Model Generation by Moderated Regular
Extrapolation

Andreas Hagerer!, Hardi Hungar!, Oliver Niese?, and Bernhard Steffen?

! METAFrame Technologies GmbH, Dortmund, Germany
{AHagerer ,HHungar }@METAFrame.de
2 Chair of Programming Systems, University of Dortmund, Germany
{0liver.Niese,Steffen}@cs.uni-dortmund.de

Abstract. This paper introduces regular extrapolation, a technique
that provides descriptions of systems or system aspects a posteriori in
a largely automatic way. The descriptions come in the form of models
which offer the possibility of mechanically producing system tests, grad-
ing test suites and monitoring running systems. Regular extrapolation
builds models from observations via techniques from machine learning
and finite automata theory. Also expert knowledge about the system
enters the model construction in a systematic way. The power of this
approach is illustrated in the context of a test environment for telecom-
munication systems.

1 Motivation

The aim of our work is improving quality control for reactive systems as can
be found e.g. in complex telecommunication solutions. A key factor for effective
quality control is the availability of a specification of the intended behavior of
a system or system component. In current practice, however, only rarely pre-
cise and reliable documentation of a system’s behavior is produced during its
development. Revisions and last minute changes invalidate design sketches, and
while systems are updated in the maintenance cycle, often their implementa-
tion documentation is not. It is our experience that in the telecommunication
area, revision cycle times are extremely short, making the maintenance of spec-
ifications unrealistic, and at the same time the short revision cycles necessitates
extensive testing effort. All this could be dramatically improved if it were pos-
sible to generate and then maintain appropriate reference models steering the
testing effort and helping to evaluate the test results.

We propose a new method for model generation, called (moderated) regular
extrapolation, which is tailored for a posteriori model construction and model
updating during the system’s lifecycle. The method, which comprises many dif-
ferent theories and techniques, makes formal methods applicable even in situa-
tions where no formal specification is available: based on knowledge accumulated
from many sources, i.e. observations, test protocols, available specifications and
last not least knowledge of experts, an operational model in terms of a state

R.-D. Kutsche and H. Weber (Eds.): FASE 2002, LNCS 2306, pp. 80-195] 2002.
© Springer-Verlag Berlin Heidelberg 2002

Model Generation by Moderated Regular Extrapolation 81

and edge-labeled finite automaton is constructed that uniformly and concisely
resembles the input knowledge in a way that allows for further investigation.
Though it is particularly well suited to be applied in regression testing (cf. sec-
tion [2:2)), where a previous version of the system is available as an approximate
reference, regular extrapolation is not limited to this situation. Indeed, our ex-
perience so far has been encouraging. We were able to extrapolate an expressive
model for some part of a nontrivial telephone switch as a basis for a monitor
application (cf. section [5.3)), and we could demonstrate its power for test-suite
enhancement. Both applications are illustrated in a companion demo paper [g].

The paper is structured as follows: In section Bl we give a short overview
about the considered scenario and discuss the design decisions. Section [3] briefly
describes the ingredients of our approach for the model generation. The following
section provides more details on some of the less standard techniques and the
use we make of them regarding the considered scenario: the test of complex
telecommunication systems. The usage of the generated models is described on
the basis of examples in Section [l Finally Section [6] draws some conclusions.

2 Regular Extrapolation

2.1 Sketch of the Approach

A key feature of our approach is the largely automatic nature of the extrapolation
process. The main source of information is observation of the system, i.e. a set
of system traces. These traces may be obtained passively by profiling a running
system, or they may be gathered as reactions of the system to external stimu-
lation (like in testing). These traces are abstracted and, after the introduction
of a concept of state based on observable system attributes, they are combined
into an automaton. This automaton extrapolates from the finite traces which
have been observed to infinite behavior following regular patterns. Its language
contains all abstract images of the traces observed so far. The general picture is
as follows:

Abstraction

(Subset of) Concrete Traces Abstract Traces € Model Traces

Extrapolation from passively obtained observations and protocols of test runs
may yield a too rough model of the system, leaving out many of its features and
generalizing too freely. So these models have to be refined. We adapt machine
learning algorithms and also incorporate expert’s knowledge. Learning consists
in running specific tests with the aim of distinguishing superficially similar states
and finding additional system traces. Experts can either be implementors or peo-
ple concerned with the environment of the system, for instance people knowing
the protocols to be observed. Their knowledge enters the model in the form of
declarative specifications, either to rule out certain patterns or to guide state dis-
tinguishing searches. Technically this is done by employing the bridge from tem-
poral logic to automata, model-checking techniques and partial-order methods.

82 Andreas Hagerer et al.

Conflicts arising during the extrapolation process between the different sources
of information have to be examined and resolved manually (moderation).

2.2 The Regression Testing Scenario

Regression testing provides a particularly fruitful application scenario for regu-
lar extrapolation. Here, previous versions of a system are taken as the reference
for the validation of future releases: changes typically concern new features, en-
hanced speed or capacities, some bugs or other often customer-driven change
requests. However, by and large, the new version should provide everything the
previous version did. Le., if we compare the new with the old, there should not be
too many essential differences. Thus if it were possible to (semi-) automatically
maintain models comprising the knowledge obtained during previous develop-
ment, testing, use and updating phases, regression testing could be largely im-
proved. Besides providing a structure for managing the test suites, these models
would be capable of providing flexible means for test run evaluation: note that
it is inadequate to simply compare protocols of test runs with stored reference
protocols, as besides the few essential differences there are many inessential ones,
and it is very hard to distinguish between those two types. However there are
formal means to construct models that factor out many of the minor differences
between successive versions and thus reduce the manual effort of grading a test
run.

2.3 The Design Decisions

Starting point of our investigation was the regression testing problem in the so-
called black box scenario: a technique was needed to deal with a large legacy
telephony system in which most of the involved applications (the so-called “plus
products”) running on and with the platform are third party. There was no
hope to obtain formal specifications. The only source of information were intu-
itive user manuals, interaction with experienced test engineers and observations,
observations, observations. As none of these sources could be fully trusted (and
since what is true today may not be true tomorrow), the only approach was
to faithfully and uniformly model all the information and to manually inves-
tigate arising inconsistencies. This lead to a change management process with
continuous moderated updates:

— initially automata theoretic techniques are used to construct a consistent
operational model along the lines of [19] (already here, expert knowledge
may be required to guarantee consistency (cf. section Bl and H)),

— this initial model is immediately used for test evaluation and monitoring
(section B3).

— whenever unexpected observations arise, these are taken care of by either
modifying the model or correcting the running system. Whereas debugging
the system is standard, model modification is again done using involved
automata-theoretic means (cf. section [3 and H).

Model Generation by Moderated Regular Extrapolation 83

It is impossible in practice to find a precise model of the system under con-
sideration, even on an abstract level. Such a model would usually be far too
large and, as results from learning theory indicate, too time-consuming to ob-
tain and to manage. Instead we are aiming at concise, problem-specific models,
expressive enough to provide powerful guidance and to enhance the system un-
derstanding. In fact, many quite different models of this kind may be required
to cover different goals, like monitoring, test generation, test grading or even
simulation.

Also, in contrast to “classical” modeling scenarios, we cannot expect our
models to safely approximate the intended system behaviors, as there is no safe
information we can base on. On the one hand, this complicates the moderation
in case of discrepancies between the modeled and the observed behaviors. On
the other hand, it allows us to use with no loss powerful automata theoretic
methods which do not preserve safe approximation. This accelerates the gain of
expressiveness of our models, making them a strong aid already very early on.

It is of course very important that the models are reasonably close to the
system. Exploiting all the information at hand, independently of their source,
to obtain a comprising “hypothesis” model is the best we can do. In fact, our
experience with a nontrivial real-life Syste indicates that “brave” guesses are
much better than too conservative ones, as the interaction with the “hypothesis”
model enhances the expert’s system understanding, and the closer the interaction
the faster proceeds the extrapolation process.

2.4 Related Work

Central to our work is the theory of finite automata and regular languages as
described for instance in [10]. A less known and more recent part of that theory
concerns the problem of determining a model in terms of a deterministic finite
automaton from observations. This is intensively discussed in the domain of ma-
chine learning [13]. There exists in general no efficient method that can compute
such a model in polynomial steps. So several methods try through weakening of
the requirements or through additional information to achieve the aims. The two
most prominent learning models are the Probably approzimately correct learning
model (PAC learning) [24] and the Query learning model [I]. Whereas in PAC
learning the algorithms gets random positive examples, is it possible in the Query
learn model to inquire information about the investigated system actively. To
some extent our approach is orthogonal to both of these learning models. The
reason for this is basically that we do not aim at determining an exact model
for an unknown system, which is unrealistic in practice. Rather we express all
the available heterogeneous information about a system (observations, expert
knowledge, . ..) in a consistent and uniform way. This is similar to the approach
of unifying models [19] where a heterogeneous specification, consisting of several
aspects specified in different formalisms, is combined into a single consistent
model.

! Gained with a prototype implementation built on top of our already existing Inte-
grated Test Environment [16].

84 Andreas Hagerer et al.

3 Ingredients of a Posteriori Model Generation

This section describes the ingredients of a posteriori model generation. The con-
sidered class of systems are complex, reactive systems, as can be found e.g. in
telecommunication systems. These systems normally consist of several subcom-
ponents which communicate with and affect each other, typically via standard-
ized protocols. As a prerequisite to our approach the system has to provide
points-of-observation (PO) and points-of-control-and-observation (PCO), i.e. we
must be able to make observations of the system and, additionally, to influence
it in order to test its reactions to certain (critical) stimuli sequences.
Fig.[lsketches briefly our it-

erative approach. It starts with Traces

a model (initially empty) and

a set of observations. The ob- Validation Extrapolation
servations are gathered from a

reference system in the form of

traces. They can be obtained ei- Model

ther passively, i.e. a running ref- _/

erence system is observed, or ac- Consistency

tively, i.e. a reference system is

stimulated through test cases. Fig. 1. Generation of models

The set of traces (i.e. the ob-

servations) is then be preprocessed, extrapolated and used to extend the current
model. After extension the model is completed through several techniques, in-
cluding adjusting to expert specifications. The last step validates the current
hypothesis for the model, which can lead to new observations.

The realization of this approach uses heavily automata operations and related
techniques. The basis is given by standard automata operations like homomor-
phisms and boolean operations like meet, join and complement [T0]. These are
complemented by some specific operations for extrapolation. In particular, these
are abstraction mappings more general than language homomorphisms, and a
particular folding operation, which by identifying similar states introduces cycles
in the finite traces. This borrows from automata learning techniques as discussed
in [I] but is quite different in several aspects.

The adequate incorporation of expert knowledge requires further techniques.
On the one hand, temporal logic [5] serves to formulate specifications which limit
the model from above. lL.e., experts formulate properties which they believe to
be true of the system, and extrapolation results should be limited by them.
Temporal-logic model checking is employed to check adherence of the model to
these constraints. Counter examples generated by the model checker in case of
a violation are to be studied to pinpoint the source of the discrepancy.

On the other hand, experts can identify events in sequences which lead to
distinguishing similar states which would otherwise be identified in the extrap-
olation step. A third way in which expert knowledge enters is in specifying in-
dependence relations between events. This, by employing ideas of partial order

Model Generation by Moderated Regular Extrapolation 85

approaches [15125], leads to generalizing from (randomly) sequential observations
to parallel patterns.

Finally, the validation of models draws on testing theory (cf. e.g. [14] for
a survey) to generate stimuli sequences helping to discover wrongly identified
states and missed behavior.

In the following, the steps of the model construction process will be explained
one by one. Further details on some of them are given in Section [4.

3.1 Extrapolation

The model will be extended through a set of observations in form of traces.
However before the traces are added to the model they have to be generalized.
This comprises two steps:

1. abstraction from unnecessary detail, and
2. folding the tree of traces to a finite automaton with joins and cycles.

Abstraction. Abstraction has two aspects: focus and (true) abstraction. Focus
means that if we are not interested in certain events or parameters we can elim-
inate them from the observation traces. An example are concrete time stamps.
(True) abstraction takes care of first-order aspects we cannot simply ignore like
participant identities. These have to be represented by propositional means to
fit into the world of finite automata. Generally, we restrict the models to rep-
resent only instances of behavior with a certain bound on the number of active
participants (or other first-order valued sets).

Folding. Before the traces are added to the model we combine them into a
single trace automaton. If all traces start in the initial state of the system, they
are merged using an unique start state into a tree. After that, all states which
are seemingly equivalent will be identified. In our telephony system application,
states are identified only if all external observations are the same. In particular,
each telephone must have the same display and LED state. Further distinguishing
criteria formalized as expert knowledge may refer to the history of traces.

3.2 Consistency

Each extrapolation step is followed by a consistency check. It checks whether
the extension performed is consistent with the expert specification bounding the
permitted behavior. The specifications are given as linear-time temporal-logic
(LTL, [3]) constraints. Each constraint defines a formal language, i.e. a set of
traces. These constraints are interpreted as loose upper bounds of the system
language. The system, and therefore the model, should not contain any trace
violating any of the constraints. As the models are finite automata, the LTL
constraints can be checked one by one using a model checker. The model checker

86 Andreas Hagerer et al.

either ascertains that a constraint is satisfied or it produces a counter example,
consisting of a trace of the model which violates the constraint. The discovery of
such errors leads to an investigation whether the specification is wrong, or the
extrapolation was too loose, or there is in error in the trace set which lead to
the exploration.

This is essentially a manual step to be performed in collaboration with system
or application experts. If a constraint is found to be too restrictive, its correction
is rather straightforward. Or if it can be attributed to an erroneous observation,
i.e. an error in the reference system, its correction is easy: we leave out the
observation for the construction of our model and as a side benefit of model
construction we have discovered an error. More difficult for our construction
procedure is an error introduced by the abstraction step. The simplest, not
always appropriate remedy is to remove all paths which violate the constraint.
This works for safety constraints, for liveness constraints a deeper analysis is
required which removes incorrect cycles.

Besides constraint checking, the consistency check uses the independency
relation to complete the model (in the sense of partial-order methods). This is
described in more detail in Section E.4l

3.3 Validation

To ensure the validity of the obtained model a validation step completes the
cycle. Here, tests are generated to further check for the correctness of state
identifications and to look for additional model traces. I.e., like in learning an
automaton from its external behavior, it is tried to verify the current hypothesis
against the reference system. Besides state splits necessary to remedy too opti-
mistic distinctions, these tests may lead to new observations which reenter the
cycle.

The main point of validation is to make sure that the model is rather precise
on short sequences. As most errors will already show up in short sequences
this is not only the easiest but also the most useful thing to do. Remember that
we are not aiming at a precise model, but only at an approximation comprising
all the information currently available. Thus we do not suffer from the problem
of deep “combination locks” [13] which make the learning problem inherently
difficult (in the worst case).

Summarizing, tests covering all the essential short sequences are produced in
order to validate the models state identifications. I.e. stimuli are generated to
observe system reactions on input events which have not been seen so far. This
in order to check whether after following different paths in the model which lead
to the same state of the model there is indeed no (easily) discernable difference
in system behavior. In particular, this is applicable to cycles (cycle validation).

2 A fact explaining why the current practice does in fact find the most severe errors.
Of course, the more complex the overall scenario, the longer are the required “short”
sequences. This explains today’s urgent need for new test technology.

Model Generation by Moderated Regular Extrapolation 87

4 Handling a Posteriori Model Generation

In this section we present the structure of the generated models, the considered
application scenario and afterwards details of the key aspects of the extrapolation
step and the consistency check.

4.1 Model Structure

Fig. 2l shows a part of a model. The filled states
are called stable system states, i.e. states in which
the system cannot continue without a stimulus
from its environment. The other states are called
internal states. In this example the system is in
state S and it can receive e.g. the event (or ac-
tion) 2af. The system produces two events (/z
and ly), which are sent to the environment and
afterwards it reaches the stable state S3. In gen-
eral there are additional observations attached
to both states and actions of the model. Exam-
ples for state observations are e.g. the display status of a specific device. Action
observations can be e.g. concrete parameter values of a protocol event.

Fig. 2. Model structure

4.2 Application Scenario: System-Level Testing of CTI Systems

Fig. B shows the considered scenario, a complex Computer telephony integrated
(CTI) system, concretely a Call Center solution. A midrange telephone switch
is connected to the ISDN telephone network or, more generally, to the public
switched telephone network (PSTN), and acts as a ‘normal’ telephone switch to
the phones. Additionally, it communicates directly via a LAN or indirectly via
an application server with CTI applications that are executed on PCs. Like the
phones, CTT applications are active components: they may stimulate the switch
(e.g. initiate calls), and they also react to stimuli sent by the switch (e.g. notify
incoming calls). Moreover the applications can be seen as logical devices, which
can not only be used as a phone, but form a compound with physical devices.

In our point of view the switch has one PCO (via the Corporate Network
Protocol (CorNet)) and one PO (via the Computer Supported Telecommunica-
tions Applications Protocol (CSTA) [4]). The technical realization of these test
interfaces is provided by the Integrated Test Environment (ITE) [16/18], in par-
ticular the Test Coordinator. The ITE is an environment for the management of
the overall test process for complex systems, i.e. specification of tests, execution
of tests and analysis of test runs. The ITE is able to steer different test tools
(dedicated to the subcomponents of a complex system) and to coordinate and
evaluate the test runs. In the considered scenario two different kind of test tools
are used by the test coordinator:

3 We mutate the 2a and /a notation of process algebra to denote inputs and output
actions respectively.

88 Andreas Hagerer et al.

Test Coordinator .

TAPI |

/ (CorNet)
HU:

SIM
ISDN)

Switch Call Center Server
Fig. 3. Overview of the considered CTI scenario

1. A proprietary protocol analyzer (Hipermon [9]) which is connected to a tele-
phone simulator (Husim) and to the connection between the switch and the
application server.

2. A GUI test tool (Rational Robot [L1]), which is used in several instances, i.e.
for every considered call center client.

The heart of the environment is the Test Coordinator tool (cf. fig. @), built on
top of METAFrame’s Agent Building Center [21], which is a generic and flexible
workflow management system. So far the ITE has been successfully applied to the
system level testing of complex system solutions like Web-based applications [17]
or CTI-Solutions [16].

Based on this environment we are able to build a model for the telephone
switch on CSTA-level [4].

4.3 Performing Regular Extrapolation

Abstraction. Abstraction is concerned with single traces of the system to be
modeled. In a first step we filter and generalize the observations attached to
states and transitions. In the considered scenario we concretely:

Model Generation by Moderated Regular Extrapolation 89

— restrict of the set of devices to be considered

— restrict of the set of physical attributes of system devices which enter the
model, e.g.:
(ignore: (obs-id, obs-attribute, attribute-value) = (LED, LED-id, 27)),

— generalize nongeneric information, e.g. date and time in displays are substi-
tuted by generic place holders
(replace: (obs-id, obs-attribute, attribute-value, attribute-pattern,
replacement) = (DISPLAY, DISPLAY-no, 1, “LETTER (2:3) DIGIT (1:2)
"> LETTER (3) DIGIT (2)”, “DATE”))

In a second step concrete identifications of devices and system components
are substituted by symbolic names that reflects the “roles” in a telecommu-
nication scenario. Using symbolic names allows identifying information that is
partially already included in a model when newly observed system behavior is
to be added to the model. This results in smaller models. E.g. different tests
that are related to specific switch features may differ only in the activities after
establishment of a connection between two devices and in the identifications of
the devices concretely used in the tests. Then, determining a common prefix of
traces is facilitated if symbolic names are used. Furthermore, models generalized
in this way are independent of the environment used to collect the traces. The
generalization resembles that we determine symbolic names of actors. An actor
encompasses a group of devices and components that have any interrelated as-
sociation with the control and observation of calls, e.g. displays, buttons and
lamps of a telephone set. For each possible actor able to act in the system a
specification is prepared which consists of a set of replace-criterion-value pairs
and which is used to determine actors associated with observations.

The trace automaton is then further generalized through the folding step.

Folding. Behaviorally equivalent stable states are identified through a compar-
ison of their observations and can then be merged. More precisely, two states are
(locally) behaviorally equivalent if their attached observations are identical, i.e.
concretely all observed devices have the same status regarding display messages
and LED’s. It is in this step that the behavior of the system is extrapolated:
with folding we can obtain an automaton with infinite behavior when cycles are
introduced, cf. Fig.[d. However this step provides only an optimistic hypothesis
and not a “real” (global) behavioral equivalence, as we cannot ensure that no
“hidden” causalities exists. Thus sometimes it is necessary to refine this approach
by distinguishing locally similar states, which can elegantly and systematically
be done following the property-oriented expansion approach proposed in [20].

4.4 Adding Expert Knowledge

Generalization through Partial Order Methods. Another formalism to
specify expert knowledge is inspired from the partial order reduction methods for
communicating processes [1525]. Normally these methods help avoiding having

90 Andreas Hagerer et al.

So

Sg S5

Fig. 4. Folding of equivalent states

to examine all possible interleavings among processes. However these methods
can also be used as a specification formalism for generalization in the following
way:

1. An expert specifies explicitly an independence relation, e.g. Two inde-
pendent calls can be shuffled in any order.

2. A trace is inspected if it contains independent subparts.

3. Instead of the explicit observed trace, a whole equivalence class of traces (of
which the observed trace is a representative) can be added to the model.

Partial order methods can be used both for a generalization and for a reduc-
tion of the generated models, where the independence relations can be found on
a coarse granular level and on a fine granular level.

Coarse Granular Level. Fig. il shows how a coarse granular independence
relation between stable states can be used for a further generalization of the
model. When actions are independent from each other, then it is possible to
change the order. The example fig. Bl(a) shows two independent off Hook/onHook
sequences: the permutations fig. Blb) and fig. Bl(c) are equivalent to fig. Bl(a) from
the behavioral point of view.

Fine Granular Level. Under certain circumstances it is however sensible if not
necessary to distinguish reorderings between internal states, e.g.: after sending
an ZoffHook to the phone the switch responds with at least two messages. One
message ensures that the text on the display is updated and the other one sets
the actual LED status. If the switch works under normal conditions there exist
priorities that schedule the order of the messages. However if the test is done

Model Generation by Moderated Regular Extrapolation 91

S Sq S1
? offHook[Dev=A] ? offHook[Dev=A] ? offHook[Dev=A]
So So Sa
? offHook[Dev=B] ? offHook[Dev=B] ? onHook[Dev=A]
S3 ~o S3 ~o S3
? onHook[Dev=A] ? onHook[Dev=B]| ? offHook[Dev=B]
Sa Sy4 Sa
? onHook[Dev=B]| ? onHook[Dev=A] ? onHook[Dev=B]|
S5 Ss Ss
v v v
(a) (b) (c)

Fig. 5. Examples for reordering

e.g. under performance pressures it is allowed that the messages be reordered,
so that other orderings of the events are acceptable and should not be marked
as erroneous.

5 Examples for the Usage of Models

Within this section we will demonstrate several applications of the generated
models, that enhance the overall test process.

5.1 Enhanced Test Result Evaluation

Current test practice shows that test case evaluation is mostly done via only
few observation criteria and is therefore grossly incomplete. The example in
Fig. [Blleft) shows a typical test case where two devices get connected. The eval-
uation of the test case is done by observation of the display of the participating
devices, which is sufficient for a correct system. However an incorrect system
might produce non-conforming display messages or other erroneous signals on
one of the other external interfaces, e.g. it is possible that one or more LED’s
are enabled which should be disabled. Additionally it is also possible that wrong
devices were addressed. For our regression test application we therefore gather
all the visible information of the reference system in response to the test inputs,
which provides us with valuable information during the test run/evaluation.
Fig. Bright) shows a fraction of a model with a set of observations. One can
see that for all considered devices (not only the stimulated ones) the whole set
of observations is stored. In particular, this approach allows test engineers to
design test cases concisely without bothering about completeness issues.

92 Andreas Hagerer et al.

Fig. 6. Enhanced test evaluation

5.2 Improved Error Diagnosis

Automatically refined models in the regression test scenario enable an improved
error diagnosis. When a test run evaluates to failed the detailed error diagnosis
is sometimes a hard task. This is because some causalities between stimuli and
events are not straightforward so that stimuli may result in errors not directly
observable as erroneous user feedback (e.g. as a display message on a device)
but in internal errors that become visible only in later contexts. The error di-
agnosis for this kind of errors can be quite tricky for a test engineer as he must
know about these causalities in order to understand the real reason for errors,
which lie (far away) in the past. However in the automatically refined models
these causalities are stored and can be used for a more precise error diagno-
sis. Consider the example of fig. [, where a trace is shown on the left and the
corresponding fraction of the (correct) model on the right. When a test run is
evaluated to passed, because e.g. Sa ~ S5, the missing event must be marked as
suspicious and presented to the user as it is possible that it is responsible for later
errors. Otherwise, when the test run is evaluated to failed, the missing event is
probably responsible for the failure and must be object of further investigation
by an expert. However it is very useful for an expert to obtain exact hints where
(remarkable) differences between the trace and the model lie instead of having
to analyze the whole log file.

Model Generation by Moderated Regular Extrapolation 93

Sy’ S1
? digits ? digits
1 1
! cstaEventy
! cstaEventy in
! cstaEvento
in i3
| cstaEvents | cstaEvents
So So
v v
Trace Model

Fig. 7. Examples for Improved Error Diagnosis

5.3 Further Applications

Out of the manifold usages of the generated model, we mention here the most
immediately test related ones.

Test suite evaluation and test generation. As soon as a model is gener-

ated, all the standard methods for test generation and test evaluation be-
come applicable (e.g. [3l[7] for finite state machines or [2]236]22] for labeled
transition systems resp. input/output transition systems): it can be investi-
gated how much of the model is actually covered by a given test suite, and
it is also possible to automatically generate test suites guaranteeing certain
coverage criteria. However, in contrast to the classical approach, where the
model (specification) is typically considered correct, we do not have such a
point of reference: neither the system nor the model can be trusted. Thus
it is not clear how well the coverage measured on the model applies to the
structure of the real system.
We do not consider this situation as disadvantageous, as in reality, up-to-
date models or specifications are very rare, and therefore methods dealing
with a symmetric situation are required, where the truth lies “between” the
system and specification (model). Moreover, even if up-to-date models exist,
our approach is adequate for keeping system and specification aligned.

Monitor. A monitor application observes a running system and is able to no-
tify when an error occurs or an unexpected situation arises. In the latter case
it is e.g. possible to start automatically a detailed trace. This is particularly
useful to catch sporadic errors in systems already delivered to customers.
Otherwise, they are hard to detect because it is not feasible to trace over
long periods of time. The monitor enables selective tracing, and even a pre-
liminary (and therefore incomplete) model could very well prove to be useful.

94 Andreas Hagerer et al.

6 Conclusion

We have presented an approach, which we called regular extrapolation, that solves
the specification problem for reactive systems a posteriori. Regular extrapola-
tion comprises many different theories and techniques that make formal methods
applicable even in situations where no formal specification is available. Though
it is particularly well suited to be applied in regression testing, where a previous
version of the system is available as an approximate reference, regular extrap-
olation is not limited to that situation. Indeed, our experience so far has been
encouraging. We were able to extrapolate an expressive model for some part of a
nontrivial telephone switch as a basis for a monitor application (cf. section [(.3)),
and we were able to demonstrate its usefulness for test-suite enhancement, as
presented in a companion demo paper [§].

The approximative models resulting from our process are typically no safe
approximations of the real systems. In learning complex systems, safety comes
at the price of rather inaccurate models. Striving for a best match of all available
information accelerates the convergence of the process. However our models can
only be used in cases where safety is not a vital requirement. This is true for
the majority of scenarios where no formal models exists. There gaining under-
standing of the system is the major goal. In these cases a thermometer with a
precision of 1 percent is preferred to a thermometer with a precision of 5 percent
which additional preserves underapproximation.

Currently, we investigate various directions to enhance our approach. Partic-
ularly important are new methods for diagnosis in case a discrepancy between
a system and its model is found. These methods must be more advanced than
in the usual safe approximation settings, because no direction of approximation
is known. Thus decision support in form of additional diagnostic information
is required, in order to decide for adequate updating steps on the model or
corrections of the system. Although we are only at the beginning here, we are
convinced that our regular extrapolation approach will significantly enhance the
impact of formal methods in the industrial practice.

References

1. D. Angluin. Learning regular sets from queries and counterexamples. Information
and Computation, 2(75):87-106, 1987.

2. E. Brinksma. A theory for the derivation of tests. Proc. of PSTV VIII, pages
63-74, 1988.

3. T.S. Chow. Testing software design modeled by finite-state machines. IEEE Trans-
actions on Software Engineering, 4(3):178-187, 1978.

4. European Computer Manufactures Association (ECMA). Services for computer
supported telecommunications applications (CSTA) phase I1/111, 1994/1998.

5. E.A. Emerson. Temporal and modal logic. In J. van Leeuwen, editor, Handbook of
theoretical computer science. Elsevier, 1990.

6. J.C. Fernandez, C. Jard, T. Jéron, L. Nedelka, C. Viho. Using on-the-fly verification
techniques for the generation of test suites. In Proc. CAV 1996, LNCS 1102.
Springer Verlag, 1996

11.
12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Model Generation by Moderated Regular Extrapolation 95

S. Fujiwara, G. von Bochmann, F. Khendek, M. Amalou, and A. Ghedamsi. Test
selection based on finite state models. IEEE Trans. on Software Engineering,
17(6):591-603, 1991.

A. Hagerer, H. Hungar, T. Margaria, O. Niese, B. Steffen, and H.-D. Ide. Demon-
stration of an operational procedure for the model-based testing of CTI systems.
In Proc. of the 5th Int. Conf. on Fundamental Approaches to Software Engineering
(FASE 2002), this Volume.

Herakom GmbH. http://www.herakom.de.

. J.E. Hopcroft and J.D. Ullman. Introduction to Automata Theory, Languages, and

Computation. Addison-Wesley, 1979.

Rational Inc. The rational robot.

B. Jonsson, T. Margaria, G. Naeser, J. Nystrom, and B. Steffen. Incremental
requirement specification for evolving systems. Nordic Journal of Computing, vol.
8(1):65, Also in Proc. of Feature Interactions in Telecommunications and Software
Systems 2000, 2001.

M.J. Kearns and U.V. Vazirani. An Introduction to Computational Learning The-
ory. MIT Press, 1994.

D. Lee and M. Yannakakis. Principles and methods of testing finite state machines
- A survey. In Proc. of the IEEE, volume 84, pages 1090-1123, 1996.

A. Mazurkiewicz. Trace theory. Petri Nets, Applications and Relationship to other
Models of Concurrency, LNCS 255, pages 279-324. Springer Verlag, 1987.

O. Niese, T. Margaria, A. Hagerer, M. Nagelmann, B. Steffen, G. Brune, and
H. Ide. An automated testing environment for CTI systems using concepts for
specification and verification of workflows. Annual Review of Communication, 54,
2000.

O. Niese, T. Margaria, and B. Steffen. Automated functional testing of web-based
applications. In Proc. QWE 2001, 2001.

O. Niese, B. Steffen, T. Margaria, A. Hagerer, G. Brune, and H. Ide. Library-based
design and consistency checks of system-level industrial test cases. In H. Hufimann,
editor, Proc. FASE 2001, LNCS 2029, pages 233-248. Springer Verlag, 2001.

B. Steffen. Unifying models. In R. Reischuk and M. Morvan, editors, Proc.
STACS’97, LNCS 1200, pages 1-20. Springer Verlag, 1997.

B. Steffen. Property oriented expansion. In Proc. Int. Static Analysis Symposium
(SAS’96), LNCS 1145, pages 22-41. Springer Verlag, 996.

B. Steffen and T. Margaria. META Frame in Practice: Design of Intelligent Network
Services, LNCS 1710, pages 390—-415. Springer Verlag, 1999.

Q.M. Tan and A. Petrenko. Test generation for specifications modeled by in-
put/output automata. In In Proc. Of 11th IFIP Workshop on Testing of Commu-
nicating Systems (IWTCS’98), pages 83-99, 1998.

J. Tretmans. Test generation with inputs, outputs, and quiescence. In Proc.
TACAS’96, LNCS 1055, pages 127-146. Springer Verlag, 1996.

L.G. Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134—
1142, 1984.

A. Valmari. On-the-fly verification with stubborn sets. In Proc. CAV 1993, LNCS
697, pages 397-408. Springer Verlag, 1993.

http://www.herakom.de

	Motivation
	Regular Extrapolation
	Sketch of the Approach
	The Regression Testing Scenario
	The Design Decisions
	Related Work

	Ingredients of a Posteriori Model Generation
	Extrapolation
	Consistency
	Validation

	Handling a Posteriori Model Generation
	Model Structure
	Application Scenario: System-Level Testing of CTI Systems
	Performing Regular Extrapolation
	Adding Expert Knowledge

	Examples for the Usage of Models
	Enhanced Test Result Evaluation
	Improved Error Diagnosis
	Further Applications

	Conclusion

