Abstract
High-level Message Sequence Charts are a well-established formalism to specify scenarios of communications in telecommunication protocols. In order to deal with possibly unbounded specifications, we focus on star-connected HMSCs. We relate this subclass with recognizability and MSO-definability by means of a new connection with Mazurkiewicz traces. Our main result is that we can check effectively whether a star-connected HMSC is realizable by a finite system of communicating automata with possibly unbounded channels.
Supported by the INRIA cooperative research action FISC.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alur R., Etessami K. and Yannakakis M.: Inference of message sequence charts. 22nd Intern. Conf. on Software Engineering, ACM (2000) 304–313
Alur R., Etessami K. and Yannakakis M.: Realizability and verification of MSC graphs. LNCS 2076 (2001) 797–808
Alur R. and Yannakakis M.: Model Checking of Message Sequence Charts. CONCUR’ 99, LNCS 1664(1999) 114–129
Büchi J.R.: Weak second-order arithmetic and finite automata. Z. Math. Logik Grundlagen Math. 6 (1960) 66–92
Caillaud B., Darondeau Ph., Hélouët L. and Lesventes G.: HMSCs as partial speci fications... with PNs as completions. LNCS 2067 (2001) 87–103
Diekert V. and Rozenberg G.: The Book of Traces. (World Scientific, 1995)
Hélouët L. and Le Maigat P.: Decomposition of Message Sequence Charts. Proc. SAM 2000 (Verimag, Grenoble, 2000)
Henriksen J.G., Mukund M., Narayan Kumar K. and Thiagarajan P.S.: On message sequence graphs and finitely generated regular MSC language. LNCS 1853 (2000) 675–686
Henriksen J.G., Mukund M., Narayan Kumar K. and Thiagarajan P.S.: Regular collections of message sequence charts. LNCS 1893 (2000) 405–414
Holzmann G.J.: Early Fault Detection. TACAS’96, LNCS 1055 (1996) 1–13
ITU-TS: Recommendation Z.120: Message Sequence Charts. (Geneva, 1996)
Madhusudan P.: Reasoning about Sequential and Branching Behaviours of Message Sequence Graphs. LNCS 2076 (2001) 809–820
Mayr, E.W.: Persistence of Vector Replacement Systems is Decidable. Acta Informatica 15 (1981) 309–318
Métivier Y., Richomme G. and Wacrenier P.: Computing the Closure of Sets of Words under Partial Commutations. LNCS 974 (1995) 75–86
Morin R.: On Regular Message Sequence Chart Languages and Relationships to Mazurkiewicz Trace Theory. FoSSaCS 2001, LNCS 2030 (2001) 332–346
Mukund M., Narayan Kumar K. and Sohoni M.: Synthesizing distributed finitestate systems from MSCs. LNCS 1877(2000) 521–535
Muscholl A.: Matching Specifications for Message Sequence Charts. FoSSaCS’99, LNCS 1578 (1999) 273–287
Muscholl A. and Peled D.: Message sequence graphs and decision problems on Mazurkiewicz traces. LNCS 1672 (1999) 81–91
Ochmański E.: Regular behaviour of concurrent systems. Bulletin of the EATCS 27 (Oct. 1985) 56–67
Reutenauer C.: The Mathematics of Petri Nets. (Masson, 1988)
Sakarovitch J.: The “last” decision problem for rational trace languages. LNCS 583 (1992) 460–473
Thomas W.: On logical definability of trace languages. Technical University of Munich, report TUM-I9002 (1990) 172–182
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2002 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Morin, R. (2002). Recognizable Sets of Message Sequence Charts. In: Alt, H., Ferreira, A. (eds) STACS 2002. STACS 2002. Lecture Notes in Computer Science, vol 2285. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45841-7_43
Download citation
DOI: https://doi.org/10.1007/3-540-45841-7_43
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-43283-8
Online ISBN: 978-3-540-45841-8
eBook Packages: Springer Book Archive