
This is a repository copy of Collection Principles in Dependent Type Theory.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/113157/

Version: Accepted Version

Proceedings Paper:
Azcel, P and Gambino, N orcid.org/0000-0002-4257-3590 (2002) Collection Principles in
Dependent Type Theory. In: Lecture Notes in Computer Science: TYPES 2000.
International Workshop on Types for Proofs and Programs (TYPES) 2000, 08-12 Dec
2000, Durham, UK. Springer Verlag , pp. 1-23. ISBN 3-540-43287-6

© 2002, Springer-Verlag Berlin Heidelberg. This is an author produced version of a
conference paper published in Lecture Notes in Computer Science: Types for Proofs and
Programs. Uploaded in accordance with the publisher's self-archiving policy.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Collection Principles in

Dependent Type Theory⋆

Peter Aczel1 and Nicola Gambino2

1 Departments of Mathematics and Computer Science, University of Manchester,
e-mail: petera@cs.man.ac.uk

2 Department of Computer Science, University of Manchester,
e-mail: ngambino@cs.man.ac.uk

Abstract. We introduce logic-enriched intuitionistic type theories, that
extend intuitionistic dependent type theories with primitive judgements
to express logic. By adding type theoretic rules that correspond to the
collection axiom schemes of the constructive set theory CZF we obtain
a generalisation of the type theoretic interpretation of CZF. Suitable
logic-enriched type theories allow also the study of reinterpretations of
logic. We end the paper with an application to the double-negation in-
terpretation.

Introduction

In [1] the constructive set theory CZF was given an interpretation in the depen-
dent type theory ML1V. This type theory is a version of Martin-Löf’s intuition-
istic type theory with one universe of small types, but no W -types except for the
special W -type V which is used to interpret the universe of sets of CZF. In [2]
the interpretation was extended to an interpretation of CZF+ = CZF + REA
in ML1WV. Here REA is the Regular Extension Axiom and ML1WV is ob-
tained from ML1V by adding rules to express that the universe of small types
is closed under the formation of W -types, although there are no rules for the
general formation of W -types, except for the special W -type V .

In intuitionistic type theories such as ML1V logic is usually represented
using the propositions-as-types idea. This is indeed how the intuitionistic logic of
CZF is interpreted in ML1V. The propositions-as-types interpretation of logic
plays an important role in the type theoretic interpretation of CZF. Recent work
by I. Moerdijk and E. Palmgren shows however that it is possible to interpret
CZF in predicative categorical universes in which logic is not interpreted using
the propositions-as-types idea [17, 18].

One of the aims of this paper is to show how the interpretation of CZF can
be generalised to an interpretation of CZF in a logic-enriched intuitionistic type
⋆ This paper was written while visiting the Mittag-Leffler Institute, The Royal Swedish

Academy of Sciences. Both authors wish to express their gratitude for the invitation
to visit the Institute. The first author is also grateful to his two departments for
supporting his visit. The second author is grateful to his department and to the
“Fondazione Ing. A. Gini” for supporting his visit.

theory ML(CZF), which itself has a natural interpretation back into CZF. By
a logic-enriched intuitionistic type theory we mean a pure intuitionistic type
theory like ML1V that is extended with extra judgement forms to express,
relative to a context of variable declarations, being a proposition and assertions
that one proposition follows from others.

We expect this generalisation to be fruitful. We will give just one indication of
this in the paper. We will show how a logic-enriched type theory can accomodate
the j-translation reinterpretations of logic. The idea of a j-translation is really a
folklore idea to generalise the double negation translation of classical logic into
intuitionistic logic by using any defined modal operator j to generalise the double
negation operator provided that j satisfies suitable conditions that correspond
to the conditions for a Lawvere-Tierney topology in an elementary topos or for
a nucleus on a frame. In general only intuitionistic logic gets reinterpreted. See
[5] for a recent treatment.

In order to carry through our interpretation of CZF in a logic-enriched type
theory it will be necessary to include two rules in the type theory corresponding
to the two collection schemes of CZF, Strong Collection and Subset Collection.
In the original type theoretic interpretation these new type theoretic rules, called
Collection rules, were not needed as they are both consequences of the type
theoretic axiom of choice that holds in the propositions-as-types interpretation
of logic. Fortunately we will see that the type theoretic Collection rules are
preserved in a j-translation, although an extra condition on j is required to show
that the rule corresponding to Subset Collection is preserved. A set theoretical
counterpart of this condition was used in [10] to develop frame-valued semantics
for CZF.

We have discussed the issue of translating CZF into an intuitionistic type
theory. It is also natural to consider translations in the opposite direction. For
example we may interpret types as sets and objects of a type as elements of
the corresponding set. Then to each type forming operation there is the natural
set forming operation that corresponds to it. For example corresponding to the
Σ and Π forms of type are their set theoretical versions. In this way we get a
conceptually very simple set theoretical interpretation of the type theory ML,
which has no universes orW -types, in CZF, and this extends to an interpretation
of MLW in CZF+ and MLW1 in an extension CZF+u of CZF+ expressing
the existence of a universe in the sense of [19]. Here MLW is ML with W -types
and MLW1 is its extension with a universe of small types reflecting all the forms
of type of MLW. The syntactic details of this kind of translation can be found
in [4].

A weakness of these types-as-sets interpretations, when linked with the re-
verse sets-as-trees interpretations, is that there seems to be a mismatch between
the set theories and the type theories. So although we get a translation of CZF
into ML1V we only seem to get a translation of ML into CZF and to translate
ML1V into a constructive set theory using types-as-sets we seem to need to go
to the set theory CZF+u, which is much stronger than CZF. This mismatch is
overcome in [4] by having axioms for an infinite hierarchy of universes on both

2

the type theory side and the set theory side. This allows for the two sides to
catch up with each other.

This brings us to the second main aim of this paper, which is to present
another approach to resolving the mismatch problem by replacing the types-as-
sets approach by a types-as-classes approach to interpreting type theories in set
theories. To carry this approach through it is necessary to restrict the formation
of Π-types. This is because in set theory we may only form the class Πx∈ABx,
where A is a class and Bx is a class for each x ∈ A, when the class A is a set.
The corresponding restriction in type theory is to require that (Πx : A)B(x) be
allowed as a type only when B is a family of types indexed by a small type A.
When W -types are also wanted then again it is necessary to put a restriction
on their formation. This time the restriction is to only allow the formation of a
type (Wx : A)B(x) when each type B(x) is small, although the type A need not
be small.

With these restrictions we are led to consider a pure type theory ML−

1
+ W−

and a logic-enriched extension ML(CZF) and give a types-as-classes interpreta-
tion of ML(CZF) in CZF. With the reverse sets-as-trees interpretation of CZF
in ML(CZF) we get a match between a type theory and CZF.

Remark. Due to space constraints, unfortunately this paper does not contain any
proofs. Most of the type theoretic rules are also omitted. We hope to present
in a future occasion a full version of the paper, including detailed proofs and a
complete list of type theoretic rules. A draft of the full version is available from
the authors’ web pages.

Plan of the paper. Section 1 recalls pure type theories and introduces logic-
enriched type theories. Section 2 is devoted to the propositions-as-types in-
terpretation of logic-enriched type theories into pure type theories. Section 3
contains the types-as-classes interpretation of logic-enriched type theories into
CZF. Section 4 presents the Collection rules and their proposition-as-types and
types-as-classes interpretation. Section 5 develops a generalised type theoretic
interpretation of CZF into ML(CZF). Section 6 discusses j-translation reinter-
pretations of logic in logic-enriched type theories.

Acknowledgements. We wish to thank Helmut Schwichtenberg for helpful sug-
gestions. The first author wishes to thank Christopher Nix for pointing out some
inaccuracies in a preliminary version of the paper. The second author wishes to
thank Steve Awodey, Andrej Bauer, Maria Emilia Maietti, Giovanni Sambin and
Alex Simpson for useful discussions.

1 Logic-Enriched Type Theories

1.1 Standard Pure Type Theories

A standard pure type theory has the forms of judgement (Γ) B where Γ
is a context consisting of a list of declarations x1 : A1, . . . , xn : An of distinct

3

variables x1, . . . , xn, and B has one of the forms

A : type ,

A = A′ : type ,

a : A ,

a = a′ : A .

For the context Γ to be well-formed it is required that

() A1 : type ,
(x1 : A1) A2 : type ,

.
(x1 : A1, . . . , xn−1 : An−1) An : type .

The well-formedness of each of these forms of judgement has other presuppo-
sitions. Thus, in a well-formed context Γ , the judgement A = A′ : type presup-
poses that A : type and A′ : type, the judgement a : A presupposes that A : type,
and the judgement a = a′ : A presupposes that a : A and a′ : A. In the rest of
the paper we will prefer to leave out the empty context whenever possible. So
() A1 : type, as above, will be written just A1 : type.

Any standard type theory will have certain general rules for deriving well-
formed judgements, each instance of a rule having the form

J1 · · · Jk

J

where J1, . . . , Jk, J are all judgements. In stating a rule of a standard type
theory it is very convenient to suppress mention of a context that is common to
both the premisses and the conclusion of the rule. For example we will write the
reflexivity rule for type equality as just

A : type

A = A : type .

But in applying this rule we are allowed to infer (Γ) A = A : type from (Γ) A :
type for any well-formed context Γ .

It will be convenient in stating certain results to add the following additional
form of judgement to a standard type theory

(Γ) B1, . . . , Bm ⇛ B

where (Γ) Bi : type for i = 1, . . . ,m and (Γ) B : type are well-formed judge-
ments. The only rule involving this form of judgement is

(y1 : B1, . . . , ym : Bm) b : B

B1, . . . , Bm ⇛ B .

As there are no other rules involving the new judgement form this extension of
a standard type theory is conservative.

4

1.2 Review of Some Pure Type Theories

We will use ML to stand for a variant of Martin-Löf’s type theory without
universes or W -types. We prefer to avoid having any identity types. Also, rather
than have finite types Nk for all k = 0, 1, . . . we will just have them for k = 0, 1, 2
and use the notation 0,1,2 for them. As usual we define binary product and
function types as follows:

A1 ×A2
def
= (Σ : A1)A2 ,

A1 → A2
def
= (Π : A1)A2 ,

where the symbol indicates an anonymous bound variable. Finally we do not
take binary sums as primitive but define them. To do so we will allow dependent
types to be defined by cases on 2; i.e. given A1, A2 : type we allow the formation
of R2(A1, A2, c) : type whenever c : 2 so that for i = 1, 2,

R2(A1, A2, i) = Ai : type,

where 1, 2 : 2 are the canonical elements of 2. Using R2 we define, for types
A1, A2,

A1 +A2
def
= (Σz : 2)R2(A1, A2, z) .

So the primitive forms of type of ML are

0,1,2,N ,R2(A1, A2, e), (Σx : A)B, (Πx : A)B .

The type theory ML1 is the pure standard theory obtained from ML by
adding a type universe U of small types, or rather of representatives for small
types as we will use the universe, à la Tarski, where for each a : U , T(a) is the
small type represented by a. The rules for U express that U reflects all the forms
of type of ML.

The type theory MLW is obtained from ML by adding rules for the W -types
(Wx : A)B and MLW1 is like ML1 except that the rules for the W -types are
added and the type universe U also reflects the W -types1. There are two natural
subtheories of MLW1. The first one2, ML1 + W, has W -types but they are not
reflected in U . The second one, ML1W, only has small W -types.

The pure type theory ML1 + W is a stronger theory than the set theory
CZF. By replacing theΠ andW forms of type by restricted versions we will get a
pure type theory ML−

1
+ W− which will have a straightforward translation into

CZF in which types are interpreted as classes of CZF and terms are interpreted
as sets of CZF. This interpretation is to be discussed in sec. 3. In MLW1 we

1 In the literature essentially this theory has been written ML1W. But this seems a
bit misleading as it might suggest that the universe does not reflect the W -types.

2 It would be natural to name this type theory ML1W, but this is in conflict with
the notation of the literature.

5

can define the following restricted versions of the Π and W forms of type. For
a : U and (x : T(a)) B : type let

(Π−x : a)B
def
= (Πx : T(a))B ,

and for A : type and (x : A) b : U let

(W−x : A)b
def
= (Wx : A)T(b) .

The type theory ML−

1
+ W− does not have the Π and W forms of type but

instead has rules for Π− and W− as primitive type forming operators. Note that
the type universe U still reflects the Π− forms of type, but does not reflect the
W− forms.

It seems necessary to add extra elimination rules for the type 2 and the W−

forms of type. In the case of 2 this is so as to be able to derive the elimination
rules for the defined binary sums, A1 +A2. In the case of the W− forms of type
we will need double recursion on W−-types when we come to define extensional
equality on the W−-type V, to be defined in sec. 5. In both cases the Π−-types
do not seem to be enough to get what we want, although Π-types are enough.
We can no longer define function types A1 → A2 for types A1, A2. Instead we
define a→ A′ for a : U and A′ : type as follows:

a→ A′ def
= (Π− : a)A′ .

1.3 Adding Predicate Logic

Given a standard pure type theory we may consider enriching it with the follow-
ing two additional forms of judgement, (Γ) B , where Γ should be a well-formed
context as before and B has one of the following forms:

φ : prop ,

φ1, . . . , φm ⇒ φ .

In the context Γ the well-formedness of φ1, . . . , φm ⇒ φ presupposes that
φi : prop for i = 1, . . . ,m and φ : prop. Using these new judgement forms it
is straightforward to add the standard formation and inference rules for the in-
tuitionistic logical constants; i.e. the canonical true and false propositions ⊤,⊥,
the binary connectives ∧,∨,⊃ and the quantifiers (∀x : A), (∃x : A) for each
type A. As an example, in Table 1 we give formation and inference rules for
disjunction and existential quantification.

As always, in the statement of formation rules we suppress a context that
is common to the premisses and conclusion. In the inference rules we will also
suppress a list of assumptions appearing on the left hand side of ⇒ in the logical
premisses and conclusion of each inference rule. Moreover we will write (Γ) φ
rather than (Γ) ⇒ φ and just φ rather than the judgement ⇒ φ.

Given a standard pure type theory T let T + IL be the theory obtained from
T by enriching it with intuitionistic logic as just described. Each type determines

6

Table 1. Formation and inference rules for disjunction and existential quantification.

φ1 : prop φ2 : prop

φ1 ∨ φ2 : prop

A : type (x : A) φ : prop

(∃x : A) φ : prop

φ1 : prop φ2 : prop φi

(i = 1, 2)
φ1 ∨ φ2

φ1 ∨ φ2 φ1 ⇒ θ φ2 ⇒ θ

θ

a : A (x : A) φ : prop φ[a/x]

(∃x : A)φ

(∃x : A)φ θ : prop (x : A) φ ⇒ θ

θ

the proposition that there is an object of that type; i.e. we can associate with

each type expression A of T, the formula !A
def
= (∃ : A)⊤ of T + IL.

The proof of the direction from left to right in the following result involves
simple applications of the inference rules for ⊤ and ∃. The result in the other
direction is an ‘Explicit Definability’ result that generalises the Explicit De-
finability for Numbers result for Heyting Arithmetic. The proof for Heyting
Arithmetic, as given in 5.10 of Chapter 3 of [21], carries over here.

Proposition 1. For any standard pure type theory T, if T ⊢ (Γ) Bi : type for
i = 1, . . . ,m, and T ⊢ (Γ) B : type then

T ⊢ (Γ) B1, . . . , Bm ⇛ B iff T + IL ⊢ (Γ) !B1, . . . , !Bm ⇒!B .

1.4 Induction Rules

It is natural to extend a standard logic-enriched type theory with additional
non-logical rules to express properties of the various forms of type. For example
it is natural to add a rule for mathematical induction to the rules concerning
the type of natural numbers and there are similar rules for the other inductive
forms of type.

So, for each inductive type C : type of MLW + IL, if (z : C)φ : prop and
e : C we have the induction rule

Premisses

φ[e/z] ,

where the inductive types C and the correspondence between the form of C and
the premisses is given in Table 2.

7

Table 2. The Inductive types of MLW and the premisses of their induction rules.

C Premisses

0 None ,

1 φ[0/z] ,

2 φ[1/z] , φ[2/z] ,

N φ[0/z] , (x : N) φ[x/z] ⇒ φ[succ(x)/z] ,

(Σx : A)B (x : A, y : B) φ[pair(x, y)/z]

(Wx : A)B (x : A, u : B → C) (∀y : B)φ[app(u, y)/z] ⇒ φ[sup(x, u)/z] .

2 Propositions-as-Types

2.1 Propositions-as-Types Interpretation for ML and MLW

We present the familiar propositions-as-types translation, here abbreviated PaT
translation, of ML + IL into ML. The PaT translation has no effect on the
pure ML part but, relative to any context, associates with each φ : prop a type
Pr(φ) : type, so that for each derivation of a judgement (Γ) φ1, . . . , φm ⇒ φ
in ML + IL there is a derivation in ML of (Γ) Pr(φ1), . . . , P r(φm) ⇛ Pr(φ).
The PaT translation is defined as follows:

Pr(⊥)
def
= 0

Pr(⊤)
def
= 1

Pr(φ1 ∧ φ2)
def
= Pr(φ1) × Pr(φ2)

Pr(φ1 ∨ φ2)
def
= Pr(φ1) + Pr(φ2)

Pr(φ1 ⊃ φ2)
def
= Pr(φ1) → Pr(φ2)

Pr((∀x : A)φ0)
def
= (Πx : A)Pr(φ0)

Pr((∃x : A)φ0)
def
= (Σx : A)Pr(φ0)

We will need the following rule (PaT) to state our main result below about the
propositions-as-types interpretation

φ : prop

φ ≡ !Pr(φ)
(PaT)

where, for φ, ψ : prop, we define φ ≡ ψ
def
= (φ ⊃ ψ)∧ (ψ ⊃ φ). Recall the familiar

fact that the type theoretic axiom of choice holds in the propositions-as-types
interpretation. We express this version of the axiom of choice as the rule:

A : type (x : A) B : type (x : A, y : B)φ : prop

(∀x : A)(∃y : B)φ ⇒ (∃z : C)(∀x : A)φ[app(z, x)/y]
(AC)

8

where C is (Πx : A)B
In order to state our result we assume that T is any standard pure theory

that includes ML. For each raw judgement J of T + IL let JPaT be the raw
judgement of T that is just J except when J has either the form (Γ) φ : prop

or (Γ) φ1, . . . , φm ⇒ φ and then JPaT has the form (Γ) Pr(φ) : type or
(Γ) Pr(φ1), . . . , P r(φm) ⇛ Pr(φ) respectively. For the next result we need
the rule (0⊥).

a : 0

⊥
(0⊥)

Note that, given our abbreviatory conventions, the rule (0⊥) allows us to infer
(Γ)φ1, . . . , φn ⇒ ⊥ from (Γ) a : 0 and (Γ)φi : prop for i = 1, . . . , n.

Theorem 2. Let T be as above. Then

1. T + IL + (PaT) ⊢ J implies T ⊢ JPaT .
2. In T + IL, the rule (PaT) is equivalent to the combination of rules (AC)

and (0⊥).

The main work in proving part 1 is first to show how each logical inference
rule translates into a derived rule of ML following the well-known propositions-
as-types idea and second to observe that the instances of (PaT) translate into
instances of the following derived rule

A : type

A↔ 1×A

where, for types A,B, A↔ B
def
= (A→ B)×(B → A). Provided that T does not

have any additional rules for forming the types of ML the converse implication
to part 1 holds. For part 2, the rule (PaT) can be used to prove (AC) as in
Martin-Löf’s original proof of the type theoretic axiom of choice in his type
theory and the rule (0⊥) is derived using the instance of (PaT) when φ is ⊥.
For the other direction of part 2, (PaT) is proved by induction on the formation
of the formula φ. The rule (0⊥) is needed to deal with ⊥ and (AC) is needed to
deal with the implication and universal quantification cases.

Theorem 3. The induction rules for the inductive types of ML or MLW can
be derived in ML + IL + (PaT) or MLW + IL + (PaT), respectively.

This result expresses the familiar observation that each instance of the induction
rule for an inductive type comes from an instance of the elimination rule for that
type when treating propositions as types.

2.2 A Proposition Universe and its PaT translation

When adding logic to a standard pure type theory T that includes ML1 it is
natural to also add a proposition universe P to match the type universe U . The
formation rule for this type is

P : type .

9

Elements of this type are to be thought of as representatives for propositions
whose quantifiers range over small types. Introduction rules for P are straight-
forward. Each object a : P represents a proposition τ(a) : prop. The elimination
rule for the type P is the following:

a : P

τ(a) : prop .

For the type P, it seems convenient to avoid the use of an equality form of
judgement for propositions in order to express that P reflects logic. Instead we
use logical equivalence. As examples of these rules, in Table 3 we give rules for
disjunction and existential quantification.

Table 3. Disjunction and existential quantification in the proposition universe.

p1 : P p2 : P

p1∨̇ p2 : P

a : U (x : τ(a)) p : P

(∃̇x : a)p : P

p1 : P p2 : P

τ(p1∨̇ p2) ≡ τ(p1) ∨ τ(p2)

a : U (x : τ(a)) p : P

τ(∃̇x : a)p ≡ (∃x : τ(a))τ(p)

When the pure type theory T includes ML1 then we write T + IL1 for the
enrichment of T with intuitionistic predicate logic and also the rules for P, as
illustrated in Table 3. We now wish to give a translation of T + IL1 into T + IL
by interpreting P as U following the propositions-as-types idea. Each new symbol
of T + IL1 that was added to T + IL is reinterpreted as a primitive or defined
symbol of T + IL according to the following correspondence:

P τ ⊥̇ ⊤̇ ∧̇ ∨̇ ⊃̇ ∀̇ ∃̇

U τ∗ 0̇ 1̇ ×̇ +̇ →̇ Π̇ Σ̇

where the symbols τ∗, ×̇, +̇, →̇ are defined in T + IL as follows:

(x : U) τ∗(x)
def
= !T(x) : prop ,

(x1, x2 : U) x1×̇x2
def
= (Σ̇ : x1)x2 : U ,

(x1, x2 : U) x1+̇x2
def
= (Σ̇z : 2̇)R2(x1, x2, z) : U ,

(x1, x2 : U) x1→̇x2
def
= (Π̇ : x1)x2 : U .

For each expression M of T + IL1 let us write M∗ for the result of this reinter-
pretation of the symbols occuring in M . For each raw judgement J of T + IL1

let J∗ be the raw judgement of T + IL obtained by this reinterpretation of the
symbols in J .

10

The PaT translation of T + IL into T extends to a translation of T + IL1

into T if we define

Pr(τ(a))
def
= T(a∗)

for each raw term a of T + IL1. To state our next result we need the rule (P∗).

a : P

τ(a) ≡ τ∗(a∗) .
(P∗)

Note that the instances of this rule are given by the instances of (PaT) where
φ has the form τ(a) for a : P.

Theorem 4. Let T be any standard pure type theory that includes ML1 and let
J be any raw judgement of T + IL1. Then

1. T + IL1 + (P∗) ⊢ J implies T + IL ⊢ J∗.
2. T + IL1 + (PaT) ⊢ J implies T + IL + (PaT) ⊢ J∗ .
3. In T + IL1 the rule (PaT) is equivalent to the combination of rules (AC)+

(P∗).

Combining the first part of theorem 2 with the second part of theorem 4 we get
the following result.

Corollary 5. Let T be a standard pure type theory that includes ML1. Then
T + IL1 + (PaT) ⊢ J implies T ⊢ (J)(PaT1), where J (PaT1) is defined to be
the judgement (J∗)(PaT).

3 Types-as-Classes

In setting up our standard type theories for the purpose of giving a translation
into a set theory it will be convenient to have a raw syntax that categorizes each
expression into one of the three categories of

– individual expression (i.e. term),
– type expression,
– proposition expression (i.e. formula).

These raw expressions need not be well-formed expressions of the type theory.
In fact it is exactly the three judgement forms

– (Γ) a : A ,
– (Γ) A : type ,
– (Γ) φ : prop ,

that we use to express that, in the context Γ ,

– a is a well-formed term of type A,
– A is a well-formed type,

11

– φ is a well-formed formula.

It will be convenient to call the terms, type expressions and formulae the
0-expressions, 1-expressions and 2-expressions respectively. The raw expressions
will be built up from an unlimited supply of individual variables and a signature
of constant symbols according to the rules given below. We assume that each
constant symbol of the signature has been assigned an arity (nǫ1

1 · · ·nǫk

k)ǫ where
k ≥ 0, n1, . . . , nk ≥ 0 and each of ǫ, ǫ1, . . . , ǫk is one of 0, 1, 2. A symbol of such
an arity is k-place. The rules for forming raw expressions of the three kinds are
as follows.

1. Every variable is a 0-expression.
2. If κ is a constant symbol of arity (nǫ1

1 · · ·nǫk

k)ǫ and, for i = 1, . . . , k, Mi is
an ǫi-expression and ~xi is a list of ni distinct variables then

κ((~x1)M1, . . . , (~xk)Mk)

is an ǫ-expression.

Some conventions. When k = 0 then we just write κ rather than κ(). Also, if
some ni = 0 then we write just Mi rather than ()Mi.

Free and bound occurrences. These are defined in the standard way when the
(~xi) are treated as variable binding operations, so that free occurrences in Mi

of variables from the list ~xi become bound in (~xi)Mi and so also bound in the
whole expression κ((~x1)M1, . . . , (~xk)Mk).

Substitution. The result M [M1, . . . ,Mk/y1, . . . , yk] of simultaneously substi-
tuting Mi for free occurrences of yi in M for i = 1, . . . , k, where y1, . . . , yk

are distinct variables, is defined in the standard way, relabelling bound vari-
ables as usual so as to avoid variable clashes. This is only uniquely specified up
to α-convertibility; i.e. up to suitable relabelling of bound variables. In general
expressions will be identified up to α-convertibility.

3.1 The Symbols for the Raw Syntax of ML(CZF)

We will eventually be interested in a standard type theory ML(CZF) which will
be obtained from ML−

1
+ W− + IL1 by adding some additional rules including

the induction rules for its inductive types, but without adding to its raw syntax.
We now present the symbols of ML−

1
+ W− + IL1, together with their ari-

ties. In an arity a missing superscript will be taken to be 0 by default.

0-place symbols
– 01, 1, 2, 0, 0̇, 1̇, 2̇, Ṅ , ⊥̇, ⊤̇ of arity (),
– 0,1,2,N ,U ,P of arity ()1 and ⊥,⊤ of arity ()2.

1-place symbols
– succ, R0 of arity (0), T of arity (0)1 and τ of arity (0)2.

