Skip to main content

Theory of Judgments and Derivations

Dedicated to the Memory of Professor Katuzi Ono

  • Chapter
  • First Online:
Progress in Discovery Science

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2281))

Abstract

We propose a computational and logical framework NF (Natural Framework) which is suitable for presenting mathematics formally. Our framework is an extendable framework since it is open-ended both computationally and logically in the sense of Martin-Löf’s theory or types. NF is developed in three steps. Firstly, we introduce a theory of expressions and schemata which is used to provide a universe for representing mathematical objects, in particular, judgments and derivations as well as other usual mathematical objects. Secondly, we develop a theory of judgments within the syntactic universe of expressions. Finally, we introduce the notions of derivation and derivation game and will show that we can develop mathematics as derivation games by regarding mathematics as an open-ended process of defining new concepts and deriving new judgments. Our theory is inspired by Martin-Löf’s theory of expressions and Edinburgh LF, but conceptually much simpler. Our theory is also influenced by Gentzen’s natural deduction systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abadi, M., Cardelli, L., Curien, P.-L. and Levy, J.-J., Explicit substitutions, pp. 375–416, Journal of Functional Programming, 1, 1991.

    MATH  MathSciNet  Google Scholar 

  2. Abelson, H. et. al, Revised5 report on the algorithmic language scheme, Higherorder and symbolic computation, 11, pp. 7–105, 1998.

    Article  MATH  Google Scholar 

  3. Aczel, P., Frege structures and the notions of proposition, truth and set, in Barwsise, J. et al. eds., The Kleene Symposium, North-Holland, Amsterdam, pp. 31–50, 1980.

    Google Scholar 

  4. Aczel, P., Carlisle, D.P., Mendler N., Two frameworks of theories and their implementation in Isabelle, pp. 3–39, in [38], 1991.

    Google Scholar 

  5. Barendregt, H. P., The Lambda Calculus,Its Syntax and Semantics, North-Holland, 1981.

    Google Scholar 

  6. Beeson, M.J., Foundations of constructive mathematics, Springer, 1980.

    Google Scholar 

  7. Bell, D., Frege’s Theory of Judgement, Clarendon Press, Oxford, 1979.

    Google Scholar 

  8. Bognar, M., de Vrijer, R., A calculus of lambda calculus contexts, 27, pp. 29–59, J. Automated Reasoning, 2001.

    Article  MATH  Google Scholar 

  9. Constable R.L. et al., Implementing Mathematics with the NuPRL Proof Development System, Prentice-Hall, Englewood Clifs, NJ, 1986.

    Google Scholar 

  10. Coquand, T. and Huet, G., The calculus of construction, Information and Computation, 76, pp. 95–120, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  11. Dami, L., A lambda-calculus for dynamic binding, pp. 201–231, Theoretical Computer Science, 192, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  12. de Bruijn, D. G., Lambda calculus notation with nameless dummies, a tool for automatic formula manipulation, with application to the Church-Rosser theorem, Indag. Math. 34, pp. 381–392, 1972.

    Google Scholar 

  13. de Bruijn, D. G., A survey of the project AUTOMATH, in To H.B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism, pp. 579–606, Academic Press, London, 1980.

    Google Scholar 

  14. de Bruijn, D. G., A plea for weaker frameworks, pp. 40–67, in [38], 1991.

    Google Scholar 

  15. Church, A., A formulation of the simple theory of types, J. Symbolic Logic, 5, pp. 56–68, 1940.

    Article  MATH  MathSciNet  Google Scholar 

  16. Dybjer, P., Inductive sets and families in Martin-Löf’s type theory and their set theoretic semantics, pp. 280–306, in [38], 1991.

    Google Scholar 

  17. Feferman, S., A language and axiom for explicit mathematics, in Crossley J.N. ed., Algebra and Logic, Lecture Notes in Computer Science, 450, pp. 87–139, 1975.

    Chapter  Google Scholar 

  18. Feferman, S., Indutively presented systems and the formalization of metamathemaics, in van Dalen, D. et al. eds., Logic Colloquim’ 80, North-Holland, Amsterdam, 1982.

    Google Scholar 

  19. Feferman, S., Finitary inductively presented logics, in Ferro R. et al. eds., Logic Colloquim’ 88, North-Holland, Amsterdam, 1989.

    Google Scholar 

  20. Feferman, S., In the Light of Logic, Logic and Computation in Philosophy, Oxford University Press, Oxford, 1998.

    Google Scholar 

  21. Fiore, M., Plotkin, G., and Turi, D., Abstract syntax and variable binding (extended abstract), in Proc. 14th Symposium on Logic in Computer Science, pp. 193–202, 1999.

    Google Scholar 

  22. Frege, G., Über Begri. und Gegenstand, Vierteljahrsschrift für wissenschftliche Philosophie, 16, pp. 192–205, 1892.

    Google Scholar 

  23. Frege, G., Was ist Funktion?, in Festschrift Ludwig Boltzmann gewindmet zum sechzigsten Geburstage,20. Feburar 1904, Leipzig, pp. 656–666, 1904.

    Google Scholar 

  24. Genzten, G., Untersuchungen über das logische Schließen, I, Mathematische Zeitschrift, 39, pp. 175–210, 1935, English translation in The collected papers of Gerhard Gentzen, Szabo, M.E. ed., pp. 68–131, North-Holland, Amsterdam, 1969.

    Google Scholar 

  25. Girard, J-Y., Taylor, P., Lafont, Y., Proofs and Types, Cambridge University Press, 1989.

    Google Scholar 

  26. Gödel, K., Über eine bisher noch nicht benützte Erweiterung des finiten Standpunktes, Dialectica, 12, pp. 280–287, 1958.

    Article  MATH  MathSciNet  Google Scholar 

  27. Goodman, N., A theory of constructions equivalent to arithmetic, in Intuitionism and Proof Theory, Kino, Myhill and Vesley, eds., North-Holland, pp. 101–120, 1970.

    Google Scholar 

  28. Goto, S., Program synthesis through Gödel’s interpretation, Lecutre Notes in Computer Science, 75, pp. 302–325, 1978.

    Google Scholar 

  29. Goto, S., Program synthesis from natural deduction proofs, in Sixth International Joint Conference on Artificial Intelligence (IJCAI-79), pp. 339–341, 1979.

    Google Scholar 

  30. Goto, S., How to formalize traces of computer programs, Jumulage Meeting on Typed Lambda Calculi, Edinbrugh, September, 1989.

    Google Scholar 

  31. Harper, R., Honsell, F. and Plotkin, G., A framework for defining logics, Journal of the Association for Computing Machinery, 40, pp. 143–184, 1993.

    MATH  MathSciNet  Google Scholar 

  32. Hashimoto, M., Ohori, A., A typed context calculus, Theoretical Computer Science, to appear.

    Google Scholar 

  33. Hayashi, S. and Nakano, H., PX: A Computational Logic, Foundation of Computing, The MIT Press, Cambridge, 1988.

    Google Scholar 

  34. Heyting, A.K., Intuitionism in mathematics, in Philosophy in the mid-century,a survey, Klibansky, ed., Florence, pp. 101–115, 1958.

    Google Scholar 

  35. Hilbert, D., Über das Unendliche, Mathematische Annalen, 95, pp. 161–190, English translation in van Heijenoort, J. ed., From Frege to Gödel: A Source Book in Mathematical Logic, Harvard University Press, Cambridge, MA, 1967.

    Google Scholar 

  36. Howard, W.A., The formulae-as-types notion of construction, in Seldin J.P. and Hindley, J.R. eds., To H.B. Curry: Essays on Combinatory Logic,L ambda Calculus and Formalism, pp. 479–490, Academic Press, London, 1980.

    Google Scholar 

  37. Huet, G., A unification algorithm for typed λ-calculus, Thoretical Computer Science, 1, pp. 27–57, 1975.

    Article  MathSciNet  Google Scholar 

  38. Huet, G., and Plotkin, G. eds., Logical Frameworks, Cambridge University Press, 1991.

    Google Scholar 

  39. Ida, T., Marin, M., Suzuki, T., Reducing search space in solving higher-order equations, in this volume.

    Google Scholar 

  40. Kobayashi, S., Consitency of Beeson’s formal system RPS and some related results, in Shinoda, J., Slaman, T.A. and Tugué, T. eds., Mathematical Logic and Applications,P roceedings of the Logic Meeting held in Kyoto,1987, Lecture Notes in Mathematics, 1388, Springer, pp. 120–140, 1989.

    Google Scholar 

  41. Kleene, S.C., On the interpretation of intuitionistic number theory, J. Symbolic Logic, 10, pp. 109–124, 1945.

    Article  MATH  MathSciNet  Google Scholar 

  42. Kreisel, G., Hilbert’s programme, Dialectica, 12, pp. 346–372, 1958.

    Article  MATH  MathSciNet  Google Scholar 

  43. Kreisel, G., Foundations of Intuitionistic Logic, Nagel, Suppes, Tarski eds, Logic, Methodology and Philosophy of Science, Stanford University Press, pp. 198–210.

    Google Scholar 

  44. Kreisel, G., Mathematical Logic, Saaty ed., Lectures on Modern Mathematics,III, Wiley, New York, pp. 95–195, 1965.

    Google Scholar 

  45. Martin-Löf, P., An intuitionistic theory of types: Predicative part, Logic Colloquium’ 73, Rose, H.E. and Shepherdson, J.C., Eds, Studies in Logic and Foundation of Mathematics, 80, North-Holland, pp. 73–118, 1975.

    Google Scholar 

  46. Martin-Löf, P., Intuitionistic Type Theory, Bibliopolis, 1984.

    Google Scholar 

  47. Martin-Löf, P., Truth of a proposition, evidence of a judgment, validity of a proof, Synthese, 73, pp. 407–420, 1987.

    Article  MathSciNet  Google Scholar 

  48. Martin-Löf, P., Analytic and synthetic judgments in type theory, Parrini, P. ed., Kant and Contemporary Epistemology, Kluwer Academic Publishers, pp. 87–99, 1994.

    Google Scholar 

  49. Martin-Löf, P., On the meanings of the logical constants and the justifications of the logical laws, Nordic J. of Philosophical Logic, 1, pp. 11–60, 1996.

    MATH  Google Scholar 

  50. Mason, I., Computing with contexts, Higher-Order and Symbolic Computation, 12, pp. 171–201, 1999.

    Article  MATH  Google Scholar 

  51. McCarthy, J., Recursive functions of symbolic expressions and their computation by machine, Part I, Comm. ACM, 3, pp. 184–195, 1960.

    Article  MATH  Google Scholar 

  52. McCarthy, J., et. al, LISP 1.5 programmer’s manual, MIT Press, 1965.

    Google Scholar 

  53. Nadathur, G., Miller, D., Higher-order logic programming, in Gabbay, D.M. et al. eds., Handbook of Logic in AI and Logic Programming, 5, Clarendon Press, Oxford, pp. 499–590, 1998.

    Google Scholar 

  54. Nishizaki, S., Simply typed lambda calculus with first-class environments, Publ. RIMS,Kyoto U., 30, pp. 1055–1121, 1994.

    MATH  MathSciNet  Google Scholar 

  55. Nordström, B., Petersson, K. and Smith, J.M., Programming in Martin-Löf’ s Type Theory, Oxford University Press, 200 pages, 1990.

    Google Scholar 

  56. Okada, M., Ideal concepts, intuitions, and mathematical knowledge acquisitions: Husserl’s and Hilbert’s cases (a preliminary report), in this volume.

    Google Scholar 

  57. Ono, K., Gainen-Taishou Riron no Kousou to sono Tetugakuteki Haikei (Eng. A plan of notion-object theory and its philosophical background), Nagoya University Press, Nagoya, 1989.

    Google Scholar 

  58. Paulson, L., Logic and Computation, Cambridge University Press, Cambridge, 1988.

    Google Scholar 

  59. Pitts, A.M., Some notes on inductive and co-inductive techniques in the semantics of functional programs, Notes Series BRICS-NS-94-5, Department of Computer Science, University of Aarhus, 1994.

    Google Scholar 

  60. Pollack, R., A verified type-checker, in Dezani-Ciancaglini, M. and Plotkin, G. eds., Proceedings of the Second International Conference on Typed Lambda Calculi and Applications,TLCA’ 95,Edinburgh, Springer-Verlag, Lecture Notes in Computer Science 902, 1995.

    Chapter  Google Scholar 

  61. Prawitz, D., Natural Deduction: A Proof-Theoretical Study, Almquist and Wiksell, Stockholm, 1965.

    Google Scholar 

  62. Quine, W.V.O., Mathematical Logic, Harvard University Press, 1951.

    Google Scholar 

  63. Sands, D., Computing with Contexts-a simple approach, in Proc. Higher-Order Operational Techniques in Semantics,HOOTS II, 16 pages, Electronic Notes in Theoretical Computer Science 10, 1998.

    Google Scholar 

  64. Sato, M., Towards a mathematical theory of program synthesis, in Sixth International Joint Conference on Artificial Intelligence (IJCAI-79), pp. 757–762, 1979.

    Google Scholar 

  65. Sato, M., and Hagiya, M., Hyperlisp, in de Bakker, van Vliet eds., Algorithmic Languages, North-Holland, pp. 251–269, 1981.

    Google Scholar 

  66. Sato, M., Theory of symbolic expressions, I, Theoretical Computer Science, 22, pp. 19–55, 1983.

    Article  MATH  MathSciNet  Google Scholar 

  67. Sato, M., Theory of symbolic expressions, II, Publ. of Res. Inst. for Math. Sci., Kyoto Univ., 21, pp. 455–540, 1985.

    Article  MATH  Google Scholar 

  68. Sato, M., An abstraction mechanism for symbolic expressions, in V. Lifschitz ed., Artificial Intelligence and Mathematical Theory of Computation (Papers in Honor of John McCarthy), Academic Press, pp. 381–391, 1991.

    Google Scholar 

  69. Sato, M., Adding proof objects and inductive definition mechanism to Frege structures, in Ito, T. and Meyer, A. eds., Theoretical Aspects of Computer Software, International Syposium TACS’94 Proceedings, Lecture Notes in Computer Science, 789, Springer-Verlag, pp. 179–202, 1994.

    Google Scholar 

  70. Sato, M., Classical Brouwer-Heyting-Kolmogorov interpretation, in Li, M. Maruoka, A. eds., Algorithmic Learning Theory,8th International Workshop, ALT’97, Sendai, Japan, October 1997, Proceedings, Lecture Notes in Artificial Intelligence, 1316, Springer-Verlag, pp. 176–196, 1997.

    Google Scholar 

  71. Sato, M., Sakurai, T. and Burstall, R., Explicit environments, Fundamenta Informaticae 45, pp. 79–115, 2001.

    MATH  MathSciNet  Google Scholar 

  72. Sato, M., Sakurai, T. and Kameyama, Y., A simply typed context calculus with first-class environments, in Proc. Fifth International Symposium on Functional and Logic Programming (FLOPS), Lecture Notes in Computer Science, 2024, pp. 359–374, 2001.

    Google Scholar 

  73. Sato, M., Kameyama, Y., Takeuti, I., CAL: A computer assisted system for learning compuation and logic, in EuroCAST 2001, Lecture Notes in Computer Science, 2178, 2001.

    Google Scholar 

  74. Scott, D., Constructive validity, Symposium on automatic demonstration, Lecture Notes in Mathematics, 125, pp. 237–275, Springer, Berlin, 1969.

    Google Scholar 

  75. Simpson, S.G., Partial realization of Hilbert’s program, J. Symbolic Logic, 53, pp. 359–394, 1988.

    Google Scholar 

  76. Skolem, T., The foundations of elementary arithmetic established by means of the recursive mode of thought, without the use of apparent variables ranging over infinite domains, in [91], pp. 302–333.

    Google Scholar 

  77. Smorynski, C., The incompleteness theorems, Barwise, J. ed., Handbook of mathematical logic, Studies in logic and the foundations of mathematics, 90, pp. 821–865, North-Holland, 1977.

    Google Scholar 

  78. Stoyan, H., The influence of the designer on the design-J. McCarthy and LISP, in V. Lifschitz ed., Artificial Intelligence and Mathematical Theory of Computation (Papers in Honor of John McCarthy), Academic Press, pp. 409–426, 1991.

    Google Scholar 

  79. Smullyan, R., Theory of Formal System, Annals of Mathematics Studies, 47, Princeton University Press, Princeton, 1961.

    Google Scholar 

  80. Sundholm, G., Constructions, proofs and the meaning of logical constants, J. Phil. Logic, 12, pp. 151–172, 1983.

    Article  MathSciNet  MATH  Google Scholar 

  81. Tait, W.W., Finitism, J. of Philosophy, 78, pp. 524–546, 1981.

    Article  Google Scholar 

  82. Takeuti, G., Generalized Logic Calculus, Journal of Mathematical Society of Japan, 1954.

    Google Scholar 

  83. Takeuti, G., Proof Theory, North-Holland, Amsterdam, 1975.

    Google Scholar 

  84. Takeuti, G., A conservative extension of Peano arithmetic, Two Applications of Logic to Mathematics, Part II, Princeton University Press, and Publications of the Mathematical Society of Japan 13, 1978.

    Google Scholar 

  85. Talcott, C., A Theory of binding structures and applications to rewriting, Theoretical Computer Science, 112, pp. 99–143, 1993.

    Article  MATH  MathSciNet  Google Scholar 

  86. Tatsuta, M., Program synthesis using realizability, Theoretical Computer Science, 90, pp. 309–353, 1991.

    MATH  MathSciNet  Google Scholar 

  87. Troelstra, A.S., Realizability and functional interpretation, in Troelstra, A.S. ed., Metamathematical Investigation of Intuitionistic Arithmetic and Analysis, Lecture Notes in Mathematics, 344, Springer-Verlag, 1973.

    Google Scholar 

  88. Troelstra, A.S. and van Dalen, D., Constructivism in Mathematics, An Introduction, I, North-Holland, Amsterdam, 1988.

    Google Scholar 

  89. Troelstra, A.S., Schwichtenberg, H., Basic Proof Theory, Cambridge University Press, 1996.

    Google Scholar 

  90. Tsukada, Y., Martin-Löf’s type theory as an open-ended framework, International J. of Foundations of Computer Science, 12, pp. 31–68, 2001.

    Article  MathSciNet  Google Scholar 

  91. van Heijenoort, J., From Frege to Gödel,A source Book in Mathematical Logic, 1879–1931, Harvard University Press, Cambridge, MA, 1967.

    MATH  Google Scholar 

  92. Voda, P., Theory of pairs, part I: provably recursive functions, Technical Report of Dept. Comput. Science, UBC, Vancouver, 1984.

    Google Scholar 

  93. Voda, P., Computation of full logic programs using one-variable environments, New Generation Computing, 4, pp. 153–187, 1986.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sato, M. (2002). Theory of Judgments and Derivations. In: Arikawa, S., Shinohara, A. (eds) Progress in Discovery Science. Lecture Notes in Computer Science(), vol 2281. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45884-0_5

Download citation

  • DOI: https://doi.org/10.1007/3-540-45884-0_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43338-5

  • Online ISBN: 978-3-540-45884-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics