    Google Scholar 

  36. Kreisel, G. (1974), ‘A Notion of Mechanistic Theory’, Synthese, 29: 11–26.

    Article  MATH  Google Scholar 

  37. McLeod, P., Dienes, Z. (1993), ‘Running to Catch the Ball’, Nature, 362: 23.

    Article  Google Scholar 

  38. Penrose, R. (1989), The Emperor’s New Mind: Concerning Computers, Minds, and the Laws of Physics, Oxford: Oxford University Press.

    Google Scholar 

  39. Penrose, R. (1994), Shadows of the Mind: A Search for the Missing Science of Consciousness, Oxford: Oxford University Press.

    Google Scholar 

  40. Pour-El, M.B., Richards, I. (1979), ‘A Computable Ordinary Differential Equation Which Possesses No Computable Solution’, Annals of Mathematical Logic, 17: 61–90.

    Article  MATH  MathSciNet  Google Scholar 

  41. Pour-El, M.B., Richards, I. (1981), ‘The Wave Equation With Computable Initial Data Such That Its Unique Solution Is Not Computable’, Advances in Mathematics, 39: 215–239.

    Article  MATH  MathSciNet  Google Scholar 

  42. Putnam, H. (1965), ‘Trial and Error Predicates and the Solution of a Problem of Mostowski’, Journal of Symbolic Logic, 30: 49–57.

    Article  MATH  MathSciNet  Google Scholar 

  43. Russell, B.A.W. (1915), Our Knowledge of the External World as a Field for Scientific Method in Philosophy, Chicago: Open Court.

    Google Scholar 

  44. Russell, B.A.W. (1936), ‘The Limits of Empiricism’, Proceedings of the Aristotelian Society, 36: 131–50.

    Google Scholar 

  45. Scarpellini, B. (1963), ‘Zwei unentscheitbare Probleme der Analysis’, Zeitschrift für mathematische Logik und Grundlagen der Mathematik, 9: 265–289.

    Article  MATH  MathSciNet  Google Scholar 

  46. Searle, J. (1980), ‘Minds, Brains, and Programs’, Behavioural and Brain Sciences, 3: 417–424, 450-456.

    Article  Google Scholar 

  47. Searle, J. (1989), Minds, Brains and Science, London: Penguin.

    Google Scholar 

  48. Searle, J. (1990), ‘Is the Brain’s Mind a Computer Program?’, Scientific American, 262(1): 20–25.

    Google Scholar 

  49. Searle, J. (1992), The Rediscovery of the Mind, Cambridge, Mass.: MIT Press.

    Google Scholar 

  50. Searle, J. (1997), The Mystery of Consciousness, New York: New York Review.

    Google Scholar 

  51. Sorensen, R. (1999), ‘Mirror Notation: Symbol Manipulation without Inscription Manipulation’, Journal of Philosophical Logic, 28: 141–164.

    Article  MATH  MathSciNet  Google Scholar 

  52. Stannett, M. (1990), ‘X-machines and the Halting Problem: Building a Super-Turing Machine’, Formal Aspects of Computing, 2: 331–341.

    Article  Google Scholar 

  53. Sterelny, K. (1990), The Representational Theory of Mind, Oxford: Blackwell.

    Google Scholar 

  54. Stewart, I. (1991), ‘Deciding the Undecidable’, Nature, 352: 664–5.

    Article  Google Scholar 

  55. Thomson, J.F. (1954), ‘Tasks and Super-Tasks’, Analysis, 15: 1–13.

    Article  Google Scholar 

  56. Thomson, J.F. (1970), ‘Comments on Professor Benacerraf’s Paper’. In W.C. Salmon (ed.), Zeno’s Paradoxes, Indianapolis: Bobbs-Merrill.

    Google Scholar 

  57. Turing, A.M. (1936), ‘On Computable Numbers, with an Application to the Entscheidungsproblem’, Proceedings of the London Mathematical Society, series 2, 42 (1936-37): 230–265.

    Article  MATH  Google Scholar 

  58. Turing, A.M. (1938), ‘Systems of Logic Based on Ordinals’. Dissertation presented to the faculty of Princeton University in candidacy for the degree of Doctor of Philosophy. Published in Proceedings of the London Mathematical Society, 45 (1939): 161–228.

    Article  MATH  Google Scholar 

  59. Turing, A.M. (1950), ‘Programmers’ Handbook for Manchester Electronic Computer’, University of Manchester Computing Laboratory. A digital facsimile of the original is available in The Turing Archive for the History of Computing at http://www.AlanTuring.net/programmershandbook.

  60. Vergis, A., Steiglitz, K., Dickinson, B. (1986), ‘The Complexity of Analog Computation’, Mathematics and Computers in Simulation, 28: 91–113.

    Article  MATH  Google Scholar 

  61. Weyl, H. (1927), Philosophie der Mathematik und Naturwissenschaft, Munchen: R. Oldenbourg.

    MATH  Google Scholar 

  62. Weyl, H. (1949), Philosophy of Mathematics and Natural Science, Princeton: Princeton University Press.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Copeland, B.J. (2002). Hypercomputation in the Chinese Room. In: Unconventional Models of Computation. UMC 2002. Lecture Notes in Computer Science, vol 2509. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45833-6_2

Download citation

  • DOI: https://doi.org/10.1007/3-540-45833-6_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44311-7

  • Online ISBN: 978-3-540-45833-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics