Skip to main content

Structure Based Interpretation of Unstructured Vector Maps

  • Conference paper
  • First Online:
Graphics Recognition Algorithms and Applications (GREC 2001)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2390))

Included in the following conference series:

Abstract

This work presents an approach to map interpretation starting from unstructured vector data. For this task a map interpreter based on PROLOG and grammatical object descriptions has been considered. The major challenge in this approach is the definition of production rules and grammars which are general enough to handle different data sets and which are specific enough to discriminate the different object types.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Marlies de Gunst, Peter van Oosterom, and Berry van Osch. Modeling, computing and classifying topographic area features based on non-structured line input data. In Klaas Jan Beek and Martien Molenaar, editors, Geoinformation For All, XIXth Congress of the ISPRS, volume XXXIII, Sup. B4 of International Archives of Photogrammetry and Remote Sensing, pages 43–50, Groningen, The Netherlands, July 2000. ISPRS, Gopher Publishers.

    Google Scholar 

  2. Jurgen den Hartog, Bernardus T. Holtrop, and Marlies de Gunst. Interpretation of geographic vector-data in practice. In Atul K. Chhabra and Dov Dori, editors, Graphics Recognition-Recent Advances, volume 1941 of Lecture Notes in Computer Science, pages 50–57. Springer Verlag, Berlin, 2000.

    Chapter  Google Scholar 

  3. Antonin Guttmann. R-trees: A dynamic index structure for spatial searching. In ACM SIGMOD International Conference on Management on Data, pages 47–57, Boston, June 1984.

    Google Scholar 

  4. Jochen Kubinick, Bettina Barth, Gero Weber, Andreas Müller, and Alain Lefefre. Spatial Data Clearinghouse Saar-Lor-Lux (CLEAR). Geoinformationssysteme, 13(1):28–32, February 2000.

    Google Scholar 

  5. Bruce Momjian. PostgreSQL: Introduction and Concepts. Addison-Wesley, 2001.

    Google Scholar 

  6. Jan A. Mulder, Alan K. Mackworth, and William S. Havens. Knowledge structuring and constraint satisfaction: The mapsee approach. IEEE Transactions on Pattern Analysis and Machine Intelligence, 10(6):866–879, November 1988.

    Google Scholar 

  7. Inc. Open GIS Consortium. Opengis simple features specification, 1999. http://www.opengis.org/techno/specs.htm.

  8. Hanan Samet and Aya Soffer. MARCO: MAp Retrieval by COntent. IEEE Transactions on Pattern Analysis and Machine Intelligence, 18(8):783–798, August 1996.

    Google Scholar 

  9. U. Stilla and E. Michaelsen. Semantic modelling of man-made objects by production nets. In Armin Gruen, Emmanuel P. Baltsavias, and Olof Henricsson, editors, Automatic extraction of man-made objects from aerial and space images, pages 43–52, Basel, 1997. Birkhäuser Verlag.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Weindorf, M. (2002). Structure Based Interpretation of Unstructured Vector Maps. In: Blostein, D., Kwon, YB. (eds) Graphics Recognition Algorithms and Applications. GREC 2001. Lecture Notes in Computer Science, vol 2390. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45868-9_16

Download citation

  • DOI: https://doi.org/10.1007/3-540-45868-9_16

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44066-6

  • Online ISBN: 978-3-540-45868-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics