Abstract
A bipartite graph is biplanar if the vertices can be placed on two parallel lines (layers) in the plane such that there are no edge crossings when edges are drawn straight. The 2-Layer Planarization problem asks if k edges can be deleted from a given graph G so that the remaining graph is biplanar. This problem is NP-complete, as is the 1- Layer Planarization problem in which the permutation of the vertices in one layer is fixed. We give the following fixed parameter tractability results: an O(k ·6 k+|G|) algorithm for 2-Layer Planarization and an O(3 k · |G|) algorithm for 1-Layer Planarization, thus achieving linear time for fixed k.
Chapter PDF
Similar content being viewed by others
References
G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Graph Drawing: Algorithms for the Visualization of Graphs. Prentice-Hall, 1999.
R. G. Downey and M. R. Fellows. Parametrized complexity. Springer, 1999.
V. Dujmović, M. Fellows, M. Hallett, M. Kitching, G. Liotta, C. McCartin, N. Nishimura, P. Ragde, F. Rosemand, M. Suderman, S. Whitesides, and D. R. Wood. On the parameterized complexity of layered graph drawing. In Proc. 9th European Symp. on Algorithms (ESA’ 01), to appear.
P. Eades, B. D. McKay, and N. C. Wormald. On an edge crossing problem. In Proc. 9th Australian Computer Science Conference, pages 327–334. Australian National University, 1986.
P. Eades and S. Whitesides. Drawing graphs in two layers. Theoret. Comput. Sci., 131(2):361–374, 1994.
P. Eades and N. C. Wormald. Edge crossings in drawings of bipartite graphs. Algorithmica, 11(4):379–403, 1994.
M. R. Garey and D. S. Johnson. Crossing number is NP-complete. SIAM J. Algebraic Discrete Methods, 4(3):312–316, 1983.
F. Harary and A. Schwenk. A new crossing number for bipartite graphs. Utilitas Math., 1:203–209, 1972.
M. Jünger and P. Mutzel. 2-layer straightline crossing minimization: performance of exact and heuristic algorithms. J. Graph Algorithms Appl., 1(1):1–25, 1997.
M. Kaufmann and D. Wagner, editors. Drawing Graphs: Methods and Models, volume 2025 of Lecture Notes in Comput. Sci. Springer, 2001.
T. Lengauer. Combinatorial Algorithms for Integrated Circuit Layout. Wiley, 1990.
P. Mutzel. An alternative method to crossing minimization on hierarchical graphs. SIAM J. Optimization, 11(4):1065–1080, 2001.
P. Mutzel. Optimization in leveled graphs. In P. M. Pardalos and C. A. Floudas, editors, Encyclopedia of Optimization. Kluwer, to appear.
P. Mutzel and R. Weiskircher. Two-layer planarization in graph drawing. In K. Y. Chwa and O. H. Ibarra, editors, Proc. 9th International Symp. on Algorithms and Computation (ISAAC’98), volume 1533 of Lecture Notes in Comput. Sci., pages 69–78. Springer, 1998.
F. Shahrokhi, O. Sýkora, L. A. Székely, and I. Vrťo. On bipartite drawings and the linear arrangement problem. SIAM J. Comput., 30(6):1773–1789, 2001.
K. Sugiyama, S. Tagawa, and M. Toda. Methods for visual understanding of hierarchical system structures. Trans. Systems Man Cybernet., 11(2):109–125, 1981.
N. Tomii, Y. Kambayashi, and S. Yajima. On planarization algorithms of 2-level graphs. Papers of tech. group on elect. comp., IECEJ, EC77-38:1–12, 1977.
V. Valls, R. Marti, and P. Lino. A branch and bound algorithm for minimizing the number of crossing arcs in bipartite graphs. J. Operat. Res., 90:303–319, 1996.
M. S. Waterman and J. R. Griggs. Interval graphs and maps of DNA. Bull. Math. Biol., 48(2):189–195, 1986.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2002 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Dujmović, V. et al. (2002). A Fixed-Parameter Approach to Two-Layer Planarization. In: Mutzel, P., Jünger, M., Leipert, S. (eds) Graph Drawing. GD 2001. Lecture Notes in Computer Science, vol 2265. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45848-4_1
Download citation
DOI: https://doi.org/10.1007/3-540-45848-4_1
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-43309-5
Online ISBN: 978-3-540-45848-7
eBook Packages: Springer Book Archive