12

2-place symbols

– R1, pair, app, sup, ∧̇, ∨̇, ⊃̇ of arity (00) snd λ, Σ̇, Π̇, ∀̇, ∃̇ of arity (01),
– split of arity (20) and RW− of arity (30),
– Σ,Π−,W− of arities (0111)1, (011)1, (011)1 respectively and ∨,∧,⊃ of

arity (0202)2,
– ∀,∃ of arity (0112)2.

3-place symbols

– R2, RN ,R
+
W−

,R2 of arities (000), (030), (500), (01010)1 respectively.

4-place symbols

– R
+
2 of arity (1100).

Special Conventions. If ⋆ is one of the 2-place symbols ∨,∧,⊃, ∧̇, ∨̇, ⊃̇ then we
use infix notation and write (M1 ⋆ M2) rather than ⋆(M1,M2) and if ∇ is any
one of λ,Σ,Π−,W−,∀,∃, Σ̇, Π̇, ∀̇, ∃̇ then we use quantifier notation and write
(∇x : M)M ′ rather than ∇(M, (x)M ′)

3.2 The Set Theoretical Interpretation of Raw Syntax

In the rest of sec. 3 we will work informally in CZF. By a set theoretical
sentence we mean a sentence in the language of CZF that may have sets as
parameters. By a variable assignment, ξ, we mean an assignment of a set ξ(x)
to each variable x. The following terminology will be useful. We define a 0-class
to be a set, a 1-class to be a class and a 2-class to be a set theoretical sentence.
Also, for n ≥ 0 and ǫ = 0, 1, 2, an nǫ-class is a definable operator F assigning an
ǫ-class F (a1, . . . , an) to each n-tuple (a1, . . . , an) of sets.

Given a signature as above for determining a raw syntax for a type theory
we will want to give a set theoretical denotation [[M]]ξ to each expression M
and each variable assignment ξ, so that for each term a its denotation, [[a]]ξ,
should be a set, for each type expression A its denotation, [[A]]ξ, should be a
class and, for each proposition expression φ, its denotation [[φ]]ξ, should be a
set theoretical sentence. We will use structural induction on the way expressions
are built up. To do this we will need to have a set theoretical interpretation Fκ

for each symbol κ of the signature. Each Fκ has to be a suitable operator so
that the second clause of the following definition by structural induction makes
sense.

1. [[M]]ξ = ξ(x) if M is a variable x.
2. [[M]]ξ = Fκ(F1, . . . , Fk) if M is the expression κ((~x1)M1, . . . , (~xk)Mk)

where κ is a constant symbol of the signature of arity (nǫ1
1 · · ·nǫk

k)ǫ and,
for i = 1, . . . , k, Fi is the nǫi

i -class such that Fi(~ai) = [[Mi]]ξ(~ai/~xi) for all
ni-tuples ~ai of sets.

When κ has arity (nǫ1
1 · · ·nǫk

k)ǫ we will require that Fκ is a set operator of
that arity. This means that whenever Fi is an nǫi

i -class, for i = 1, . . . , k then
Fκ(F1, . . . , Fk) should be an ǫ-class obtained ‘uniformly’ from F1, . . . , Fk.

13

3.3 Soundness

Given a set theoretical interpretation as above of the symbols of a signature that
determines a set theoretical denotation [[M]]ξ to each expression M relative to
a variable assignment ξ we can define the following semantic notions.

Definition 6. – If Γ is x1 : A1, . . . , xn : An then let
ξ |= Γ iff ξ(xi) ∈ [[Ai]]ξ for i = 1, . . . , n .

– Let ξ |= A : type for any type expression A.
– Let ξ |= A = A′ : type iff [[A]]ξ = [[A′]]ξ.
– Let ξ |= a : A : type iff [[a]]ξ ∈ [[A]]ξ.
– Let ξ |= a = a′ : A : type iff [[a]]ξ = [[a′]]ξ ∈ [[A]]ξ.
– Let ξ |= φ : prop for any formula φ.
– Let ξ |= φ1 . . . , φm ⇒ φ if [[φ1]]ξ ∧ · · · ∧ [[φm]]ξ ⊃ [[φ]]ξ is a set theoretical

sentence that is true (in CZF).

Definition 7. The raw judgement (Γ)B is valid if ξ |= Γ implies ξ |= B
for every variable assignment ξ. A type theory rule is sound if whenever the
premisses of an instance of the rule are valid then so is the conclusion.

Along the lines of section 2.4 of [4] we can get the following result.

Theorem 8 (CZF). There is an interpretation of the raw syntax of the type
theory ML−

1
+ W− + IL1 in CZF so that each rule of inference of the type

theory T is sound, where T is obtained from ML−

1
+ W− + IL1 by adding the

induction rules for its inductive types.

The interpretation given by this theorem can be rephrased as a syntactic trans-
lation into CZF.

Corollary 9. There is a syntactic translation that assigns a sentence “J is
valid” of CZF to each raw judgement J of the theory T of the theorem such
that T ⊢ J implies CZF ⊢ “J is valid”.

4 Collection Principles

The original type theoretic interpretation of CZF in ML1V rests on two main
components. The first component is the definition of a type V , called the type of
constructive iterative sets, that is used to interpret the universe of sets of CZF.
The second component is the propositions-as-types interpretation of logic. This
interpretation of logic plays a role in proving the validity of the Restricted Sepa-
ration, Strong Collection and Subset Collection axiom schemes of CZF. Validity
of the Restricted Separation axiom scheme follows from the correspondence be-
tween restricted propositions and small types. Validity of the Strong Collection
and Subset Collection axiom schemes follows instead from the type theoretic
axiom of choice, that holds in the propositions-as-types interpretation of logic.

In the following we will present a type theoretic interpretation of CZF in
a logic-enriched type theory that generalises the original type theoretic inter-
pretation. The generalisation involves treating logic as primitive and not via

14

the propositions-as-types interpretation. In order to do so, we will introduce a
logic-enriched type theory called ML(CZF). The type theory ML(CZF) ex-
tends the logic-enriched type theory T, of Theorem 8, with two collection rules,
corresponding to the collection axiom schemes of CZF. Within the type theory
ML(CZF) we define a type V, called the type of iterative small classes, that
will be used to interpret the universe of sets of CZF. The definition of V allows
us to prove the validity of the Restricted Separation axiom scheme without as-
suming the propositions-as-types interpretation of logic. The collection rules of
ML(CZF) allow us to prove the validity of the Strong Collection and Subset
Collection axiom schemes of CZF without assuming the type theoretic axiom
of choice.

4.1 The Type of Subsets of a Type

Let us now introduce the type of subsets of a type and define some operations
on this type that will be useful in the following. For A : type we define the type
of subsets of A, Sub(A), as follows:

Sub(A)
def
= (Σx : U)

(

(x→ P) × (x→ A)
)

.

For a : Sub(A) we define

ėl(a)
def
= a.1 : U ,

el(a)
def
= T(ėl(a)) : type ,

and for x : el(a) we define

dȯm(a, x)
def
= app(a.2.1, x) : P ,

dom(a, x)
def
= τ(dȯm(a, x)) : prop ,

val(a, x)
def
= app(a.2.2, x) : A .

Using these definitions, we can informally think of a : Sub(A) as the ‘set’ of all
objects val(a, x) : A with x : el(a) such that dom(a, x). If (x : A) p : P we define

(∀̇x ∈ a) p
def
= (∀̇x : ėl(a)) dȯm(a, x) ⊃̇ p[val(a, x)/x] : P ,

(∃̇x ∈ a) p
def
= (∃̇x : ėl(a)) dȯm(a, x) ∧̇ p[val(a, x)/x] : P .

If (x : A) φ : prop we define

(∀x ∈ a) φ
def
= (∀x : el(a)) dom(a, x) ⊃ φ[val(a, x)/x] : prop ,

(∃x ∈ a) φ
def
= (∃x : el(a)) dom(a, x) ∧ φ[val(a, x)/x] : prop .

15

4.2 The Collection Rules of ML(CZF)

Type theoretic rules corresponding to the collection axiom schemes of CZF will
now be introduced. The Strong Collection rule corresponds to the Strong Col-
lection axiom scheme and the Subset Collection rule corresponds to the Subset
Collection axiom scheme. We will refer to these two rules as Collection rules.

In order to present these rules as simply as possible, let us introduce some
definitions. For A,B : type, a : Sub(A), b : Sub(B) and (x : A, y : B)φ : prop we
define:

coll(a, b, (x, y)φ)
def
= (∀x ∈ a) (∃y ∈ b)φ ∧ (∀y ∈ b) (∃x ∈ a)φ : prop .

Strong Collection Rule.

A,B : type a : Sub(A) (x : A, y : B) φ : prop

(∀x ∈ a) (∃y : B)φ⇒ (∃v : Sub(B)) coll(a, v, (x, y)φ)

Subset Collection Rule.

A,B,C : type a : Sub(A) b : Sub(B) (x : A, y : B, z : C)ψ : prop

(∃u : Sub(Sub(B)))(∀z : C)
(

(∀x ∈ a) (∃y ∈ b)ψ ⊃ (∃v ∈ u)coll(a, v, (x, y)ψ)
)

We define the type theory ML(CZF) as the extension of the type theory
ML−

1
+ W− + IL1, obtained by adding the induction rules for its inductive

types and the Strong Collection and the Subset Collection rules. Recall that
CZF− is the subsystem of CZF obtained from CZF by leaving out the Sub-
set Collection axiom scheme [3, 6]. We define ML(CZF−) as the type theory
obtained from ML(CZF) by leaving out the Subset Collection rule.

4.3 The Types-as-Classes Interpretation of the Collection Rules

We now work informally in CZF. To interpret the operation Sub on types we
introduce the corresponding operation Sub on classes, where for each class A we
let

Sub(A)
def
= ΣI∈V (Pow(1)I ×AI) .

If b = (I, (f, g)) ∈ Sub(A) then let

set(b)
def
= {g(i) | i ∈ I ∧ 0 ∈ f(i)} ∈ Sub(A) .

Conversely, if a ∈ Pow(A) then let

sub(a)
def
= (a, ((λ ∈ a)1, (λx ∈ a)x)) ∈ Sub(A) .

Then set(sub(a)) = a for all a ∈ Pow(A). Recall that, for sets a, b and any set
theoretical formula ψ in the two variables x, y we define

coll(a, b, (x, y)ψ)
def
= (∀x ∈ a)(∃y ∈ b)ψ ∧ (∀y ∈ b)(∃x ∈ a)ψ .

16

Theorem 10. There is an interpretation of the raw syntax of ML(CZF) in
CZF so that each rule of inference is sound.

Corollary 11. There is a syntactic translation that assigns a sentence “J is
valid” of CZF to each raw judgement J of ML(CZF) such that ML(CZF) ⊢ J
implies CZF ⊢ “ J is valid”.

4.4 Propositions-as-Types Interpretation of the Collection Rules

The (AC) rule cannot be fully formulated when we only have the restricted Π
types, as in ML(CZF). So we need the weakening (AC−) in order to state the
next result.

a : U (x : T(a)) B : type (x : T(a), y : B) φ : prop

(∀x : T(a))(∃y : B)φ ⇒ (∃z : C)(∀x : T(a))φ[app(z, x)/y]
(AC−)

where C is (Π−x : a)B.

Theorem 12. Let T be any standard pure type theory that includes ML−

1
.

Then the Strong Collection and Subset Collection rules are derived rules of
T + IL1 + (AC−) + (P∗) and so they have a PaT1 translation into any standard
pure type theory that includes both T and ML1, where the PaT1 translation was
defined in Corollary 5.

Corollary 13. The type theory ML(CZF) has a PaT1 translation into the type
theory ML1 + W−.

5 A Generalised Type Theoretic Interpretation

In this section we work informally within the type theory ML(CZF). Our aim
is to define an interpretation of CZF. In order to do so, we define the type V of
iterative small classes as follows:

V
def
=

(

W−y : (Σx : U)(x→ P)
)

y.1 .

A canonical iterative small class consists of a small type, a small predicate on the
type and a function from the small type to V. A canonical iterative small class
sup(pair(a, p), f) can be thought of as the ‘set’ of all f(x) : V with x : T(a) such
that p(x). By recursion on V and on Sub(V) we can define (x : Sub(V)) set(x) : V
and (y : V) sub(y) : Sub(V) such that, for a : U , b : a→ P, c : a→ V

set(pair(a, pair(b, c))) = sup(pair(a, b), c) : V ,

sub(sup(pair(a, b), c) = pair(a, pair(b, c)) : Sub(V) .

Given these definitions, the introduction rule for the type V can be derived from
the following rule:

d : Sub(V)

set(d) : V

17

For (x : V) φ : prop and (y : Sub(V)) ψ : prop the judgements

(∇x : V)φ ≡ (∇y : Sub(V))φ[set(y)/x] ,

where ∇ is either ∀ or ∃, are derivable. For x : V, (y : V) p : P, and (y : V)φ : prop

we define

(∇y ∈ x) p
def
= (∀̇y ∈ sub(x))p : P

(∇y ∈ x)φ
def
= (∀y ∈ sub(x))φ : prop

where ∇ is ∀ or ∃. By double recursion on V it is possible to define (x, y :

V) x ≈̇ y : P such that if we let x ≈ y
def
= τ(x ≈̇ y) then the judgement

x ≈ x′ ≡ ∀y ∈ x∃y′ ∈ x′ (y ≈ y′) ∧ ∀y′ ∈ x′ ∃y ∈ x (y ≈ y′)

is derivable. We now define the generalized type theoretic interpretation of CZF.
We assume that CZF is formulated in a language with equality, with primitive
restricted quantifiers but no membership relation. Membership can easily be
defined using equality and existential quantification. In the following, we assume
that the symbols for variables for sets of CZF coincide with the symbols for
variables of type V. We now define two interpretations. A first interpretation,
indicated with J·K, applies to arbitrary formulas, and another interpretation,
indicated with L·M, applies only to restricted formulas. Both interpretations are
defined in table 4, where ⋆ is ∧, ∨ or ⊃, and ∇ is ∀ or ∃.

Table 4. Interpretation of the language of CZF.

Jx = yK
def
= x ≈ y Lx = yM

def
= x ≈̇ y ,

Jφ1 ⋆ φ2K
def
= Jφ1K ⋆ Jφ2K , Lφ1 ⋆ φ2M

def
= Lφ1M ⋆̇ Lφ2M ,

J(∇x ∈ y) φ0K
def
= (∇x ∈ y) Jφ0K , L(∇x ∈ y) φ0M

def
= (∇̇x ∈ y) Lφ0M ,

J(∇x) φ0K
def
= (∇x : V) Jφ0K,

Lemma 14. If φ1 and φ2 are formulas of the language of set theory with free
variables ~x, and φ2 is restricted, then the judgements

(~x : V) Jφ1 K : prop ,
(~x : V) Lφ2 M : P ,
(~x : V) τ

(

Lφ2 M
)

≡ Jφ2 K

are derivable.

18

A formula φ with free variables ~x will be said to be valid if the judgement

(~x : V) JφK

is derivable. We say that the generalized type theoretic interpretation of CZF
is sound if each axiom and each instance of each axiom scheme of CZF is valid.

Theorem 15 (ML(CZF)). The generalized type theoretic interpretation of the
set theory CZF is sound.

Corollary 16. CZF and ML(CZF) are mutually interpretable.

6 Reinterpreting Logic

We now describe how both the logic-enriched type theories ML(CZF−) and
ML(CZF) can accomodate reinterpretations of the logic. We focus our attention
on reinterpretations of the logic as determined by an operator j on the type P
that satisfies a type theoretic version of the properties of a Lawvere-Tierney
topology in an elementary topos [16] or of a nucleus on a frame [14]. We will call
such an operator j a topology. The reinterpretation of logic determined by j
will be called the j-interpretation.

In discussing j-interpretations, it seems appropriate to consider ML(CZF−)
initially, and ML(CZF) at a later stage. There are two main reasons for doing
so. A first reason is that the Strong Collection rule is sufficient to prove the basic
properties of j-interpretations. A second reason is that the Strong Collection rule
is preserved by the j-interpretation determined by any topology j, while the
Subset Collection rule does not seem to be. In order to obtain the derivability
of the j-interpretation of the Subset Collection rule, we will introduce a further
assumption.

6.1 Topologies in ML(CZF−)

To introduce topologies, for a, b : P we define a ≤ b
def
= τ(a) ⊃ τ(b) : prop .

Definition 17. Let j be an explicitly defined operator on P, i.e. there is an

explicit definition of the form jx
def
= e : P, for x : P, where (x : P) e : P. We say

that j is a topology if the following hold for a1, a2 : P:

1. a1 ≤ ja1 ,
2. a1 ≤ a2 ⇒ ja1 ≤ ja2 ,
3. ja1 ∧̇ ja2 ≤ j(a1∧̇a2) ,
4. j(ja1) ≤ ja1 .

¿From now on we assume given an arbitrary topology j. For φ : prop, we define

Jφ
def
= ∃x : P

(

τ(jx) ∧ τ(x) ⊃ φ
)

.

19

Proposition 18. For a : P, J(τ(a)) ≡ τ(ja) .

The properties of j can be lifted to J . It is worth pointing out that the Strong
Collection rule is used to prove the fourth part of proposition 19.

Proposition 19. For φ1, φ2 : prop, the following hold:

1. φ1 ⊃ Jφ1 ,
2. φ1 ⊃ φ2 ⇒ Jφ1 ⊃ Jφ2 ,
3. Jφ1 ∧ Jφ2 ⊃ J(φ1 ∧ φ2) ,
4. J(Jφ1) ⊃ Jφ1 .

We now define the j-interpretation of of ML(CZF−) into itself determined
by the topology j. This interpretation acts solely on the logic, leaving types
unchanged. We define the j-interpretation 〈·〉j by structural induction on the
raw syntax of the type theory. First of all type expressions are left unchanged.
Table 5 contains the definition of the interpretation of formulae, where ⋆ is either
∧,∨ or ⊃ and ∇ is either ∀ or ∃, and of judgement bodies.

Table 5. Definition of the j-interpretation of formulae and judgement bodies.

〈⊤〉j
def
= ⊤ ,

〈⊥〉j
def
= ⊥ ,

〈φ1 ⋆ φ2〉j
def
= J〈φ1〉j ⋆ J〈φ2〉j ,

〈(∇x : A) φ0〉j
def
= (∇x : A) J〈φ0〉j ,

〈τ(a)〉j
def
= τ(a) .

〈A : type〉j
def
= A : type ,

〈A = A′ : type〉j
def
= A = A′ : type ,

〈a : A〉j
def
= a : A ,

〈a = a′ : A〉j
def
= a = a′ : A ,

〈φ : prop〉j
def
= 〈φ〉j : prop ,

〈φ1, . . . , φn ⇒ φ〉j
def
= J〈φ1〉j , . . . , J〈φn〉j ⇒ J〈φ〉j .

Finally, we define the j-interpretation of judgements as follows.

〈 (Γ) B 〉j
def
= (Γ) 〈B〉j .

Definition 20. The j-interpretation of a rule

(Γ1) B1 · · · (Γn) Bn

(Γ) B

is said to be sound if the judgement 〈(Γ) B〉j is derivable from the judgements
〈(Γ1) B1〉j, . . . , 〈(Γn) Bn〉j.

It is worth pointing out that the Strong Collection rule implies that its j-
interpretation is sound. However, it does not seem possible to prove that the
j-interpretation of the Subset Collection rule is sound for an arbitrary topology
j. We therefore introduce the following definition.

20

Definition 21. A topology j on P is said to be set presented by R : Sub(P) if
the judgement

(∀p : P)
(

τ(jp) ≡ (∃q ∈ R) q ≤ p
)

is derivable.

The notion of set presented topology is closely related to the notions of cover
algebra with basic covers [11], set presented meet semilattice and frame [3, 10]
and inductively generated formal topology [8, 20].

Theorem 22 (ML(CZF−)). Let j be a topology.

1. The j-interpretation of each rule of ML(CZF−) is sound.

2. Assuming the Subset Collection rule of ML(CZF), if j is set presented, then
the j-interpretation of the Subset Collection rule is sound.

6.2 Double Negation Interpretation

As an application of the results just described we present a type theoretic version
of the double negation interpretation. We define the double negation topology
as follows:

(x : P) jx
def
= ¬̇¬̇x : P ,

where ¬̇x
def
= x ⊃̇ ⊥̇ : P, for x : P. It is easy to prove that j is a topology. Let us

point out that the operator J determined by the double negation topology need
not to be logically equivalent to double negation. In fact, for φ : prop it holds

Jφ ≡ (∃p : P)
(

¬¬τ(p) ∧ τ(p) ⊃ φ
)

,

where ¬φ
def
= φ ⊃ ⊥, for φ : prop. In general it will hold only that Jφ implies

¬¬φ but not viceversa. This fact seems to be one of the reasons for which it is
possible to prove the soundness of the j-interpretation of the Strong Collection
rule. These observations first arose in connection with the development of frame-
valued semantics for CZF [10]. The double-negation nucleus on the frame of
truth values corresponds closely to a double-negation interpretation [9, 12].

Since the j-interpretation acts as the double negation only on small propo-
sitions, it is natural to consider the following principle of restricted excluded
middle.

(x : P) τ(x) ∨ ¬τ(x) (REM)

Theorem 23. The ¬¬-interpretation of ML(CZF−)+(REM) in ML(CZF−)
is sound.

21

Let us now point out that the type theory ML(CZF−) and the theory CZF−

are mutually interpretable. It is easy to see that (REM) allows to prove in type
theory the validity of the principle of excluded middle for restricted formulas.
Theorem 23 gives then as a corollary an interpretation of the set theory CZF−+
REM, obtained from CZF− by adding the law of excluded middle for restricted
formulae, into CZF−, a result originally obtained in [7].

We can now consider a type theoretic principle asserting that the double
negation topology is set presented:

∃R : Sub(P) ∀p : P
(

¬¬τ(p) ≡ ∃q ∈ R (q ⊃ τ(p))
)

. (DNSP)

Theorem 24. The ¬¬-interpretation of ML(CZF) + (REM) in ML(CZF)+
(DNSP) is sound.

The type theory ML(CZF) + (REM) and the set theory CZF + REM
are mutually interpretable. Recall that the set theory CZF + REM has proof
theoretic strength at least above that of Bounded Zermelo set theory, which is
obtained from Zermelo set theory by limiting the separation axiom scheme to
restricted formulas. This is because the power set axiom is derivable in CZF +
REM and Bounded Zermelo set theory has a double-negation interpretation into
its intuitionistic counterpart. That set theory is in fact a subsystem of CZF +
REM. The addition of the type theoretic principle (DNSP) to ML(CZF)
pushes therefore the proof theoretic strength of the type theory above that of
second-order arithmetic.

References

1. Peter Aczel, The Type Theoretic Interpretation of Constructive Set Theory, in: A.
MacIntyre, L. Pacholski and J. Paris (eds.), Logic Colloquium ’77, (North-Holland,
Amsterdam, 1978).

2. Peter Aczel, The Type Theoretic Interpretation of Constructive Set Theory: Induc-
tive Definitions, in: R.B. Barcan Marcus, G. J. W. Dorn and P. Weingartner (eds.)
Logic, Methodology and Philosophy of Science, VII, (North-Holland, Amsterdam,
1986).

3. Peter Aczel, Notes on Constructive Set Theory, Draft manuscript. Available at
http://www.cs.man.ac.uk/~petera, 1997.

4. Peter Aczel, On Relating Type Theories and Set Theories, in T. Altenkirch, W.
Naraschewski and B. Reus (eds.) Types for Proofs and Programs, Proceedings of

Types ’98, SLNCS 1657, (1999).
5. Peter Aczel, The Russell-Prawitz Modality, Mathematical Structures in Computer

Science, vol. 11, (2001) 1 – 14.
6. Peter Aczel and Michael Rathjen, Notes on Constructive Set Theory, Preprint no.

40, Institut Mittag-Leffler, The Royal Swedish Academy of Sciences, 2001. Available
at http://www.ml.kva.se.

7. Thierry Coquand and Erik Palmgren, Intuitionistic Choice and Classical Logic,
Archive for Mathematical Logic, vol. 39 (2000) 53 – 74.

8. Thierry Coquand, Giovanni Sambin, Jan Smith and Silvio Valentini, Inductively
Generated Formal Topologies, Submitted for publication, 2000.

22

9. Harvey M. Friedman, The Consistency of Classical Set Theory Relative to a Set
Theory with Intuitionistic Logic, Journal of Symbolic Logic, vol. 38 (1973) 315 –
319.

10. Nicola Gambino and Peter Aczel, Frame-Valued Semantics for Constructive Set
Theory, Preprint no. 39, Institut Mittag-Leffler, The Swedish Royal Academy of
Sciences, 2001. Available at http://www.ml.kva.se.

11. Robin Grayson, Forcing in Intuitionistic Theories without Power Set, Journal of

Symbolic Logic, vol. 48 (1983) 670 – 682.
12. Robin Grayson, Heyting-valued models for Intuitionistic Set Theory, in M. Four-

man, C. Mulvey and D.S. Scott (eds.) Applications of Sheaves, vol. 743, SLNM
(1979).

13. Edward Griffor and Michael Rathjen, The Strength of Some Martin-Löf’s Type
Theories, Archiv for Mathematical Logic vol. 33, (1994) 347 – 385.

14. Peter T. Johnstone, Stone Spaces, (Cambridge University Press, Cambridge, 1982).
15. Per Martin-Löf, Intuitionistic Type Theories, (Bibliopolis, Napoli, 1984).
16. Saunders MacLane and Ieke Moerdijk, Sheaves in Geometry and Logic. A First

Introduction to Topos Theory, (Springer, Berlin, 1992).
17. Ieke Moerdijk and Erik Palmgren, Wellfounded Trees in Categories, Annals of Pure

and Applied Logic, vol. 104, (2000) 189 – 218.
18. Ieke Moerdijk and Erik Palmgren, Type Theories, Toposes and Constructive Set

Theory: Predicative Aspects of AST, Annals of Pure and Applied Logic, to appear.
19. Michael Rathjen, Edward Griffor and Erik Palmgren, Inaccessibility in Construc-

tive Set Theory and Type Theory, Annals of Pure and Applied Logic, vol. 94, (1998)
181 – 200.

20. Giovanni Sambin, Intuitionistic Formal Spaces, in D. Skordev (ed.) Mathematical

Logic and its Applications (Plenum, New York, 1987), 187 – 204.
21. Anne Troelstra and Dirk van Dalen, Constructivism in Mathematics, Vol. 1, Studies

in Logic No. 121, (North Holland, 1988).

23

