Abstract
User profiles are more and more used in information retrieval system in order to assist users in finding relevant information. Profiles are continuously updated to evolve at the same time the user information need does. In this paper we present a reformulation strategy used to automatically update the profile content. In a first stage, a local document set is computed from the search results. In a second stage, the local set is analyzed to select the terms to add to the profile expression. Experiments have been performed on an extract from the OHSUMED database to evaluate the effectiveness of the adaptation process.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Attar R., Frankel A. S, Local feedback in Full-Text Retrieval Systems. Journal of associations for Computing Machinery, 24 (3), 397–417, 1977.
Baeza-Yates R., Ribeiro-Neto B. Modern Information Retrieval, Addison-Wesley Ed., ISBN 0-201-39829-X, 1999.
Belkin N. J., Croft W.B. Information retrieval and information Filtering: two sides of the same coin, CACM, Pages 29–38, 1992.
Belkin N. J. Relevance Feedback versus Local Context Analysis as term suggestion devices, Rutger’s TREC-8 Interactive Track Experience, Proceedings of Trec-8, Pages 565–574, November 16–19, 1999
Buckley C., Salton G., Allan J. The effect of adding information in a relevance feedback Environment, Conference on Research and development in Information Retrieval (SIGIR), 1994
Boughanem M., Dkaki T., Mothe J., Soulé-Dupuy C. Mercure at Trec-7. 7th International Conference on Text REtrieval TREC7, Harman D.K. (Ed.) SP 500–236, November 11–17, NIST Gaithersburg, 1998.
Boughanem M., Chrisment C., Soulé-Dupuy C. Query modification based on relevance back-propagation in ad hoc environment, Information Processing & Management 35 (1999) 121–139.
Gurthet A., http://www.biermans.com/culminating/fall_1999.html , 1999.
Croft W.B., Xu J. Query Expansion using local and global document analysis. Proceeding of the 19th Annual International ACM SIGIR Conference on research and development in Information retrieval (SIGIR 96’, Zurich, Switzerland, August 18–22, )1996.
Croft W.B., Jing, Y. Corpus-Based Stemming Using Co-occurrence of Word Variants. Transactions On Information Systems Volume 16, number 1 pp 61–81, 1998.
Croft W.B., Xu J. Improving Effectiveness of information retrieval with local context analysis. ACM Transaction on Information systems Volume 18, Number 1, January 2000, Pages 79–112
Koji Eguchi. Incremental Query expansion Using local information of clusters, Proceedings of the 4th World Multiconference on systemics, Cybernetics and informatics (SCI 2000), Vol.2, pp310–316, 2000.
Korfhage R. Information storage and retrieval. Wiley Computer Publishing 0-471-14-338 3, 1997.
Kwok K. L. TREC-6 English and chinese retrieval experiments using PIRCS. In: D. K. Harman, NIST SP, 6th International Conference on Text Retrieval, Gaithersburg, MD.
Mothe J. Correspondance analysis method applied to document re-ranking, Rapport interne IRIT/00-22 R, 2000
Robertson S., Hull D. The TREC-9 filtering track final report, TREC-9, 2000
Rocchio J. J. Relevance feedback in information retrieval, In G. Salton, editor, The Smart retrieval System, Experiments in Automatic Document processing,. Prentice Hall Inc., Engelwoods Cliffs, NJ, 1971.
Sparck J. Automatic Keywords Classification for Information Retrieval, Buterworths, London, 1971.
Salton G. The SMART retrieval system, Experiments in automatic document processin, Prentice Hall Inc., Englewood Cliffs, NJ, 1971.
Yonggang Q., Frei H. F. Concept based query expansion. In proceedings of the 16th ACM SIGIR Conference on Research and development in information retrieval, pages 160–169, Pittsburgh, PA, USA, 1993.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2002 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Benammar, A., Hubert, G., Mothe, J. (2002). Automatic Profile Reformulation Using a Local Document Analysis. In: Crestani, F., Girolami, M., van Rijsbergen, C.J. (eds) Advances in Information Retrieval. ECIR 2002. Lecture Notes in Computer Science, vol 2291. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45886-7_9
Download citation
DOI: https://doi.org/10.1007/3-540-45886-7_9
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-43343-9
Online ISBN: 978-3-540-45886-9
eBook Packages: Springer Book Archive