Skip to main content

On Quantum Computation with Some Restricted Amplitudes

  • Conference paper
  • First Online:
Book cover STACS 2002 (STACS 2002)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2285))

Included in the following conference series:

  • 593 Accesses

Abstract

In this paper we explore the power of quantum computers with restricted amplitudes. Adleman, DeMarrais and Huang showed that quantum Turing machines (QTMs) with the amplitudes from A = {0,±3/5, ±4/5 ,±1} are equivalent to ones with the polynomial-time computable amplitudes as machines implementing bounded-error polynomial time algorithms. We show that QTMs with the amplitudes from A is polynomial-time equivalent to deterministic Turing machines as machines implementing exact algorithms. Extending this result, it is shown that exact computers with rational biased ‘quantum coins’ are equivalent to classical computers. We also show that from the viewpoint of zero-error algorithms A is not more useful than B = {0,± 1/√2 ,±1} but suficient for the factoring problem as the set of amplitudes taken by QTMs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

oReferences

  1. L. M. Adleman, J. DeMarrais, and M. A. Huang: Quantum computability. SIAM J. Comput. 26 (1997) 1524–1540.

    Article  MATH  MathSciNet  Google Scholar 

  2. L. Adleman and M. Huang: Recognizing primes in random polynomial time. in Proc. of 19th ACM Symposium on Theory of Computing, ACM (1987) 462–470.

    Google Scholar 

  3. A. Berthiaume and G. Brassard: Oracle quantum computing. J. Modern Opt. 41 (1994) 2521–2535.

    Article  MATH  MathSciNet  Google Scholar 

  4. A. Barenco, C. H. Bennett, R. Cleve, D. DiVicenzo, N. Margolus, P. Shor, T. Sleator, J. Smolin and H. Weinfurter: Elementary gates for quantum computation. Phys. Rev. A, 52 (1995) 3457–3467.

    Article  Google Scholar 

  5. E. Bernstein and U. Vazirani: Quantum complexity theory (Preliminary abstract). in Proc. of 25th ACM Symposium on Theory of Computing, ACM (1993) 11–20.

    Google Scholar 

  6. E. Bernstein and U. Vazirani: Quantum complexity theory. SIAM J. Comput. 26 (1997) 1411–1473.

    Article  MATH  MathSciNet  Google Scholar 

  7. G. Brassard and P. Høyer: An exact quantum polynomial-time algorithm for Simon’s problem. in Proc. of 5th Israeli Symposium on Theory of Computing and Systems, IEEE (1997) 12–23.

    Google Scholar 

  8. C. H. Bennett, E. Bernstein, G. Brassard, and U. Vazirani: Strengths and weaknesses of quantum computing. SIAM J. Comput. 26 (1997) 1510–1523.

    Article  MATH  MathSciNet  Google Scholar 

  9. D. Deutsch: Quantum theory, the Church-Turing principle and the universal quantum computer. Proc. Roy. Soc. London Ser. A, 400 (1985) 96–117.

    Google Scholar 

  10. D. Deutsch: Quantum computational networks. Proc. Roy. Soc. London Ser. A, 425 (1989) 73–90.

    Google Scholar 

  11. D. Deutsch and R. Jozsa: Rapid solution of problems by quantum computation. Proc. Roy. Soc. London Ser. A, 439 (1992) 553–558.

    Google Scholar 

  12. S. Fenner, F. Green, S. Homer and R. Pruim: Determining acceptance probability for a quantum computation is hard for PH. in Proc. 6th Italian Conference on Theoretical Computer Science, World-Scientific (1998) 241–252

    Google Scholar 

  13. L. Fortnow and J. Rogers: Complexity limitations on quantum computation. in Proc. 13th Conference on Computational Complexity, IEEE (1998) 202–209.

    Google Scholar 

  14. Ker-I. Ko and H. Friedman: Computational complexity of real functions. Theoret. Comput. Sci. 20 (1982) 323–352.

    Article  MATH  MathSciNet  Google Scholar 

  15. A. Kitaev: Quantum computations: algorithms and error correction. Russian Math. Surveys 52 (1997) 1191–1249.

    Article  MATH  MathSciNet  Google Scholar 

  16. M. A. Nielsen and I. L. Chuang: Quantum Computation and Quantum Information, Cambridge (2000).

    Google Scholar 

  17. H. Nishimura and M. Ozawa: Computational complexity of uniform quantum circuit families and quantum Turing machines. Theoret. Comput. Sci. (to appear). Also quant-ph/9906095 2.

    Google Scholar 

  18. M. Ozawa: Quantum nondemolition monitoring of universal quantum computers. Phys. Rev. Lett. 80 (1998) 631–634.

    Article  Google Scholar 

  19. M. Ozawa and H. Nishimura: Local transition functions of quantum Turing machines. RAIRO Theoret. Informatics Appl. 34 (2000) 379–402.

    Article  MATH  MathSciNet  Google Scholar 

  20. C. H. Papadimitriou: Computational Complexity, Addison-Wesley (1994).

    Google Scholar 

  21. J. Preskill: Reliable quantum computers. Proc. Roy. Soc. London ser A, 454 (1998) 385–410.

    Google Scholar 

  22. D. Simon: On the power of quantum computation. in Proc. 35th IEEE Symposium on Foundations of Computer Science, IEEE (1994) 116–123; SIAM J. Comput. 26 (1997) 1474–1483.

    Google Scholar 

  23. P. W. Shor: Algorithms for quantum computations: Discrete log and factoring. in Proc. 35th IEEE Symposium on Foundations of Computer Science, IEEE (1994) 124–134.; Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26 (1997) 1484–1509.

    Google Scholar 

  24. P. W. Shor: Fault-tolerant quantum computation. in Proc. 37th IEEE Symposium on Foundations of Computer Science, IEEE (1996) 56–65.

    Google Scholar 

  25. U. V. Vazirani and V. V. Vazirani: Random polynomial time equals semi-random polynomial time. in Proc. 26th IEEE Symposium on Foundations of Computer Science, IEEE (1985) 417–428.

    Google Scholar 

  26. K. Wagner: The complexity of combinatorial problems with succinct input representation. Acta Inf. 23 (1986) 325–361.

    Article  MATH  Google Scholar 

  27. T. Yamakami: A foundation of programming a multi-tape quantum Turing machine. in Proc. 24th International Symposium on Mathmatical Foundations of Computer Science, Lecture Notes in Comput. Sci. 1672 (1999) 430–441.

    Google Scholar 

  28. T. Yamakami and A. Yao: NQPC = co-C=P. Inform. Process. Lett. 71 (1999) 63–69.

    Article  MATH  MathSciNet  Google Scholar 

  29. A. Yao: Quantum circuit complexity. in Proc. 34th Annual IEEE Symposium on Foundations of Computer Science, IEEE (1993) 352–361.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nishimura, H. (2002). On Quantum Computation with Some Restricted Amplitudes. In: Alt, H., Ferreira, A. (eds) STACS 2002. STACS 2002. Lecture Notes in Computer Science, vol 2285. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45841-7_25

Download citation

  • DOI: https://doi.org/10.1007/3-540-45841-7_25

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43283-8

  • Online ISBN: 978-3-540-45841-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics