Abstract
In the FTA project in Nijmegen we have formalised a constructive proof of the Fundamental Theorem of Algebra. In the formalisation, we have first defined the (constructive) algebraic hierarchy of groups, rings, fields, etcetera. For the reals we have then defined the notion of real number structure, which is basically a Cauchy complete Archimedean ordered field. This boils down to axiomatising the constructive reals. The proof of FTA is then given from these axioms (so independent of a specific construction of the reals), where the complex numbers are defined as pairs of real numbers.
The proof of FTA that we have chosen to formalise is the one in the seminal book by Troelstra and van Dalen [17], originally due to Manfred Kneser [12]. The proof by Troelstra and van Dalen makes heavy use of the rational numbers (as suitable approximations of reals), which is quite common in constructive analysis, because equality on the rationals is decidable and equality on the reals isn’t. In our case, this is not so convenient, because the axiomatisation of the reals doesn’t ‘contain’ the rationals. Moreover, we found it rather unnatural to let a proof about the reals be mainly dealing with rationals. Therefore, our version of the FTA proof doesn’t refer to the rational numbers. The proof described here is a faithful presentation of a fully formalised proof in the Coq system.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
E. Bishop and D. Bridges, Constructive Analysis, Number 279 in Grundlehren der mathematischen Wissenschaften. Springer, 1985.
L.E.J. Brouwer and B. de Loor, Intuitionistischer Beweis des Fundamentalsatzes der Algebra, in Proceedings of the KNAW, 27, pp. 186–188, 1924.
L.E.J. Brouwer, Intuitionistische Ergänzung des Fundamentalsatzes der Algebra, in Proceedings of the KNAW, 27, pp. 631–634, 1924.
B. Dejon and P. Henrici, Editors, Constructive Aspects of the Fundamental Theorem of Algebra, Proceedings of a symposium at IBM Research Lab, Zürich-Rüschlikon, June 5–7, 1967, Wiley-Interscience, London.
H.-D. Ebbinghaus et al. (eds.), Numbers, Springer, 1991, 395 pp.
B. Fine and G. Rosenberger, The Fundamental Theorem of Algebra, Undergraduate Texts in Mathematics, Springer, 1997, xii+208 pp.
H. Geuvers, F. Wiedijk, J. Zwanenburg, R. Pollack, M. Niqui, H. Barendregt, FTA project, http://www.cs.kun.nl/gi/projects/fta/.
H. Geuvers, R. Pollack, F. Wiedijk, and J. Zwanenburg. The algebraic hierarchy of the FTA project, in Calculemus 2001 workshop proceedings, pp. 13–27, Siena, 2001.
H. Geuvers, M. Niqui, Constructive Reals in Coq: Axioms and Categoricity, Types 2000 Workshop, Durham, UK, this volume.
P. Henrici and I. Gargantini, Uniformly convergent algorithms for the simultaneous approximation of all zeros of a polynomial, in [4], pp. 77–113.
H. Kneser, Der Fundamentalsatz der Algebra und der Intuitionismus, Math. Zeitschrift, 46, 1940, pp. 287–302.
M. Kneser, Ergänzung zu einer Arbeit von Hellmuth Kneser über den Fundamentalsatz der Algebra, Math. Zeitschrift, 177, 1981, pp. 285–287.
J.E. Littlewood, Every polynomial has a root, Journal of the London Math. Soc. 16, 1941, pp. 95–98.
B. de Loor, Die Hoofstelling van die Algebra van Intuϊtionistiese standpunt, Ph.D. Thesis, Univ. of Amsterdam, Netherlands, Feb. 1925, pp. 63 (South-African).
Helmut Schwichtenberg, Ein konstruktiver Beweis des Fundamentalsatzes, Appendix A (pp. 91–96) of Algebra, Lecture notes, Mathematisches Institut der Universität München 1998, http://www.mathematik.uni-muenchen.de/schwicht/lectures/algebra/ws98/skript.ps
E. Specker, The Fundamental Theorem of Algebra in Recursive Analysis, in [4], pp. 321–329.
A. Troelstra and D. van Dalen, Constructivism in Mathematics, vols. 121 and 123 in Studies in Logic and The Found. of Math., North-Holland, 1988.
H. Weyl, Randbemerkungen zu Hauptproblemen der Mathematik, Math. Zeitschrift, 20, 1924, pp. 131–150.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2002 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Geuvers, H., Wiedijk, F., Zwanenburg, J. (2002). A Constructive Proof of the Fundamental Theorem of Algebra without Using the Rationals. In: Callaghan, P., Luo, Z., McKinna, J., Pollack, R., Pollack, R. (eds) Types for Proofs and Programs. TYPES 2000. Lecture Notes in Computer Science, vol 2277. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45842-5_7
Download citation
DOI: https://doi.org/10.1007/3-540-45842-5_7
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-43287-6
Online ISBN: 978-3-540-45842-5
eBook Packages: Springer Book Archive