
A Fixed-Parameter Approach to Two-Layer
Planarization�

V. Dujmović1, M. Fellows4, M. Hallett1, M. Kitching1, Giuseppe Liotta2,
C. McCartin5, N. Nishimura3, P. Ragde3, F. Rosamond4, M. Suderman1,

S. Whitesides1, and David R. Wood6

1 McGill University, Canada
2 Università di Perugia, Italy

3 University of Waterloo, Canada
4 University of Victoria, Canada

5 Victoria University of Wellington, New Zealand
6 University of Sydney, Australia

Abstract. A bipartite graph is biplanar if the vertices can be placed
on two parallel lines (layers) in the plane such that there are no edge
crossings when edges are drawn straight. The 2-Layer Planarization
problem asks if k edges can be deleted from a given graph G so that the
remaining graph is biplanar. This problem is NP-complete, as is the 1-
Layer Planarization problem in which the permutation of the vertices
in one layer is fixed. We give the following fixed parameter tractability
results: an O(k ·6k+ |G|) algorithm for 2-Layer Planarization and an
O(3k · |G|) algorithm for 1-Layer Planarization, thus achieving linear
time for fixed k.

1 Introduction

In a 2-layer drawing of a bipartite graph G = (A,B;E), the vertices in A and
B are positioned on two distinct parallel lines in the plane, and the edges are
drawn straight. Such drawings have applications in visualization [1,10], DNA
mapping [19], and VLSI layouts [11]; a recent survey [13] gives more details.

A biplanar graph is a bipartite graph that admits a 2-layer drawing with no
edge crossings. Consider a 2-layer drawing of a bipartite graph produced by first
drawing a maximum biplanar subgraph with no crossings and then drawing all
the remaining edges. Such a drawing will almost certainly have more crossings
than is necessary; however, there is some experimental evidence to suggest that
� Research initiated at the International Workshop on Fixed Parameter Tractability in
Graph Drawing, Bellairs Research Institute of McGill University, Holetown, Barba-
dos, Feb. 9-16, 2001, organized by S. Whitesides. Research of Canada-based authors
supported by NSERC. Research of G. Liotta supported by CNR and MURST. Re-
search of D. Wood supported by the ARC, and completed while visiting McGill
University. Contact author: S. Whitesides, School of Computer Science, McGill Uni-
versity, 3480 University St., Montréal, Canada, sue@cs.mcgill.ca

P. Mutzel, M. Jünger, and S. Leipert (Eds.): GD 2001, LNCS 2265, pp. 1–15, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

2 V. Dujmović et al.

drawings in which all crossings occur in a few edges are more readable than draw-
ings with fewer total crossings [12]. Maximizing the size of a biplanar subgraph
is equivalent to minimizing the number of edges not in it. This leads naturally to
the definition of the 2-Layer Planarization problem: given a graph G (not
necessarily bipartite), and integer k, can G be made biplanar by deleting at most
k edges? This problem is the focus of this paper.

Two-layer drawings are of fundamental importance to the “Sugiyama” ap-
proach to multilayer drawing [16]. This method first assigns vertices to layers,
then makes repeated sweeps up and down the layers to determine an ordering
of the vertices in one layer given the ordering for the preceding layer. This in-
volves solving the 1-Layer Planarization problem: given a bipartite graph
G = (A,B;E), a permutation π of A, and an integer k, can at most k edges
be deleted to permit G to be drawn without crossings with π as the ordering of
vertices in A? In this paper, we present results on this problem as well.

Instead of deleting edges, one can seek to minimize the number of crossings
in a 2-layer drawing (here the input graph must be bipartite). The corresponding
problems are called 1- and 2-Layer Crossing Minimization. Both of these
well studied problems are NP-complete [7,6]. The 2-Layer Planarization
problem is NP-complete [5,17] even for planar biconnected bipartite graphs with
vertices in respective bipartitions having degree two and three [5]. The 1-Layer
Planarization problem is NP-complete even for graphs with only degree-1
vertices in the fixed layer and vertices of degree at most 2 in the other layer [5],
i.e., for collections of 1- and 2-paths. With the order of the vertices in both layers
fixed the problem can be solved in polynomial time [5,14].

Integer linear programming algorithms have been presented for 1- and 2-
Layer Crossing Minimization [9,18]. Jünger and Mutzel [9] survey numerous
heuristics proposed for both problems, and experimentally compare their per-
formance with the optimal solutions. They report that the iterated barycentre
method of Sugiyama et al. [16] performs best in practice. However, from a theo-
retical point of view themedian heuristic of Eades andWormald [6] is a better ap-
proach for 1-Layer Crossing Minimization. In particular, the median heuris-
tic is a linear time 3-approximation algorithm, whereas the barycentre heuristic
is a Θ(

√
n)-approximation algorithm [6]. Furthermore, for graphs with maximum

degree three in the free layer, the median heuristic is a 2-approximation algo-
rithm for this problem [1]. Recently, Shahrokhi et al. [15] devised a polynomial
time algorithm that approximates 2-Layer Crossing Minimization within a
factor of O(log n) for a wide class of n-vertex graphs.

Despite the practical significance of the problems, 1- and 2-Layer Pla-
narization have received less attention in the graph drawing literature than
their crossing minimization counterparts. Integer linear programming algorithms
have been presented [12,14]. For acyclic graphs G, Shahrokhi et al. [15] present
an O(n) time dynamic programming algorithm for 2-Layer Planarization of
weighted acyclic graphs, for which the objective is to minimize the total weight
of deleted edges.

A Fixed-Parameter Approach to Two-Layer Planarization 3

1.1 Fixed Parameter Tractability and Our Results

When the maximum number k of allowed edge deletions is small, an algorithm
for 1- or 2-Layer Planarization whose running time is exponential in k but
polynomial in the size of the graph may be useful. The theory of parameterized
complexity [2] addresses complexity issues of this nature, in which a problem is
specified in terms of one or more parameters. Such a problem with input size n
and parameter size k is fixed parameter tractable, or in the class FPT, if there
is an algorithm to solve the problem in f(k) · nα time, for some function f and
constant α. A problem in FPT is thus solvable in polynomial time for fixed k.

In a companion paper [3], we proved using bounded pathwidth techniques
that the h-layer generalizations of the 2-Layer Crossing Minimization and
2-Layer Planarization problems are in FPT, where h is also considered a
parameter of the problem. The 1-layer versions of these problems can also be
solved using this approach. Unfortunately, a pathwidth-based approach is not
particularly practical, since the running time of the algorithms is O(232(h+2k)

3
n).

In this paper we apply other methods from the theory of fixed parameter
tractability to obtain more practical algorithms for the 1- and 2-Layer Pla-
narization problems. In particular, using a “kernelization” approach we obtain
an O(

√
k · 17k + |G|) time algorithm for 2-Layer Planarization in a graph

G, which we improve to O(k · 6k + |G|) using a “bounded search tree” approach
combined with kernelization. Here |G| = |V | + |E| for a graph G = (V,E). For
small values of k, the 2-Layer Planarization problem is thus solvable opti-
mally in a reasonable amount of time. We then refine this second algorithm to
solve the 1-Layer Planarization problem in O(3k · |G|) time.

This paper is organized as follows. After definitions and preliminary results in
Section 2, we present the “kernelization” approach for 2-Layer Planarization
in Section 3. Section 4 describes our “bounded search tree” algorithm for the
same problem. In Section 5 we consider the 1-Layer Planarization problem,
and present a bounded search tree algorithm for its solution. We conclude in
Section 6.

2 Preliminaries

In this paper each graph G = (V,E) is simple and undirected. The subgraph of G
induced by a subset E′ of edges is denoted by G[E′]. A vertex with degree one is
a leaf. If vw is the edge incident to a leaf w, then we say w is a leaf at v and vw is a
leaf-edge at v. The number of non-leaf edges at a vertex v is denoted by deg′

G(v),
or deg′(v) if the graph is clear from the context. A bipartite graph is biplanar
if it admits a biplanar drawing. A claw is a complete bipartite subgraph K1,3.
The 2-claw is the graph consisting of one degree-3 vertex (the centre), which
is adjacent to three degree-2 vertices, each of which is adjacent to the centre
and one leaf. A graph is a caterpillar if deleting all leaves produces a (possibly
empty) path. This path is the spine of the caterpillar. If v is an endpoint of the
spine of a caterpillar then there is at least one leaf at v (otherwise v itself would
be a leaf.) These graphs are illustrated in Fig. 1.

4 V. Dujmović et al.

We define V3 = {v ∈ V : deg′(v) ≥ 3}, and V ′
3 = {w ∈ V \ V3 : deg(w) ≥

2, ∃ v ∈ V3, s.t. vw ∈ E}. That is, V3 is the set of vertices with at least three
non-leaf neighbours, and V ′

3 is the set of non-leaf neighbours of vertices in V3
that are not themselves in V3. These sets will be important in the proofs of
correctness of our algorithms. Observe that the centre of a 2-claw is in V3. In
Fig. 1 and subsequent illustrations, vertices in V3 are black and vertices in V ′

3
are gray.

(a)

v

(b)

v1 v2
: : : vk�1 vk

(c)

Fig. 1. (a) Claw, (b) 2-claw centred at v, (c) caterpillar.

A set of edges S of a (not necessarily bipartite) graph G is called a bipla-
narizing set if G \ S is biplanar. The bipartite planarization number of a graph
G, denoted by bpr(G), is the size of a minimum biplanarizing set for G. Thus
the 2-Layer Planarization problem is: given a graph G and integer k, is
bpr(G) ≤ k? For a given bipartite graph G = (A,B;E) and permutation π of A,
the 1-layer bipartite planarization number of G and π, denoted bpr(G, π), is the
minimum number of edges in G whose deletion produces a graph that admits
a biplanar drawing with π as the ordering of the vertices in A. The 1-Layer
Planarization problem asks if bpr(G, π) ≤ k.

Biplanar graphs are easily characterized, and there is a simple linear-time
algorithm to recognize biplanar graphs, as the next lemma makes clear.

Lemma 1 ([4,8,17]). Let G be a graph. The following are equivalent:
(a) G is biplanar.
(b) G is a forest of caterpillars (see Fig. 2).
(c) G is acyclic and contains no 2-claw.
(d) The graph obtained from G by deleting all leaves is a forest and contains no

vertex of degree three or greater.

Fig. 2. A biplanar graph is a forest of caterpillars. Spine edges are dark

Since our algorithms seek to find biplanar subgraphs, some terminology con-
cerning caterpillars will prove useful. A path (v1, v2, . . . , vk) with degG(v1) ≥ 3,
degG(vk) = 1, and degG(vi) = 2, 1 < i < k, is called a pendant path. A path
(v1, v2, . . . , vk) with degG(v1) ≥ 3, degG(vk) ≥ 3, and degG(vi) = 2, 1 < i < k, is
called an internal path. A component caterpillar of a graph is a connected compo-
nent that is a caterpillar. A pendant caterpillar is a caterpillar subgraph C with

A Fixed-Parameter Approach to Two-Layer Planarization 5

spine (v2, v3, . . . , vk) such that there is a leaf edge v1v2 of C with deg′
G(v1) ≥ 3,

deg′
G(vi) = 2 for all i, 1 < i < k, and deg′

G(vk) = 1. An internal caterpillar is
a caterpillar subgraph C with spine (v2, v3, . . . , vk−1) such that there are leaf-
edges v1v2 and vk−1vk of C with deg′

G(v1) ≥ 3, deg′
G(vk) ≥ 3, and deg′

G(vi) = 2
for all i, 1 < i < k. A pendant (or internal) path (or caterpillar) is said to be
connected at v1 (and vk), its connection points.

A graph consisting of a cycle and some number of leaves (possibly zero)
is a wreath. A component wreath of a graph is a connected component that is
a wreath. A pendant wreath connected at v1 is a wreath subgraph with cycle
(v1, v2, . . . , vk) such that deg′

G(v1) ≥ 3 and deg′
G(vi) = 2 for all i, 1 < i ≤ k.

These graphs are illustrated in Fig. 3.

v1 v2
: : : vk�1 vk

(a)

v1 v2
: : : vk�1 vk

(b)

(c) (d)

Fig. 3. (a) Pendant caterpillar, (b) internal caterpillar, (c) wreath, (d) pendant wreath.

3 Kernelization

A basic method for developing FPT algorithms is to reduce a parameterized
problem instance I to an “equivalent” instance Ikr (the kernel), where the size of
Ikr is bounded by some function of the parameter. Then the instance Ikr is solved
using an exhaustive search method, and its solution determines a solution to the
original instance I. Downey and Fellows [2, Chapter 3.2] survey this general
approach, which is known as kernelization.

Here is an overview of our kernelization algorithm for the 2-Layer Pla-
narization problem, which operates in two phases. In the first phase we identify
a set of edges SG contained in the pendant and component wreaths ofG that may
as well be in a biplanarizing set. In the second phase, we collapse “long” internal
and pendant caterpillars to “short” internal and pendant caterpillars. Intuitively,
if a “short” internal or pendant caterpillar can be drawn without crossings then
so can a “long” internal or pendant caterpillar. We obtain a graph Gkr such that
bpr(G) = bpr(Gkr) + |SG|. We then prove that if Gkr satisfies a necessary condi-
tion for bpr(Gkr) ≤ k − |SG| then |Gkr| ∈ O(k); the condition can be checked in
O(|Gkr|) time. Exhaustive search determines if Gkr has a biplanarizing set with

6 V. Dujmović et al.

at most k − |SG| edges; if so, this set plus |SG| forms a biplanarizing set for G
with at most k edges.

We now describe the first phase of the kernelization which constructs SG:
1. For each component wreath, add to SG a cycle-edge from it.
2. For each pendant 3-cycle, add to SG the edge not incident with its connection
point.

3. For each pendant wreath that is not a 3-cycle, add to SG a cycle-edge incident
to its connection point.
The proof of the following lemma is relatively long and similar to that of the

upcoming Lemma 3. Due to space limitations it is omitted here.

Lemma 2. For every graph G, bpr(G) ≤ k if and only if bpr(G \ SG) ≤ k−|SG|.

�

We now describe the second phase of the kernelization. It will be convenient
to assume that G = (V,E) is a graph with no pendant or component wreaths;
i.e., SG = ∅. IfG has SG �= ∅, by Lemma 2, we can instead work withG′ = G\SG.

As illustrated in Fig. 4, apply the following rules to G to obtain a graph
Gkr = (Vkr, Ekr) called the kernel of G.
(a) Replace a set of leaf-edges at v ∈ V3 by a single leaf-edge at v.
(b) Leave an internal path with at most three edges unchanged in Gkr .
(c) Replace an internal path with at least four edges and with endpoints x and

y by a claw with leaves at x and y.
(d) Replace an internal caterpillar with at least one leaf at a vertex on the spine

and with connection points x and y by a claw with leaves at x and y.
(e) Replace a pendant caterpillar connected at x by a 2-path connected at x.
(f) Delete a component caterpillar.

v

v

(a)

x y

x y

(b)

x y
b b b(

x y

(c)

x y
b b b(

x y

(d)

x
b b b(

x

(e)

Fig. 4. Second phase of the kernelization.

Clearly Gkr can be constructed in O(|G|) time, and every edge of G is mapped
to an edge of Gkr. Thus, the construction of Gkr defines a function f : E → Ekr,
indicated by arrows in Fig. 4. Observe that the non-leaf edges incident to vertices
in V3 are preserved under f . Let E2,3 be the set of edges with both endpoints in
V3 ∪ V ′

3 . Let E
∗
2,3 be the set of edges in E2,3 with at least one endpoint in V3.

Clearly f restricted to E∗
2,3 is 1-1.

A Fixed-Parameter Approach to Two-Layer Planarization 7

Lemma 3. For every graph G with SG = ∅, bpr(G) ≤ k if and only if bpr(Gkr) ≤
k.

Proof. First we prove that if bpr(G) ≤ k then bpr(Gkr) ≤ k. Let T be a bipla-
narizing set for G with |T | = k. Let T ′ = f(T). We now prove that T ′ is a
biplanarizing set for Gkr. Suppose it is not. By Lemma 1(c), Gkr \ T ′ contains a
subgraph C that is either a cycle or a 2-claw. If C is a cycle, then G\T contains
a cycle, which contradicts the fact that T is a biplanarizing set for G. If C is
a 2-claw, it must be centred at a vertex v ∈ V3. Let w1, w2, w3 be the neigh-
bours of v in C with corresponding leaves x1, x2, x3. Then for all i, 1 ≤ i ≤ 3,
f−1(vwi) ∈ E∗

2,3, and f maps at least one edge ab ∈ G \ T to wixi such that ab
and f−1(vwi) are incident to a common vertex. Thus f−1(C) contains a 2-claw
in G \ T , which is a contradiction. Thus, T ′ is a biplanarizing set for Gkr, and
since |T ′| ≤ |T | = k, bpr(Gkr) ≤ k.

We now prove that if bpr(Gkr) ≤ k then bpr(G) ≤ k. Let T be a minimal
biplanarizing set for Gkr with |T | ≤ k. T can be transformed into a biplanarizing
set contained in f(E2,3) by replacing edges not in f(E2,3) as follows. Any edge
vw in T but not in f(E2,3) is a leaf-edge of Gkr (say at v). Since T is minimal,
(Gkr \ T) ∪ {vw} is not biplanar; that is, (Gkr \ T) ∪ {vw} contains a subgraph
C that is either a cycle or 2-claw. Removing a leaf-edge from Gkr \ T cannot
introduce a cycle; thus, C is a 2-claw and vw is a leaf-edge of C. Let vx be the
other edge in C incident to v. Since x is the centre of a 2-claw, deg′

G(x) ≥ 3
and vx ∈ f(E2,3). Every other edge vy incident to v must be in T , as otherwise
(C \{vw})∪{vy} is a 2-claw in Gkr \T . Let T ′ = (T \{vw})∪{vx}, as illustrated
in Fig. 5. In Gkr \ T ′, vw is a connected component, and all other connected
components are subgraphs of connected components of Gkr \ T . Thus, T ′ is a
biplanarizing set forGkr. Replace T by T ′, and repeat this step until T ⊆ f(E2,3).

x v w

(a) Gkr n T
0

x v w

(b) Gkr n T
00

Fig. 5. Replacing the edge vw in a biplanarizing set.

Since T ⊆ f(E2,3), it is easily seen that |f−1(T)| ≤ |T | ≤ k. A 2-claw or cycle
in G\f−1(T) implies a 2-claw or cycle in Gkr \T . Thus f−1(T) is a biplanarizing
set for G, and bpr(G) ≤ k.
�

The proof of Lemma 3 describes how to obtain a biplanarizing set for G
from a biplanarizing set for Gkr in O(|G|) time. To enable us to prove that
|Gkr| ∈ O(k) (assuming bpr(Gkr) ≤ k and SG = ∅), we introduce the following
potential function, whose definition is suggested by Lemma 1(d). For a graph
G = (V,E), define

ΦG(v) = max{deg′
G(v)− 2, 0}, and Φ(G) =

∑

v∈V

Φ(v) .

8 V. Dujmović et al.

Intuitively, Φ(v) approximates the number of edges in the distance-2 neigh-
bourhood of v that must be deleted for G to become biplanar. Graphs G with
Φ(G) = 0 are of particular interest, as they provide another characterization of
biplanar graphs.

Lemma 4. For every graph G,
(a) G is biplanar if and only if G is acyclic and Φ(G) = 0, and
(b) if Φ(G) = 0 then every component of G containing a cycle is a wreath.

Proof. Φ(G) = 0 if and only if every vertex has non-leaf degree at most two.
Thus, part (a) follows immediately from Lemma 1(d), and part (b) follows from
the fact that a connected cyclic graph with maximum degree two is a cycle.
�

For graphs G with Φ(G) = 0, a minimum biplanarizing set for G consists
of one cycle-edge from each component wreath. For graphs with Φ(G) > 0 the
observation in the following lemma will be useful.

Let the average non-leaf degree of vertices in V3 be denoted by d.

Lemma 5. Let G be a graph with Φ(G) > 0 (that is, V3 �= ∅) then |V3| = Φ(G)
d−2 .

Proof. By definition, d|V3| =
∑

v∈V3
deg′(v) =

∑
v∈V3

(ΦG(v)+2) = Φ(G)+2|V3|.
Thus, (d− 2)|V3| = Φ(G), and the result follows.
�

We now prove that Φ provides a lower bound for bpr(G).

Lemma 6. For every graph G, bpr(G) ≥ 1
2Φ(G).

Proof. The result follows from Lemma 4(a) if we prove that deleting one edge
vw from G reduces Φ(G) by at most two. If at least one of v and w (say v) is a
leaf, then Φ(v) = 0 and Φ(w) does not change by deleting vw. If w becomes a
leaf by deleting v, then w has one neighbour x for which Φ is reduced by one. If
neither v nor w are leaves in G, then there are three cases for what can happen
when edge vw is deleted.

Case 1. Φ(v) and Φ(w) both decrease: Then before deleting vw, deg′(v) ≥ 3
and deg′(w) ≥ 3. Thus, v and w do not become leaves by deleting vw, and Φ
does not decrease for any other vertices.

Case 2. Exactly one of Φ(v) and Φ(w), say Φ(v), decreases: Then deg′(v) ≥ 3
and deg′(w) ≤ 2 before deleting vw. Thus, for at most one neighbour x (�= v) of
w is Φ(x) reduced, and Φ(x) is reduced by at most one. For no neighbour of v,
except possibly x, is Φ reduced.

Case 3. Both Φ(v) and Φ(w) do not decrease: Thus, deg′(v) ≤ 2 and
deg′(w) ≤ 2 before deleting vw. There is at most one neighbour of each of v
and w for which Φ may decrease, and Φ may decrease by at most one for each
neighbour (or by two if these neighbours coincide).
�

Consider an instance (G, k) of the 2-Layer Planarization problem with
SG = ∅. If Φ(Gkr) > 2k then we can immediately conclude from Lemma 6 that
bpr(Gkr) > k and hence bpr(G) > k. On the other hand, if Φ(Gkr) ≤ 2k then, as
we now prove, the size of the kernel is bounded by a function solely of k.

A Fixed-Parameter Approach to Two-Layer Planarization 9

Lemma 7. For every graph G and integer k, if SG = ∅ and Φ(Gkr) ≤ 2k then
the kernel has size |Gkr| ∈ O(k).
Proof. By counting the edges in Gkr with respect to vertices in V3 we have

|Ekr| ≤
∑

v∈V3

(2 deg′
Gkr
(v) + 1) =

∑

v∈V3

(2ΦGkr(v) + 5) = 2Φ(Gkr) + 5|V3| .

If V3 = ∅ then |Ekr| ≤ 2Φ(Gkr). Otherwise, by Lemma 5 and since d ≥ 3,
|V3| ≤ Φ(Gkr) and |Ekr| ≤ 7Φ(Gkr). Since Φ(Gkr) ≤ 2k, |Ekr| ≤ 14k, and since
Gkr has no isolated vertices, |Gkr| ∈ O(k).
�

One solution to the 2-Layer Planarization problem is to search through
all subsets of size k in Ekr. We obtain an algorithm whose running time is
O(k · (14k

k

)
+ |G|). However, as asserted in the following lemma, one need only

search through a subset K of the edges in Gkr. Let K = f(E2,3) except in the
case of an internal 3-path, in which case K contains only the middle edge in this
3-path. The set K is called the sub-kernel of Gkr.

Lemma 8. Let (G, k) be an instance of 2-Layer Planarization such that
SG = ∅ and 0 < Φ(Gkr) ≤ 2k. If bpr(Gkr) ≤ k then there exists a biplanarizing
set for Gkr with at most k edges contained in K and |K| ≤ 2k(d

d−2).
�
Due to space limitations, we have omitted the proof of this lemma, which is

similar to that of Lemma 3.
Since d ≥ 3, the size of the sub-kernel |K| is at most 6k. There are a number

of useful observations (omitted here) that may further reduce the size of the sub-
kernel and improve the running time in practice. However, there is a pathological
family of graphs for which our bound for the size of the sub-kernel is tight even
with such improvements. Consider the graph Gp,q (p, q ∈ N) consisting of an
inner cycle (v1, . . . , v2p) and and outer cycle (w1, . . . , w2p) with v2i connected
by q 2-paths to w2i for all i, 1 ≤ i ≤ p, as illustrated in Fig. 6(a). All vertices
in V3 have non-leaf degree d = q + 2. Gp,q has (d + 2)p vertices and 2dp edges.
The sub-kernel of Gp,q is the whole graph. The largest biplanar subgraph in Gp,q

is its spanning caterpillar (see Fig. 6(b)), which has p(d + 2) − 1 edges. Thus
bpr(Gp,q) = 2dp− (p(d+2)−1) = p(d−2)+1. The ratio of the number of edges
in the sub-kernel of Gp,q to bpr(Gp,q) is 2dp

p(d−2)+1 → 2d
d−2 as p → ∞. Thus the

analysis of the size of the sub-kernel in Lemma 8 is tight for all d.

(a) (b)

Fig. 6. The graph G8,3 and a spanning caterpillar of G8,3.

10 V. Dujmović et al.

We now present our algorithm for the 2-Layer Planarization problem
based solely on kernelization.

Algorithm Kernelization (input : graph G = (V,E); parameter : integer k)

1 determine SG and let k′ = k − |SG|;
2 determine the kernel Gkr = (Vkr, Ekr) of G \ SG;
3 if Φ(Gkr) > 2k′ then return NO.
4 determine the sub-kernel K ⊆ Ekr of Gkr;
5 return YES iff ∃T ⊆ K s.t. |T | ≤ k′, Gkr \ T is acyclic, and Φ(Gkr \ T) = 0;

Combining the previous lemmas and using Sterling’s Formula gives:

Theorem 1. Given a graph G = (V,E) and integer k, the algorithm Kernel-
ization (G, k) determines if bpr(G) ≤ k. If Φ(G) = 0 then the running time is
O(|G|); otherwise it is O(

√
k ·(2e d

d−2)
k+ |G|) time, where d is the average non-leaf

degree of vertices in V3, and e is the base of the natural logarithm.
�
Clearly, if Kernelization(G, k) returns YES then a biplanarizing set for G

with at most k edges can easily be computed. Since d ≥ 3, in the worst-case the
running time of algorithm Kernelization is O(

√
k ·(6e)k+|G|) ∈ O(√k ·17k+|G|).

4 Bounded Search Trees

A second approach to producing FPT algorithms is called the method of bounded
search trees [2, Chapter 3.1]. Here one uses exhaustive search in a tree whose
size is bounded by a function of the parameter. In this section we present an
algorithm for the 2-Layer Planarization problem based on a bounded search
tree approach. At each node of the search tree a 2-claw or small cycle C is
identified. At least one of the edges in C is in every biplanarizing set. Our
algorithm then recursively solves |C| subproblems such that one of the edges in
C is deleted from the graph in each subproblem. The following lemma provides
a sufficient condition for the existence of such a set C.

Lemma 9. If there exists a vertex v in a graph G0 such that deg′
G0
(v) ≥ 3 then

G0 contains a 2-claw or a 3- or 4-cycle containing v.

Proof. Let w1, w2, w3 be three distinct non-leaf neighbours of v. If some wi is
adjacent to wj then there is a 3-cycle containing v. Suppose no wi is adjacent to
a wj . Let xi be a neighbour of wi such that xi �= v, 1 ≤ i ≤ 3. Such an xi exists
since wi is not a leaf. If xi = xj then there is a 4-cycle containing v. Otherwise
the xi’s are distinct. Then {v, w1, w2, w3, x1, x2, x3} forms a 2-claw.
�

This yields the following algorithm.

A Fixed-Parameter Approach to Two-Layer Planarization 11

Algorithm Bounded Search Tree (input : graph G0 = (V0, E0); parameter : inte-
ger k)

1 if k = 0 then return YES iff G0 is acyclic and Φ(G0) = 0;
2 else if Φ(G0) = 0 then return YES iff k ≥ # component wreaths of G0;
3 else (∃ v ∈ V0 such that deg′

G0
(v) ≥ 3)

a) find a 2-claw, 3-cycle or 4-cycle C in G0 containing v as described in
Lemma 9;

b) for each edge xy ∈ C do
if Bounded Search Tree(G0 \ {xy}, k − 1) then return YES;

c) return NO;

We could solve 2-Layer Planarization by running Bounded Search Tree
(G, k). However, we apply Bounded Search Tree to the kernel of G so that the
running time at each node of the search tree is O(k) rather than O(|G|).

Theorem 2. Given a graph G and integer k, let Gkr be the kernel of G \ SG.
The algorithm Bounded Search Tree (Gkr, k − |SG|) determines if bpr(G) ≤ k in
O(k · 6k + |G|) time.

Proof. We prove the correctness of the algorithm by induction on k with the
following inductive hypothesis: “Bounded Search Tree (G0, k) returns YES if and
only if bpr(G0) ≤ k”. The basis of the induction with k = 0 (Step 1) follows
immediately from Lemma 4(a). Assume the inductive hypothesis holds for k−1.
If Φ(G0) = 0 (as in Step 2) then by Lemma 4, every connected component is
a caterpillar or a wreath. Caterpillars and wreaths have bipartite planarization
numbers of 0 and 1, respectively. Thus bpr(G0) is the number of component
wreaths of G0, and hence Step 2 of the algorithm is valid.

Now assume k > 0 and Φ(G0) > 0; that is, there exists a vertex v ∈ V such
that deg′

G0
(v) ≥ 3. By Lemma 9, G0 contains a 2-claw or a 3- or 4-cycle C. Every

biplanarizing set for G0 must contain an edge in C. Thus bpr(G0) ≤ k if and only
if there exists an edge xy ∈ C such that bpr(G0 \ {xy}) ≤ k − 1. By induction,
Bounded Search Tree (G0 \ {xy}, k − 1) determines if bpr(G0 \ {xy}) ≤ k − 1.
Therefore the algorithm determines if bpr(G0) ≤ k, and the inductive hypothesis
holds. In particular, Bounded Search Tree (Gkr, k−|SG|) determines if bpr(Gkr) ≤
k − |SG|, which holds if and only if bpr(G) ≤ k by Lemmas 2 and 3.

In each recursive call k is reduced by one. Thus the height of the search tree is
at most k. At each node of the search tree, there are |C| branches. Since |C| ≤ 6,
the search tree has at most 6k nodes.

A non-recursive implementation maintains the current copy of G0 under the
operations of the deletion and insertion of edges. Moving from one copy to the
next requires O(|G0|) time. At any given node of the search tree, the algorithm
takes O(|G0|) time. Each G0 is a subgraph of Gkr; thus, by Lemma 7, the time
taken at each node of the search tree is O(k). Therefore the running time of the
algorithm is O(k · 6k + |G|).
�

12 V. Dujmović et al.

The exponential component of the time bound for Kernelization is (2e d
d−2)

k,
and for Bounded Search Tree is 6k. In the worst case with d = 3 the Kernelization
bound is approximately 17k, which is considerably more than 6k. However, for
d ≥ 22, 2e d

d−2 < 6, and the Kernelization algorithm provides a better upper bound
on the running time than the Bounded Search Tree algorithm.

5 1-Layer Planarization

We now consider the 1-Layer Planarization problem: given a bipartite graph
G = (A,B;E) and permutation π of A, is bpr(G, π) ≤ k? It is not clear how one
would apply a kernelization strategy to this problem. In this section, we apply
a bounded search tree approach to the (unkernelized) graph G. The following
result characterizes biplanar graphs with a fixed permutation of one bipartition.

Lemma 10. There is a biplanar drawing of a bipartite graph G = (A,B;E)
with a permutation π of A iff G is acyclic and the following condition holds.

For every path (x, v, y) of G with x, y ∈ A, if u ∈ A is between
x and y in π, then the only edge incident to u (if any) is uv. (%)

Proof. The necessity of condition (%) is easily verified by observing that if (%)
does not hold for some path (x, v, y) and edge uw (w �= v), then regardless of
the relative positions of w and v in the permutation of B, uw must cross xv or
yv, as illustrated in Fig. 7(a). This observation was also made by Mutzel and
Weiskircher [14].

x y

v w

u

(a)

v

x u yu

w

(b)

x

w v

u y

(c)

Fig. 7. Forbidden sub-structures for 1-layer biplanarity; vertices in A are gray.

Suppose condition (%) holds. Suppose for the sake of contradiction that G
is not a forest of caterpillars. Since G is acyclic, by Lemma 1, G contains a
2-claw C. We consider two cases; in the first, C contains three vertices in A, as
illustrated in Fig. 7(b). Let these vertices be x, u, y in the order they appear in
π, and let v be the centre of C. Then condition (%) does not hold for the path
(x, v, y) and the leaf-edge in C incident to u. Now consider the case in which C
contains four vertices in A, as illustrated in Fig. 7(c). Let x be the centre of C.
Then x ∈ A. Let u and y be two other vertices in C∩A both to the right or both
to the left of x in π. Such a pair of vertices exists by symmetry. Without loss of
generality, u is between x and y. Let v be the vertex in C adjacent to x and y,
and let w be the vertex in C adjacent to x and u. Then condition (%) does not
hold for the path (x, v, y) and edge uw. Thus G is a forest of caterpillars.

To construct a 2-layer drawing of G, all that remains is to describe the
permutation of B. Let (a1, . . . , an) be the ordering of A defined by π. For each

A Fixed-Parameter Approach to Two-Layer Planarization 13

vertex v ∈ B, define L(v) = min{i : aiv ∈ E}; that is, L(v) is the leftmost
neighbour of v in the fixed permutation of A. We say a vertex v with L(v) = i
belongs to ai, as does the edge aiv. Order the vertices v ∈ B by the value of
L(v), breaking ties as follows. For each i, 1 ≤ i ≤ n, there are at most two
non-leaf vertices belonging to ai, as otherwise there would be a 2-claw centred
at ai. Suppose there are exactly two non-leaf vertices v and w belonging to ai.
Then we can label v and w such that in π, the neighbours of v (not counting ai)
are all to the left of ai, and the neighbours of w (not counting ai) are all to the
right of ai, as otherwise (%) is not satisfied. Let (v, x1, . . . , xp, w) be the order of
the vertices belonging to ai, where {x1, . . . , xp} are the leaves belonging to ai,
as illustrated in Fig. 8(a). This defines a 2-layer drawing of G.

v w

ai

(a)

aL(v) aj

v w

ai

(b)

Fig. 8. Construction of the permutation of B.

Suppose there is a crossing between some edges aiw and ajv with ai, aj ∈ A
(i < j) and v, w ∈ B. Then v is to the left of w in the permutation of B, and thus
L(v) ≤ i. Since the edges belonging to ai do not cross, L(v) < i. This implies
that condition (%) is not satisfied for the path (aL(v), v, aj) and the edge aiw, as
illustrated in Fig. 8(b). Thus there is no crossing in the drawing of G.
�

Lemma 11. If G = (A,B;E) is a bipartite graph and π is a permutation of
A which satisfies condition (%), then all cycles of G are 4-cycles and every pair
of non-edge-disjoint cycles shares exactly two edges. Moreover, the degree of all
vertices in B which appear in a cycle is exactly two.
�

It is not difficult to show that this lemma follows from Lemma 10. We omit
details due to space limitations.

Let G = (A,B;E) be a bipartite graph with a fixed permutation of A which
satisfies condition (%). A complete bipartite subgraph H = K2,p of G with |H ∩
A| = 2, |H∩B| = p, and degG(v) = 2 for every v ∈ H∩B, is called a p-diamond,
see Fig. 9. It follows from Lemma 11 that every cycle of G is in some diamond.
We can now directly determine the 1-layer bipartite planarization numbers of
graphs and permutations satisfying condition (%).

(a) (b)

Fig. 9. (a) 5-diamond, (b) 2-layer drawing of a 5-diamond.

14 V. Dujmović et al.

Lemma 12. If G = (A,B;E) is a bipartite graph and π is permutation of A
satisfying condition (%) then bpr(G, π) =

∑

p-diamonds of G

(p− 1).

Proof. For each p-diamond H of G, delete p− 1 of the edges incident to one of
the vertices in H ∩A. The resulting graph is acyclic and satisfies condition (%),
and thus, by Lemma 10, has a biplanar drawing using π. To remove all cycles
from G requires the deletion of at least p− 1 edges from each p-diamond.
�

The following algorithm solves the 1-Layer Planarization problem:

Algorithm 1-Layer Bounded Search Tree (input : set F ⊆ E; parameter : integer
k)

1 if k > 0 and (%) fails for some path (x, v, y) and edge uw of G[F] then
a) for each edge e ∈ {xv, yv, uw} do

if 1-Layer Bounded Search Tree (F \ {e}, k − 1) then
return YES;

b) return NO;
2 return YES iff k ≥

∑

p-diamonds of G[F]

(p− 1) .

Theorem 3. Given a bipartite graph G = (A,B;E), fixed permutation π of
A, and integer k, algorithm 1-Layer Bounded Search Tree (E, k) determines if
bpr(G, π) ≤ k in O(3k · |G|) time.

Proof. The correctness of the algorithm follows from Lemmas 10 and 12. We
now describe how to check if condition (%) holds in O(|A|) time. We can assume
that the adjacency lists of vertices in B are ordered by π. For each vertex v ∈ B,
by simultaneously traversing the adjacency list of v and a list of vertices in
A ordered by π, we can identify whenever the condition (%) does not hold for
some 2-path centred at v. Repeating this step for each vertex v ∈ B or until an
appropriate 2-path is found, we can check if (%) is satisfied. This algorithm runs
in O(|A|) time since if the section of the ordered list of A traversed with respect
to some vertex v ∈ B overlaps the corresponding section for some other vertex
w ∈ B, then condition (%) is not satisfied, and the algorithm will immediately
terminate. To count the number and size of the diamonds in G[F] takes O(|G|)
time. Thus, the algorithm takes O(|G|) time at each node of the search tree.
Since each node of the search tree has three children, and the height of the tree
is at most k, the algorithm runs in O(3k · |G|) time.
�

6 Conclusion

To the best of our knowledge, this paper and our companion paper [3] give
the first applications of fixed-parameter tractability methods to graph drawing
problems. Here, we study two problems, 1- and 2-Layer Planarization, which

A Fixed-Parameter Approach to Two-Layer Planarization 15

are of fundamental interest in layered graph drawing. Our methods yield linear-
time algorithms to determine if bpr(G) ≤ k and bpr(G, π) ≤ k, for fixed k. When
k is allowed to vary, the running time of the algorithms is, not surprisingly,
exponential in k, but the base of the exponent is small. We believe that further
study will demonstrate practical as well as theoretical benefit from this approach,
and that these methods will prove more widely applicable.

References

1. G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Graph Drawing: Algorithms
for the Visualization of Graphs. Prentice-Hall, 1999.

2. R. G. Downey and M. R. Fellows. Parametrized complexity. Springer, 1999.
3. V. Dujmović, M. Fellows, M. Hallett, M. Kitching, G. Liotta, C. McCartin,

N. Nishimura, P. Ragde, F. Rosemand, M. Suderman, S. Whitesides, and D. R.
Wood. On the parameterized complexity of layered graph drawing. In Proc. 9th
European Symp. on Algorithms (ESA ’01), to appear.

4. P. Eades, B. D. McKay, and N. C. Wormald. On an edge crossing problem. In Proc.
9th Australian Computer Science Conference, pages 327–334. Australian National
University, 1986.

5. P. Eades and S. Whitesides. Drawing graphs in two layers. Theoret. Comput. Sci.,
131(2):361–374, 1994.

6. P. Eades and N. C. Wormald. Edge crossings in drawings of bipartite graphs.
Algorithmica, 11(4):379–403, 1994.

7. M. R. Garey and D. S. Johnson. Crossing number is NP-complete. SIAM J.
Algebraic Discrete Methods, 4(3):312–316, 1983.

8. F. Harary and A. Schwenk. A new crossing number for bipartite graphs. Utilitas
Math., 1:203–209, 1972.

9. M. Jünger and P. Mutzel. 2-layer straightline crossing minimization: performance
of exact and heuristic algorithms. J. Graph Algorithms Appl., 1(1):1–25, 1997.

10. M. Kaufmann and D. Wagner, editors. Drawing Graphs: Methods and Models,
volume 2025 of Lecture Notes in Comput. Sci. Springer, 2001.

11. T. Lengauer. Combinatorial Algorithms for Integrated Circuit Layout. Wiley, 1990.
12. P. Mutzel. An alternative method to crossing minimization on hierarchical graphs.

SIAM J. Optimization, 11(4):1065–1080, 2001.
13. P. Mutzel. Optimization in leveled graphs. In P. M. Pardalos and C. A. Floudas,

editors, Encyclopedia of Optimization. Kluwer, to appear.
14. P. Mutzel and R. Weiskircher. Two-layer planarization in graph drawing. In K. Y.

Chwa and O. H. Ibarra, editors, Proc. 9th International Symp. on Algorithms and
Computation (ISAAC’98), volume 1533 of Lecture Notes in Comput. Sci., pages
69–78. Springer, 1998.

15. F. Shahrokhi, O. Sýkora, L. A. Székely, and I. Vrťo. On bipartite drawings and
the linear arrangement problem. SIAM J. Comput., 30(6):1773–1789, 2001.

16. K. Sugiyama, S. Tagawa, and M. Toda. Methods for visual understanding of hier-
archical system structures. Trans. Systems Man Cybernet., 11(2):109–125, 1981.

17. N. Tomii, Y. Kambayashi, and S. Yajima. On planarization algorithms of 2-level
graphs. Papers of tech. group on elect. comp., IECEJ, EC77-38:1–12, 1977.

18. V. Valls, R. Marti, and P. Lino. A branch and bound algorithm for minimizing the
number of crossing arcs in bipartite graphs. J. Operat. Res., 90:303–319, 1996.

19. M. S. Waterman and J. R. Griggs. Interval graphs and maps of DNA. Bull. Math.
Biol., 48(2):189–195, 1986.

	A Fixed-Parameter Approach to Two-Layer Planarization
	Introduction
	Fixed Parameter Tractability and Our Results

	Preliminaries
	Kernelization
	Bounded Search Trees
	1-Layer Planarization
	Conclusion
	References

