
Specifying Algorithm Visualizations:
Interesting Events or State Mapping?�

Camil Demetrescu1, Irene Finocchi2, and John T. Stasko3

1 Dipartimento di Informatica e Sistemistica,
Università di Roma “La Sapienza”,
Via Salaria 113, 00198 Roma, Italy.
demetres@dis.uniroma1.it,
http://www.dis.uniroma1.it/˜demetres/

2 Dipartimento di Scienze dell’Informazione,
Università di Roma “La Sapienza”,
Via Salaria 113, 00198 Roma, Italy.
finocchi@dsi.uniroma1.it,
http://www.dsi.uniroma1.it/˜finocchi/

3 College of Computing / GVU Center,
Georgia Institute of Technology
Atlanta, GA 30332-0280.
stasko@cc.gatech.edu,
http://www.cc.gatech.edu/˜john.stasko/

Abstract.

Perhaps the most popular approach to animating algorithms consists of identifying
interesting events in the implementation code, corresponding to relevant actions in the
underlying algorithm, and turning them into graphical events by inserting calls to sui-
table visualization routines. Another natural approach conceives algorithm animation
as a graphical interpretation of the state of the computation of a program, letting
graphical objects in a visualization depend on a program’s variables. In this paper we
provide the first direct comparison of these two approaches, identifying scenarios where
one might be preferable to the other. The discussion is based on examples realized with
the systems Polka and Leonardo.

1 Introduction

One of the main issues in algorithm animation is the specification of the graphi-
cal abstractions that illustrate computations. Two problems arise in this context:
� Work supported in part by the project “Algorithms for Large Data Sets: Science and
Engineering” of the Italian Ministry of University and of Scientific and Technological
Research (ex MURST 40%) and by the IST Programme of the EU under contract
n. IST-1999-14.186 (ALCOM-FT).

S. Diehl (Ed.): Software Visualization, LNCS 2269, pp. 16–30, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

Specifying Algorithm Visualizations 17

modeling graphical scenes and animation transitions, and binding the attributes
and the animated behavior of graphical objects to the underlying algorithmic
code. The power of a specification method is mainly related to its flexibility,
generality, and capability to customize visualizations. In this setting, a common
approach is to use conventional textual programming languages as specification
tools. In general, a visualization specification language can be different from the
language used for implementing the algorithm to be visualized, though they often
coincide. An important factor that determines the connection of the visualization
code with the algorithm implementation is how animation events are triggered
by the underlying computation. One approach, dubbed event-driven, consists
of identifying interesting events in the implementation code, corresponding to
relevant actions of the algorithm, and turning them into graphical events by
inserting calls to suitable animation routines, usually written in an imperative
or object-oriented style. Another natural approach, dubbed data-driven, is to
specify a mapping of the computation state into graphical scenes, usually decla-
ring attributes of graphical objects to depend on variables of the underlying
program. In this case, animation events are triggered by variable modifications.
For a comprehensive discussion of other specification methods used in algorithm
visualization, we refer the interested reader to [4,12,13,15,21].

This article provides the first direct comparison of the interesting event and
state mapping specification styles. The two approaches are reviewed in more de-
tail in Section 2. Section 3 addresses the problem of specifying a basic algorithm
visualization and provides two different solutions for the Bubblesort algorithm,
one event-driven and one data-driven, realized in the systems Polka [20] and
Leonardo [9]. Further advanced aspects of algorithm visualization specification
are considered in Section 4: the discussion is based on refinements and exten-
sions of the Bubblesort visualization code given in Section 3. Section 5 addresses
concluding remarks.

2 Two Visualization Specification Techniques

In this section we briefly review the event-driven and the data-driven visualiza-
tion specification methods, listing some systems that instantiate the two appro-
aches, and in particular the systems Polka [20] and Leonardo [9].

2.1 Event-Driven Approach

A natural approach to animating algorithms consists of annotating the algorith-
mic code with calls to visualization routines. The first step consists of identifying
the relevant actions performed by the algorithm that are interesting for visualiza-
tion purposes. Such relevant actions are usually referred to as interesting events.
For instance, in a sorting algorithm the swap of two items can be considered
an interesting event. The second step is to associate each interesting event with
a suitable animation scene. In the sorting example, if we depict the values to
be ordered as a sequence of sticks of different heights, the animation of a swap

18 C. Demetrescu, I. Finocchi, and J.T. Stasko

event might be realized by exchanging the positions of the two sticks correspon-
ding to the values being swapped. Animation scenes can be specified by setting
up suitable visualization procedures that drive the graphic system according to
the actual parameters generated by the particular event. Alternatively, these
visualization procedures may simply log the events in a file for a post-mortem
visualization. Calls to the visualization routines are usually obtained by annota-
ting the original algorithmic code in the points where the interesting events take
place. This can be done either by hand or by means of specialized editors.

The event-driven approach is very intuitive and virtually any conceivable
visualization can be generated in this way. Besides being simple to implement,
interesting events are not necessarily low-level operations (such as comparisons
or memory assignments), but can be more abstract and complex operations de-
signed by the programmer and strictly related to the algorithm being visualized
(e.g., the swap in the previous example, as well as a rotate operation in the
management of AVL trees). Major drawbacks are invasiveness (even if the code
is not transformed, it is augmented) and code ignorance allowance: the person
who is in charge of realizing the animation has to know the source code quite
well in order to identify all the interesting points.

A limited list of well-known systems based on interesting events include
Balsa [3], Zeus [5], Tango [18], XTango [19], Polka [20], CAT [6], ANIM [2].

Polka. In this paper we will consider examples of visualizations based on inte-
resting events realized with Polka. Polka is a system for visualizing programs
written in C++. The system has two main foci: allowing designers to create ani-
mations with smooth, continuous movements and simplifying the overall process
of developing algorithm animations. To build an algorithm animation with Polka,
the developer annotates the program source with Algorithm Operations. These
are Polka’s version of Interesting Events. The developer also creates Animation
Scenes that are procedures which perform an animation chunk and are written
using the Polka graphics library. Finally, the developer specifies a mapping bet-
ween algorithm operations and animation scenes. The Polka system distribution
includes full source code and numerous animation examples. Versions of Polka for
both the X Window System and Microsoft Windows exist. Further information
can be found at the URL http://www.cc.gatech.edu/gvu/softviz.

2.2 Data-Driven Approach

Data-driven systems rely on the assumption that observing how variables of a
program change provides clues to the actions performed by the underlying algo-
rithm. The focus is on capturing and monitoring the data modifications rather
than on processing the interesting events issued by the annotated algorithmic
code. Specifically, data-driven systems realize a graphical mapping of the state
of the computation (state mapping): an example is given by conventional debug-
gers, which provide a direct feedback of how variables change over time.

Specifying an animation in a data-driven system consists of providing a gra-
phical interpretation of the interesting data structures of the algorithmic code.

Specifying Algorithm Visualizations 19

It is up to the system to ensure that the graphical interpretation reflects at any
time the state of the computation of the program being animated. In the case
of conventional debuggers, the interpretation is fixed and cannot be changed by
the user: typically, a direct representation of the content of variables is provided.
The debugger just updates the display after each change, sometimes highlighting
the latest variable that has been modified by the program to help the user main-
tain context. In a more general scenario, an adjacency matrix used in the code
may be visualized as a graph with vertices and edges, an array of numbers as a
sequence of sticks of different heights, and a heap vector as a balanced tree. As
the focus is only on data structures, the same graphical interpretation, and thus
the same visualization code, may be reused for any algorithm that uses a given
data structure. For instance, any sorting algorithm that manages to reorganize
a given array of numbers may be animated with exactly the same visualization
code that displays the array as a sequence of sticks. Main advantages of the
data-driven approach are a clean animation design and a high ignorance of the
code: in most cases only the interpretation of “interesting variables” has to be
known in order to produce a basic animation. On the other hand, focusing only
on data modification may sometimes limit customization possibilities, making it
difficult to realize animations that would be natural to express with interesting
events. As we will see in Section 4, a pure state mapping approach, where there
is no connection of the visualization code with the program’s control flow, is
intrinsically less powerful than interesting events.

Examples of systems based on state mapping are Pavane [14,16], Leonardo [9],
and WAVE [10]. Toolkits such as CATAI [8], Gato [17] and LEDA [11] provide
self-animating data structures, incorporating the principles of state mapping, but
still supporting interesting events. Declarative visual programming languages
that integrate algorithm animation capabilities have been also considered (see,
for instance, Forms/3 [7]).

Leonardo. In this paper we will consider examples of state mapping visualiza-
tions realized with Leonardo. Leonardo is an integrated environment for deve-
loping, executing, and visualizing C programs. It provides two major improve-
ments over a traditional integrated development environment. In particular, it
supports a mechanism for visualizing computations graphically as they happen
by attaching in a declarative style graphical representations to key variables
in a program. With this technique, basic animations can usually be obtained
with a few lines of additional code. It is to notice that Leonardo does not rea-
lize a pure state mapping, in the sense that it allows the user to control in an
imperative style which visualization declarations are active at any time. Howe-
ver, differently from the interesting events, these manipulations change the set
of active declarations, rather than the visualization itself, and may not have
necessarily an immediate effect on the graphical scene. As a second main fea-
ture, Leonardo includes the first run-time environment that supports fully re-
versible execution of C programs. The system is distributed with a collection
of animations of more than 60 algorithms and data structures including ap-
proximation, combinatorial optimization, computational geometry, on-line, and

20 C. Demetrescu, I. Finocchi, and J.T. Stasko

dynamic algorithms. Leonardo has been widely distributed on CD-ROM in com-
puter magazines and is available for download in many software archives over
the Web. It has received several technical reviews and more than 18,000 down-
loads during the last two years. At the time of writing, Leonardo is available
only on the Macintosh platform. Further information can be found at the URL
http://www.dis.uniroma1.it/˜demetres/Leonardo/.

3 Anatomy of a Basic Visualization Specification

In this section we show how to specify a simple algorithm visualization using in-
teresting events and state mapping. In particular, we focus on sorting algorithms
and we show how to specify the well-known sticks visualization, where items to
be sorted, assumed to be non-negative numbers, are visualized as rectangles of
height proportional to their values. We first describe how the final visualization
should look, and then we provide two solutions for the Bubblesort algorithm: one
event-driven, realized with Polka, and one data-driven, realized with Leonardo.
We give and discuss actual code and screenshots from both. For simplicity, we
do not address issues of interaction with the visualization.

Bubblesort Code. We base our visualization examples on the following C/C++
implementation of the Bubblesort algorithm, which sorts an array v of n integer
values.

1. int v[]={3,5,2,9,6,4,1,8,0,7}, n=10, i, j;
2. void main(void) {
3. for (j=n; j>0; j--)
4. for (i=1; i<j; i++)
5. if (v[i-1]>v[i]) {
6. int temp=v[i]; v[i]=v[i-1]; v[i-1]=temp;
7. }
8. }

In this implementation, the first pass of lines 4–7 scans the first n elements, the
second pass scans the first n − 1 elements, etc. As elements are being swapped,
each pass leaves the highest element found at its final proper position.

Visualization Setup. The first steps in specifying an algorithm visualization con-
sist of deciding which pieces of information related to the algorithm’s execution
should be visualized and choosing a suitable graphical representation for them.
In the case of sorting algorithms, an effective visual methaphor is to associate
sticks of different heights to elements to be sorted. A possible simple layout
places sticks vertically from left to right aligning their tops at the top of the vie-
wport (see Figure 1). A swap operation can be animated in many ways: perhaps
the simplest one is to show consecutive scenes that visualize the sticks before
and after the swap.

Specifying Algorithm Visualizations 21

(a) (b)

Fig. 1. Screenshots of the Bubblesort visualization in: (a) Polka; (b) Leonardo.

Polka. Visualizations are specified in Polka by annotating the program source
with interesting events. Below, we show the source code for the Bubblesort pro-
gram that has been annotated with interesting event calls.

1. int v[] = {3,5,2,9,6,4,1,8,0,7}, n=10, i, j;
2. void main(void) {
3. bsort.SendAlgoEvt("Input",n,v);
4. for (j=n; j>0; j--)
5. for (i=1; i<j; i++)
6. if (v[i] > v[i+1]) {
7. int temp = v[i]; v[i] = v[i-1]; v[i-1] = temp;
8. bsort.SendAlgoEvt("Exchange",i,i-1);
9. }

10. }

Two events exist here. The first, “Input”, signifies that all the array values to
be sorted are set and that the animation should draw the initial configuration
of the array. The event must send the size of the array and the array itself to
the animation component as parameters.

We will omit the animation scene that is invoked as a response to the “Input”
event for brevity. This scene creates and lays out the set of vertical rectangles and
stores them in an array of Polka Rectangle objects, which is a subclass of the
basic graphic primitive AnimObject. The scene does involve some subtle geome-
tric calculations, however, as the designer must position all the rectangles with
their tops aligned, space the rectangles out horizontally, and scale the heights
of the rectangles according to the corresponding array values. Frequently, this
type of geometric layout is the most difficult aspect of creating an algorithm
animation.

The second event, “Exchange”, signifies that a swap of two elements has oc-
curred. It passes the indices of the two exchanged array elements as parameters.
The corresponding animation code for this event is shown below.

1. int Rects::Exchange(int i, int j) {

22 C. Demetrescu, I. Finocchi, and J.T. Stasko

2. Loc *loc1 = blocks[i]->Where(PART_NW);
3. Loc *loc2 = blocks[j]->Where(PART_NW);
4. Action a("MOVE",loc1,loc2,1);
5. Action *b = a.Reverse();
6. int len = blocks[i]->Program(time,&a);
7. time = Animate(time,len);
8. len = blocks[j]->Program(time,b);
9. time = Animate(time,len);

10. Rectangle *t = blocks[i]; blocks[i] = blocks[j]; blocks[j] = t;
11. return len;
12. }

First, we get the top-left (NW) corners of the two appropriate rectangles (lines
2–3), and then we create two movement Actions between them, in the two
opposite directions (lines 4–5). Next, we schedule the first block’s animation to
occur at the current time; animate it; schedule the second block’s animation; and
animate it. Finally, we must swap the two objects being held int the Rectangle
AnimObject array. This animation routine makes the first rectangle move in one
sudden jump, then the second rectangle moves afterward, again in one jump.
Note that the variables blocks and time are defined in this particular View of
the animation which is a C++ class of type Rects here. A screenshot of the
resulting visualization in Polka is shown in Figure 1a.

Leonardo. Visualizations are specified in Leonardo by adding to C programs
declarations written in Alpha, a simple declarative language, enclosing them
with separators /** and **/. A complete Alpha specification of the sticks visua-
lization described above is shown below; this fragment can be simply appended
to the Bubblesort code and compiled in Leonardo.

1. /**
2. View(Out 1);
3. Rectangle(Out ID,Out X,Out Y,Out L,Out H,1)
4. For N:InRange(N,0,n-1)
5. Assign X=20+20*N Y=20 L=15 H=15*v[N] ID=N;
6. **/

In line 2 we declare a window with identification number 1: this window is the
container of the visualization. Sticks are then declared in lines 3–5, where we enu-
merate n rectangles (line 4), and we locate them in the local coordinate system
according to the desired layout (line 5). Specified geometrical attributes include
the coordinates of the left-top corner (X,Y), the width W, and the height H of the
N-th rectangle, with N ∈ [0, n − 1]. The last parameter in the Rectangle decla-
ration (line 3) makes sticks appear in window 1. Like windows, rectangles have
identification numbers (ID): this allows us to refer to them in any subsequent
declarations.

Observe that the Alpha code refers to variables v and n of the underlying C
program, and size and position of sticks depend on them: Leonardo reevaluates
automatically the Alpha code and updates the graphical scene for each change

Specifying Algorithm Visualizations 23

of these variables. Since both statements v[i]=v[i-1] and v[i-1]=temp in line
6 change the array v, this yields two animation events per swap. A screenshot
of the resulting visualization in Leonardo is shown in Figure 1b.

Even if imperative state mapping specification has also been considered (see
WAVE [10]), the declarative approach has many advantages: in particular, the
programmer is encouraged to think in terms of “what she wants”, and not in
terms of “how to obtain it” (see, e.g., Section 4.3). A price paid for this, howe-
ver, may be a steeper learning curve for programmers who have never used a
declarative language.

4 Customizing Visualizations

The task of specifying a visualization usually proceeds incrementally through
different levels of sophistication. In Section 3 we have shown how to specify the
well-known sticks visualization of the Bubblesort algorithm. As the power of a
specification method is mainly related to flexibility, generality, and capability
of customizing visualizations, we now consider some refinements of the basic
Bubblesort animation, discussing further aspects of interesting events and state
mapping.

4.1 Specifying the Granularity of Animations

We use the word granularity to indicate the level of detail of animation events:
for instance, a sorting animation where items being swapped are moved one at
a time, as in the example in Section 3, is characterized by a higher granularity
(closer to the actual code that uses a temporary variable for the swap) than the
one where both items are moved simultaneously (elementary steps are logically
grouped and details elided).

There is a main difference in the way granularity is controlled with interesting
events and state mapping. To generate an animation event with interesting
events, a function has to be called: thus, increasing the number of animation
events requires increasing the number of function calls, so the granularity is low
by default. With state mapping, each change of a variable being mapped into
some graphical object yields automatically an animation event, so the granula-
rity is high by default: to control granularity we therefore need a mechanism to
prevent variable changes from being automatically turned into animation events.
In the following, we show how to modify the Bubblesort visualization code pre-
sented in Section 3 in order to reduce the granularity in the swap animation.

Polka. Making the two blocks exchange positions simultaneously, rather than
sequentially, is straighforward in Polka. We simply schedule their movement
Actions to commence at the same animation time, and then we animate after
that. The code below, when substituted into the Exchange animation routine of
Section 3, performs this concurrent animation.

24 C. Demetrescu, I. Finocchi, and J.T. Stasko

6. int len = blocks[i]->Program(time,&a);
7. blocks[j]->Program(time,b);
8. time = Animate(time,len);
9.

Notice that we have reduced the number of visualization instructions in order
to reduce the number of animation events.

Leonardo. Leonardo provides a simple mechanism for controlling the granula-
rity: if the predicate ScreenUpdateOn is declared, then variable changes trigger
automatically updates of the visualization. If ScreenUpdateOn is not declared,
then the visualization system is idle and no animation events occur. To let each
swap in our example produce just one animation event, we can temporary sus-
pend screen updates while the swap occurs: we just “undeclare” ScreenUpdateOn
before the swap, and redeclare it thereafter, as shown below.

6. /** Not ScreenUpdateOn; **/
7. int temp=v[i]; v[i]=v[i-1]; v[i-1]=temp;
8. /** ScreenUpdateOn; **/

Notice that we have increased the number of the visualization instructions in
order to reduce the number of animation events.

4.2 Accessing vs. Modifying Data Structures

Sometimes we might be interested in visualizing actions of an algorithm corre-
sponding to no variable modification: consider, for instance, events of comparison
of two elements in a sorting algorithm to decide whether they need to be swap-
ped. It is easy to animate such actions with interesting events, which can be
associated to any conceivable algorithmic event. On the contrary, this seems to
be a major problem with state mapping, where animation events can result only
from variable changes.

Polka. Suppose that we wish to illustrate the comparison of two array elements
to determine whether they need to be exchanged. To do so, we add a new inte-
resting event named “Compare” to the Bubblesort source code. This event occurs
just before the actual value comparison is made in the program, and it passes the
two pertinent array indices as parameters. Below, we show the modified program
source.

1. int v[] = {3,5,2,9,6,4,1,8,0,7}, n=10, i, j;
2. void main(void) {
3. bsort.SendAlgoEvt("Input",n,v);
4. for (j=n; j>0; j--)
5. for (i=1; i<j; i++) {
6. bsort.SendAlgoEvt("Compare",i,i-1);
7. if (v[i-1] > v[i]) {
8. int temp = v[i]; v[i] = v[i-1]; v[i-1] = temp;

Specifying Algorithm Visualizations 25

9. bsort.SendAlgoEvt("Exchange",i,i-1);
10. }
11. }
12. }

Let us suppose that we want to illustrate the comparison operation in the
program by flashing the two corresponding rectangles in the animation. This is
performed in Polka by modifying the fill value of the Rectangle AnimObjects.
Originally, the rectangles have a fill value of 0.0, indicating that they are simply
outlines (1.0 signifies solid color fill, and values in between correspond to inter-
mediate fills). We create a “FILL” animation action of two frames that takes
the rectangle from empty, to half-filled, and back to empty. We then make a
new Action that is this simple fill change iterated four times, thus making the
flashing effect more striking. We schedule this behavior into both rectangles and
perform the animation.

1. int Rects::Compare(int i, int j) {
2. double flash[2];
3. flash[0] = 0.5;
4. flash[1] = -0.5;
5. Action a("FILL",2,flash,flash);
6. ActionPtr b = a.Iterate(4);
7. int len = blocks[i]->Program(time,b);
8. len = blocks[j]->Program(time,b);
9. time = Animate(time, len);

10. return len;
11. }

Leonardo. A general way to illustrate a comparison event in Leonardo is to
“simulate” an interesting event. To do so, we add to the Bubblesort program a
new C function, void Compare(int i,int j), which takes the two pertinent
array indices as parameters. This function is invoked just before the comparison
and highlights the elements being compared, very much like the interesting event
“Compare” does in the Polka code.

1. void Compare(int i, int j) {
2. int k=0;
3. /** RectangleColor(ID,Out Grey,1) If (ID==i || ID==j) && k%2; **/
4. while (k<8) k++;
5. }

The main idea is to create a dummy sequence of variable changes: to this aim, we
declare a local variable k, whose value flips four times from even to odd and back
to even (line 4). The declaration in line 3, whose scope is local to the function
body, just states that rectangles with IDs equal to i or to j, corresponding to
the elements being compared, must have solid gray color fill whenever k is odd
(i.e., k%2 is non-zero). Even if this unusual method for defining animations may
seem strange at first sight, mixing declarative and imperative specification yields
great flexibility in the animation design.

26 C. Demetrescu, I. Finocchi, and J.T. Stasko

Notice that variable i in the Bubblesort code indicates which items are cur-
rently being compared: thus, highlighting them would be easy in a pure decla-
rative style. However, this would be an indirect way of portraying comparison
events and might not be applicable to other algorithms.

4.3 Visualizing Invariant Properties of Algorithms

An important issue in algorithm visualization is portraying invariant properties
of a program, which usually provide a sound foundation to the algorithm’s correc-
tness or performances. Visualizing invariant properties can help discover imple-
mentation errors and foster a better comprehension of combinatorial, algebraic,
or numerical aspects of the problem at hand.

An interesting invariant property of the Bubblesort code shown in Section 3
is that array elements with indices greater than or equal to j are always at their
final proper positions. We note that, since eventually j gets equal to zero, this
implies the correctness of the whole procedure. To highlight sticks corresponding
to elements that are properly positioned “in place”, we color them red.

Polka. We create a new interesting event titled “InPlace” taking one parameter,
the index of the array value now at its final position. We insert this event at the
end of the outer of the two main loops in the code. We also must add one final
event at the very end of the algorithm.

1. int v[] = {3,5,2,9,6,4,1,8,0,7}, n=10, i, j;
2. void main(void) {
3. bsort.SendAlgoEvt("Input",n,v);
4. for (j=n; j>0; j--) {
5. for (i=1; i<j; i++) {
6. bsort.SendAlgoEvt("Compare",i,i-1);
7. if (v[i-1] > v[i]) {
8. int temp = v[i]; v[i] = v[i-1]; v[i-1] = temp;
9. bsort.SendAlgoEvt("Exchange",i,i-1);

10. }
11. }
12. bsort.SendAlgoEvt("InPlace",j-1);
13. }
14. bsort.SendAlgoEvt("InPlace",0);
15. }

To indicate that an array element is in place, we change it from a simple outline
to a solid colored rectangle and we change its color to red. This animation routine
uses the “FILL” Action much as the Compare animation routine did as well as
a simple color change Action. We schedule both to occur at the same time, and
a one frame animation results.

1. int Rects::InPlace(int i) {
2. double f = 1.0;
3. Action a("FILL",1,&f,&f);

Specifying Algorithm Visualizations 27

4. Action b("COLOR","red");
5. blocks[i]->Program(time,&a);
6. int len = labels[i]->Program(time,&b);
7. time = Animate(time, len);
8. return len;
9. }

Leonardo. To achieve the same result in Leonardo, we just need to add the
following declaration to the Alpha code given in Section 3.

6. RectangleColor(ID,Out Red,1) If ID>=j;

Notice that the declarative specification allows us to encode directly the invariant
property described above: here we state that rectangles in window 1 having ID
greater than or equal to j, which correspond to array elements with indices
greater than or equal to j, should have red color.

4.4 Adding Smooth Animation

Smooth animation is a very useful addition to algorithm visualizations for crea-
ting continuity in the display and for capturing the user’s attention. In this
section we address the problem of specifying smooth animations using inte-
resting events and state mapping. In particular, we modify the Bubblesort ex-
ample to visualize swaps as smooth transitions along curved paths, rather than
jerky movements. While obtaining the desired solution with interesting events
is straightforward in Polka, the Leonardo implementation involves some subtle
considerations.

Polka. Changing the exchange operation’s movement animations from being one
frame “jumps” to smooth, multiframe, curved motions is very easy with Polka.
We simply change the one line of the Exchange animation routine that constructs
the movement path. We use a different Action constructor, one that utilizes the
predefined CLOCKWISE trajectory taking 20 animation frames.

10. Action a("MOVE",loc1,loc2,CLOCKWISE);

Leonardo. If the predicate SmoothAnimationOn is declared, Leonardo provides
automatic in-betweening of graphical scenes: changes of graphical objects by
the same IDs in consecutive scenes are automatically linearly interpolated to
generate intermediate frames. In order for this to work properly, no two graphical
objects can have the same ID.

We now consider the animation effect obtained by simply adding to our
Bubblesort visualization code the following declaration.

7. SmoothAnimationOn;

28 C. Demetrescu, I. Finocchi, and J.T. Stasko

Since a rectangle with ID=x has height proportional to v[x] in our implemen-
tation (see line 5 of the visualization code in Section 3), swaps are seen from
the viewpoint of array slots, which get their content changed. Thus, the swap
animation resulting from declaring SmoothAnimationOn is that one stick grows
and one shrinks. This might be fine anyway, but we were expecting sticks to
jump, not change in size as in an animated histogram.

To customize the behavior to the desired result, we can look at swaps from the
viewpoint of elements that move from slot to slot: to do so, we just let ID=v[N]
instead of ID=N in line 5 of the visualization specification. In this way, rectangles
by the same ID may have different positions before and after a swap, but same
size. To meet the requirement that no two graphical objects can have the same
ID, now we have the constraint that the array must contain no duplicates. We
might also need to revise previous declarations that assumed ID=N, e.g., predicate
RectangleColor in Section 4.3. At this point, to move sticks along curves instead
of straight lines, we can further customize the animation, adding the following
declaration.

8. RectanglePosPath(ID,Out Curve,1);

Here we declare that any change of position of a rectangle in window 1, regardless
of its ID, must be interpolated along a curve. Notice that the animation behavior
of a graphical object is specified in Leonardo as an attribute of the object itself.

4.5 Other Issues

Showing Computation History. While invariant properties of programs are easily
visualized with state mapping since they are defined on the current computa-
tion state, visualizing the history of the computation may be difficult, unless the
current state of the computation includes some information about previous sta-
tes. In fact, the solution usually adopted with both interesting events and state
mapping is to record some history of previous states in a data structure, which
is accessed for generating the visualization. Another possible solution with state
mapping is to record the history in the mapping itself, which is progressively
enriched with new declarations as the program runs.

Animating Multi-phase Algorithms. Some algorithms are based on several in-
ternal phases, each of which should be visualized in a different way (see, e.g.,
Ford-Fulkerson’s maxflow algorithm [1]). This is achieved quite naturally with in-
teresting events. Visualizing multi-phase algorithms with a pure state mapping,
instead, may be difficult: the problem is easily solved, however, if the system
allows us to let the graphical interpretation of variables depend upon the por-
tion of code that is currently being executed. Leonardo, for instance, provides
ad-hoc directives (Not x, Assert x, Negate x, Substitute x With y) that can
activate, deactivate, or replace previous declarations at any point of the algo-
rithmic code. We remark that, even if this is still state mapping, it is not “pure”
in the sense that the set of active declarations defining the mapping depends on
the program’s control flow and is manipulated in an imperative style.

Specifying Algorithm Visualizations 29

5 Conclusions

In this paper we have addressed specification aspects in algorithm visualization,
providing the first direct comparison of the two most commonly used specifica-
tion methods: interesting events and state mapping. We have based our discus-
sion on specifying the well-known sticks visualization of the Bubblesort algorithm
in the systems Polka and Leonardo, which instantiate the two approaches.

While interesting events are very intuitive and well-suited for specifying hig-
hly customized animations, they usually require developers to write several lines
of additional code even for basic animations, and may lack in code ignorance al-
lowance. On the other side, specifying visualizations with state mapping usually
requires developers to write few lines of additional code, and little knowledge
of the underlying code is needed, but this method may have a steeper learning
curve and appears to be less flexible than interesting events in some customiza-
tion aspects. It is our opinion that devising systems able to support both the
declarative and the imperative visualization specification styles would represent
an interesting research contribution, likely to be best suited for deployment in
concrete applications.

References

1. R.K. Ahuja, T.L. Magnanti, and J.B. Orlin. Network Flows: Theory, Algorithms
and Applications. Prentice Hall, Englewood Cliffs, NJ, 1993.

2. J. Bentley and B. Kernighan. A System for Algorithm Animation: Tutorial and
User Manual. Computing Systems, 4(1):5–30, 1991.

3. M.H. Brown. Algorithm Animation. MIT Press, Cambridge, MA, 1988.
4. M.H. Brown. Perspectives on Algorithm Animation. In Proceedings of the ACM

SIGCHI’88 Conference on Human Factors in Computing Systems, pages 33–38,
1988.

5. M.H. Brown. Zeus: a System for Algorithm Animation and Multi-View Editing.
In Proceedings of the 7-th IEEE Workshop on Visual Languages, pages 4–9, 1991.

6. M.H. Brown and M. Najork. Collaborative Active Textbooks: a Web-Based Al-
gorithm Animation System for an Electronic Classroom. In Proceedings of the
12th IEEE International Symposium on Visual Languages (VL’96), pages 266–275,
1996.

7. P. Carlson, M. Burnett, and J. Cadiz. Integration of Algorithm Animation into
a Visual Programming Language. In Proc. Int. Workshop on Advanced Visual
Interfaces, 1996.

8. G. Cattaneo, U. Ferraro, G.F. Italiano, and V. Scarano. Cooperative Algorithm and
Data Types Animation over the Net. In Proc. XV IFIP World Computer Congress,
Invited Lecture, pages 63–80, 1998. To appear in Journal of Visual Languages and
Computing. System home page: http://isis.dia.unisa.it/catai/.

9. P. Crescenzi, C. Demetrescu, I. Finocchi, and R. Petreschi. Reversible Execu-
tion and Visualization of Programs with LEONARDO. Journal of Visual Lan-
guages and Computing, 11(2):125–150, 2000. Leonardo is available at the URL:
http://www.dis.uniroma1.it/˜demetres/Leonardo/.

30 C. Demetrescu, I. Finocchi, and J.T. Stasko

10. C. Demetrescu, I. Finocchi, and G. Liotta. Visualizing Algorithms over the Web
with the Publication-driven Approach. In Proc. of the 4-th Workshop on Algorithm
Engineering (WAE’00), LNCS 1982, pages 147–158, 2000.

11. K. Mehlhorn and S. Naher. LEDA: A Platform of Combinatorial and Geometric
Computing. Cambrige University Press, ISBN 0-521-56329-1, 1999.

12. B.A. Myers. Taxonomies of Visual Programming and Program Visualization. Jour-
nal of Visual Languages and Computing, 1:97–123, 1990.

13. B.A. Price, R.M. Baecker, and I.S. Small. A Principled Taxonomy of Software
Visualization. Journal of Visual Languages and Computing, 4(3):211–266, 1993.

14. G.C. Roman and K.C. Cox. A Declarative Approach to Visualizing Concurrent
Computations. Computer, 22:25–36, 1989.

15. G.C. Roman and K.C. Cox. A Taxonomy of Program Visualization Systems.
Computer, 26:11–24, 1993.

16. G.C. Roman, K.C. Cox, C.D. Wilcox, and J.Y Plun. PAVANE: a System for Decla-
rative Visualization of Concurrent Computations. Journal of Visual Languages and
Computing, 3:161–193, 1992.

17. A. Schliep and W. Hochstättler. Developing Gato and CATBox with Python:
Teaching Graph Algorithms through Visualization and Experimentation. In Pro-
ceedings of Multimedia Tools for Communicating Mathematics (MTCM’00), 2000.

18. J.T. Stasko. TANGO: A Framework and System for Algorithm Animation. Com-
puter, 23:27–39, 1990.

19. J.T. Stasko. Animating Algorithms with X-TANGO. SIGACT News, 23(2):67–71,
1992.

20. J.T. Stasko. A Methodology for Building Application-Specific Visualizations of
Parallel Programs. Journal of Parallel and Distributed Computing, 18:258–264,
1993.

21. J.T. Stasko, J. Domingue, M.H. Brown, and B.A. Price. Software Visualization:
Programming as a Multimedia Experience. MIT Press, Cambridge, MA, 1997.

	Introduction
	Two Visualization Specification Techniques
	Event-Driven Approach
	Data-Driven Approach

	Anatomy of a Basic Visualization Specification
	Customizing Visualizations
	Specifying the Granularity of Animations
	Accessing vs. Modifying Data Structures
	Visualizing Invariant Properties of Algorithms
	Adding Smooth Animation
	Other Issues

	Conclusions

