Exceptions, Continuations and
Macro-expressiveness

James Laird

COGS, University of Sussex, UK
e-mail: jiml@cogs.susx.ac.uk

Abstract. This paper studies the the problem of expressing exceptions
using first-class continuations in a functional-imperative language. The
main result is that exceptions cannot be macro-expressed using first-class
continuations and references (contrary to “folklore”). This is shown us-
ing two kinds of counterexample. The first consists of two terms which
are equivalent with respect to contexts containing continuations and ref-
erences, but which can be distinguished using exceptions. It is shown,
however, that there are no such terms which do not contain callcc.
However, there is a II; sentence of first-order logic which is satisfied
when interpreted in the domain of programs containing continuations
and references but not satisfied in the domain of programs with excep-
tions and references. This is used to show that even when callcc is
omitted from the source language, exceptions still cannot be expressed
using continuations and references.

1 Introduction

All practical functional programming languages have operators for manipulating
the flow of control, typically either first-class continuations or exceptions. There
are clear differences between these features; the former are statically scoped,
whilst the latter are handled dynamically. But how significant are these dis-
tinctions? (After all, many instances of control can be written using either con-
tinuations or exceptions.) This can be seen as a question of relative expressive
power: can exceptions be expressed in terms of continuations and vice-versa [3]?
The difficulty lies in formalising this problem; there is a consensus that trans-
lations between languages should be the basis for comparing their expressive
power but different notions of what constitutes a satisfactory translation have
been proposed in different contexts [ITl[7|1]. Having settled on one of them, a sec-
ond problem is that translations compare whole languages rather than specific
features, as Felleisen notes [1]:

... claims [about expressiveness] only tend to be true in specific lan-
guage universes for specific conservative language restrictions: they often
have no validity in other contexts!

For example, Lillibridge [6] has shown that adding ML-style exceptions to the
simply-typed A-calculus allows recursion to be encoded whilst adding callcc

D. Le Métayer (Ed.): ESOP 2002, LNCS 2305, pp. 133-{I46] 2002.
(© Springer-Verlag Berlin Heidelberg 2002

134 James Laird

does not, and so by this measure exceptions are more powerful than continua-
tions. However, “realistic” languages include some form of recursion directly and
so this notion of expressiveness based on computational strength is too coarse
to distinguish exceptions from callcc in general.

A more fine-grained approach is obtained if the translations between lan-
guages are restricted to those which preserve common structure — the terms
themselves and their contextual equivalences — intact. Riecke and Thielecke
[12] have shown that in the context of a simple functional language, exceptions
cannot be expressed as a macro in terms of continuations and vice-versa, by
giving terms of the simply-typed A-calculus which are contextually equivalent
when continuations are added to the language but inequivalent if exceptions are
added, and terms which are equivalent in the presence of exceptions but not
continuations. This does not resolve the issue, however, for languages like ML or
Scheme which combine exceptions or continuations with assignable references.
Thielecke [14] has shown that in the presence of state it is still the case that
exception-handling cannot be used to macro-express callcc. He also observes
that “...it is known (and one could call it “folklore”) that in the presence of
storable procedures, exceptions can be implemented by storing a current han-
dler continuation.” (An example of such an implementation is given in [I0].)
The inference drawn from this fact in [I4] is that in the presence of higher-order
references, continuations are strictly more expressive than exceptions, although,
as we shall see, the implementation fails to conform to the criteria given in [I]
and adopted in [I2I14] for a translation to be used to compare expressiveness.

1.1 Contribution of This Paper

The main formal results contained in this paper are two counterexamples to
the assertion that exceptions can be expressed in terms of continuations and
references. (An appendix gives (Standard ML of New Jersey) code corresponding
to these examples.) Section 2 describes a language with exceptions, continuations
and references, and gives some background on the theory of expressivenes of
programming languages. The first counterexample (Section 3) is of the kind used
in [1214]; two terms which are observationally equivalent in a language with
continuations and references but which can be distinguished when exceptions
are added. In fact, these two terms are actually equated by various “theories of
control” such as the AC [2] and Ap-calculi [9], and hence these theories are not
sound in the presence of exceptions.

However, the terms used in the first counterexample contain callcc, so it
does not exclude the possibility that exceptions (in the absence of continuations)
can be reduced to continuations and references. In fact, it is shown in Section
4 that no counterexample of the same form can exclude this possibility — be-
cause the implementation of exceptions using callcc and references preserves
equivalences between terms which don’t contain callcc.

Hence to show that the A-calculus with exceptions and references cannot be
reduced to the A-calculus with continuations and references (Section 5), it proves
necessary to develop the theory of expressiveness by describing a new and more

Exceptions, Continuations and Macro-expressiveness 135

general kind of counterexample to relative expressiveness — a I} formula of
the associated logic of programs which is satisfied in the domain of programs
containing continuations and references, but not satisfied when programs can
contain exceptions.

2 Exceptions, Continuations and References

Following [I], a programming language £ will be formally considered to be a tuple
(Tmg, Prog, Cr,Evalz) consisting of the terms of £ (phrases generated from a
signature X';, — a set of constructors with arities), the well-formed programs of
L and the terminating programs of £ respectively (M € Eval;, will be written
M). £ is a conservative extension of £ (£ C £') if Tm, C Tmg/, Prog, =
Prog,, N Tm, and Eval; = Evalz, N Prog,.

Fig. 1. A hierarchy of functional languages with side-effects

The languages considered here will all be contained within Agcg, a A-calculus
extended with exceptions, continuations and references. The various fragments
of Apc g — A-calculus with just references, with just exceptions, with just contin-
uations, with exceptions and references, and with continuations and references
— will be referred to as Ag, Ag, Ac, Arr and Agc respectively (Figure 1).
Terms of Arcg are formed according to the following grammar:
M:u=z|*x| M| MM |

abort M | callcc M |

new_exn | raise M | handle M M |

new | M =M | IM.
We shall consider a typed form of Agcg, although the results described here ap-
ply (in a modified form) in an untyped setting as well. Types are generated from
a basis — including a type unit containing the single value %, an empty type O,
and a type exn of exceptions — by = and a type constructors for references:
T:=unit |0 |exn|T =T |Tref
Terms are derived in contexts of typed variables; the typing judgements for ex-
ceptions, references and continuations are as follows:

136 James Laird

I'=M:T ref I'mN:T IT'EM:T ref
Fnewp:T ref I'FM:=N:unit I'HIM:T
I'FM:exn I'FM:exn ['FN:unit
Fnew_exn:exn ['Fraise M:S I'Fhandle M N:unit
I'tM:0 I'eM:(T=95)=T
I'+abort M:T I'Fcallce M:T

Reference and exception variables have been given the local declarations new
and new_exn (although the counterexample of Section 3 also shows that global
exceptions cannot be expressed by continuations and references). Evaluation
contexts are used to pick out the next redex, and to represent continuations.

Definition 1. Ewaluation contexts are given by the following grammar:
El]==[] | E[|M |V E[] |

callcc E[] |

B[] =M |V = E[]| B[] |

raise F[] | handle FE[| M | handle h E[']
where M ranges over general terms, and V' over values (variables, exception and
reference names, and lambda abstractions).

Our exceptions are essentially a simplified version of Gunther, Rémy and Riecke’s
“simple exceptions” [3]. A modified notion of evaluation context is used to de-
termine which handler will trap an exception; for each exception name h, Ep[]
ranges over the evaluation contexts which do not have a handle h in their spine.
B[] =[] | Enl1M | V En[] |

callcc Ep[|

Byl = M|V i= Ey[]| 'yl |

raise Ej[] | handle Ej[-] M | handle k E,[-] (k # h)
(Call-by-value) evaluation of programs is given by small-step reduction in an
environment £ consisting of a set of exception names, a set of reference names
or locations £[L] and a state £[S], which is a partial map from L to values of
ARCE-

Definition 2. Operational semantics of Arc g is given by the reflexive transitive
closure of the following relation between terms of type 0 in an environment £
(containing a set of locations E[L], store E[S] and set of exception names E[Ex]):

EDae.M V], € — E[M[V/z]],&
Elnew|,E[L] — Elz],E[LU{z}] : x & E[L]

Elz :=V],&[S] — E*,E[S[x — V]| : x € E[L]
E'z],E[S] — E[S(2)],€ : S(x)]
Elnew_exn],E[Ex] — E[h],E[Fx U {h}]: h & E[Ex]
Elhandle h*],& — E[*],£: h € E[Ex]
Elhandle h Ep[raise h)],€ — E[*],Eh € E[Ex]
Elcallcc V],E — E[V Az.abort E[z]],&
Elabort M|, — M, E

Exceptions, Continuations and Macro-expressiveness 137

For a program (closed term) M : unit, let k : unit = 0 be a variable not
occurring free in M, then M |} if k M, {} - k*,&.

The standard notions of contextual approximation and equivalence will be used:
M <x N if for all closing Ax-contexts, C[M] | implies C[N] {}.
M:XleM,SXNandN,SXM

Notation: M; N will be used for (Ax.N) M (x ¢ FV(N), letx = N inM
for (Ax.M) N, new_exn h.M for (Az.M) new_exn and newz := V.M for (A\x.z :=
V; M) new. At each type T there is a divergent term 17 : T = newynivmsr vy 1=
(Az.ly x).ly *.

2.1 Macro-expressiveness: Some Simple Examples

The common basis of the various comparisons [IT[7[1] of expressiveness is the
notion of a reduction or translation between programming languages.

Definition 3. A reduction from L1 to Lo is a (recursively definable) mapping
¢: Tmgp, — Tmg, such that:

— if M € Prog, then ¢(M) € Prog,,,
— ¢(M) Uz, if and only if M |, .

¢ 1is compositional if it extends to a map on contexts such that ¢(C[M]) =

P(C)[P(M)].

However, existence of such a reduction (whether compositional or not) merely
amounts to the possibility of writing an interpreter for £; in Lo. As a test
of expressiveness it is unlikely to be sufficient to distinguish between Turing-
complete languages. A finer notion of relative expressiveness can be obtained by
introducing additional criteria for determining a suitable notion of translation,
such as the requirement that a reduction from £; to L9 should preserve their
common structure in the following sense.

Definition 4. Let ¢ be a reduction from Ly to Lo, and L C Lq,Ls. Then ¢
preserves L-contexts if for all contexts C[-] of L, ¢(C[M]) = Clp(M)]. If L =
L1 N Ly we shall just say that ¢ preserves contexts.

The strength of this condition is clearly directly related to the content of L;
when the two languages are disjoint it has no force whereas when Lo C £
it is equivalent to the notion of eliminability [1]; constructors Fy,...,F, in a
language L are eliminable if there is a translation ¢ from £ to £ — {F,... F,}
such that for every G & {F,...,Fp}, ¢(G(My ... My,)) = G(p(Mq) ... ¢p(M,,))
— i.e. ¢ preserves L contexts.

F1,... F, are macro-eliminable if in addition each Fj is expressible as a “syntactic
abstraction”; a context A;[-]...[] of L—{F1,..., F,} such that ¢(F;(M; ... M,))
= A;[(6(My)] ... [¢p(My)] — i.e. ¢ is compositional. We shall use syntactic ab-
stractions for defining compositional translations.

138 James Laird

As an example we shall first show that the forms of raise and handle used
here have the full expressive power of Gunther, Rémy and Riecke’s simple ex-
ceptions [3] by giving syntactic abstractions for the latter. Simple exceptions
differ from our “even simpler” exceptions in that they can carry values; there
is a type-constructor _exn and at each type T there is an operation raiser,
typable as follows:

I'M:Texn I'tEN:T

I'traisep M N : S

In the presence of state, exceptions carrying values of type T can be expressed
by storing the latter in a reference of type T ref and raising and handling an
associated value of type exn.

The second difference between simple exceptions and those in Agcp is that
the handle operation for the former applies a handler function when it catches an
exception: the simple-exception handler handle L with M in N has the typing
rule:

I'tL:Sexn 'FM:S=TI'FN:T
I'+handle Lwith M in N : T.

The operational semantics for simple exceptions is given by an appropriate notion
of evaluation context (see [3]), and the evaluation rules:

Elhandle hwithV inU],€ — E[U], €&
Ehandle hwithV in Ep[raiser hU]],€ — E[V U], €.

We can simulate simple exception handling by raising an additional exception
which escapes from the handler function if the main body of the program eval-
uates without raising an exception.

Proposition 1. Simple exceptions are macro-eliminable in L.

Proof. The following syntactic abstractions for simple exceptions simulate the
reduction rules appropriately, and generate an equivalent notion of evaluation
context:

¢(T exn) = (¢(T) ref = (exn = unit)) = unit,

¢(new_exny) = new_exn z.newr y.Ag.((g y)),

¢(raiser M N) = ¢(M) (Axy.y := ¢(N);raisex),

¢(handle Lwith M in N) = let ¢(L) =1, ¢(M) = m, k = new_exn, z = newrin
(handle k (I Azy.handley (z := ¢(N);raise k); z := m lx)); !z

3 Interference between Control Effects

Another sense in which a translation may preserve program structure is as fol-
lows.

Definition 5. If L C L1, Lo, then ¢ : L1 — Lo preserves L-terms in context if
it extends to Li-contexts and for all contexts C[] of L1 and all terms M of L,
$(C[M]) = ¢(C)[M].

Exceptions, Continuations and Macro-expressiveness 139

Lemma 1. If ¢ is compositional and preserves L-contexts then ¢ preserves L-
terms in context.

Proof. For any L term M, $(M) = M (as M is a O-ary L-context) and hence
P(C[M]) = ¢(C)[¢(M)] = ¢(C)[M].

A translation which preserves terms in context will also preserve observational
equivalences — this is the basis for a useful test given in [I]; a necessary condition
for a compositional and context-preserving reduction to exist.

Proposition 2. If there is a reduction ¢ : Lo — L1 which preserves L-terms in
context then for all My, My in L, M <., N implies M <z, N.

Proof. For any Ly context C[-], C[M] |} implies ¢(C[M]) = ¢(C)[M] | implies
¢(C)[N] = ¢(C[N]) § implies C[N] J.

Our first example showing that exceptions cannot be expressed using continua-
tions and references is of this form; we shall show that exceptions can be used
to break a simple and natural equivalence which holds in Agrc. Moreover, an
equivalence which is at the basis of several “equational theories of control”, such
as Felleisen’s AC-calculus [2], and Parigot’s Ap-calculus [9] (which has been pro-
posed as a “a metalanguage for functional computation with control” by Ong
and Stewart [8]).

Proposition 3. For any E[]: S, M : T in Arc:
Elcallcc M] ~gc callcc k=T .E[M \y.k E[y]]

This equivalence is a typed version of the rule Cj;r; which is a key axiom of
Sabry and Felleisen’s equational theory of the A-calculus with callcc [13], where
it is shown to be sound using a cps translation. To prove that it holds in Arc,
we use an approximation relation. Let ~ be the least congruence on terms of
Arc such that for all evaluation contexts E[-] : S and M : T, E[callcc M] ~
callcc \k*=T.E[M \y.k E[y]],

and for all E[-] such that if z is not free in E[] or M, E[M] ~ A\z.E[z] M.

We extend ~ straightforwardly to a relationship on environments: £ ~ &' if
E[L] = &'[L] and for all z € E[L], E[S](z) ~ E'[S](x).

Lemma 2. If M, ~ M',&" and M',&" — M",E" then HM\,EA such that
M,E— M,E and M,E ~ M",E".

Corollary 1. If M ~ M’, then M || if and only if M’ |l

To prove Proposition[d it suffices to observe that for any C[-], C[E[callcc M]] ~
C[callcc \k®= T .E[M My.k E[y]]] and so by LemmaP] C[E[callcc M]] |} if and
only if Clcallcc Ak~ T . E[M M\y.k E[y]]] |-

However, because exceptions and continuations both manipulate the flow of
control they can “interfere” with each other, breaking this equivalence, even
between terms which do not contain exceptions. For instance, suppose f is a
variable of type (unit = unit) = unit = (unit = unit). Then we have
(callcc f) * ~pe callcc Ak.(f Ay.k (y %)) *, as this is an instance of the equiv-
alence proved in Proposition[3, with E[-] = [-] x.

140 James Laird

Proposition 4. \f.((callcc f) %) 2rcr Af.callcc Mk.((f Ay.k (y *)) *).

Proof. Let N = Agx.(handle h (g \v.raise h);raisee.

Then (callcc N) * raises exception h but callcc Ak.(IV Ay.k (y %)) * raises ex-
ception e, and so if:

C1[] = new_exn h,e.handle h (Af.[] N),

(5[] = new_exn h,e.handlee (Af.[| N),

then Ci[E[callcc f]] | and Ci[callcc Ak.E[f Ay.k E[y]]] ¥,

but Cs[callcc Ak.E[f Ay.k E[y]]] | and C3[E[callcc f]] |f.

Corollary 2. FExceptions are not macro-eliminable in Arcg.

The fact that exceptions cannot be expressed in control calculi based on first-
class continuations such as AC or Ay has already been shown in [12]. But the
result given here is stronger — these calculi are not even sound for reasoning
about exception-free programs if there is the possibility that they might interact
with exceptions. This is an important point of difference between control calculi
and the (call-by-value) A-calculus, which is notable for its robustness in the
presence of side-effects.

4 Implementing Exceptions with Continuations

We have established that exceptions, continuations and references cannot be
satisfactorily reduced to continuations and references, but this leaves open the
problem of whether exceptions and references can be reduced to exceptions and
continuations. In other words, is there a translation from Agg into Agrc which
preserves only the terms or contexts of A\g? The existence of even a limited re-
duction of this kind would lend some plausibility to the claim that continuations
(with references) are more expressive than exceptions, because it is known not to
be possible to reduce continuations and references to exceptions and references
[14].

Moreover, it is possible to give alternative operational semantics of excep-
tions combined with continuations. For example, New Jersey SML includes an
additional type constructor — control_cont— for “primitive continuations”
which ignore enclosing exception handlers, and control operators — capture
and escape — corresponding to callcc and throw, for manipulating them. For
programs without exceptions, substituting capture and escape for callcc and
throw yields an equivalent program, but this is not true in the presence of ex-
ceptions, and in fact the counterexample of Section [3 is not valid for primitive
continuations.

However, exceptions cannot break any equivalence between Ap terms which
is not broken by continuations and references, because there is an implementa-
tion of exceptions using continuations and references which preserves terms of
Ar in context. This implementation is essentially as described in [I0]. Exception
names are represented as references of type (unit = 0) = (unit = 0) = 0 —
they are not used to store anything, but can be tested for equality — define:

Exceptions, Continuations and Macro-expressiveness 141

If M = N then L else L' = (M := Axy.y x); (N := Azy.x); ({M Az.L Az.L").
The current continuation of each handler is stored in a stack, which is repre-
sented as “handler function” inside a reference variable exh. Raising an excep-
tion simply applies the value of exh to the exception name, which then replaces
the current continuation with the relevant handler continuation, and resets exh.
Non-compositionality of the implementation stems from the global nature of
exh; access to this variable must be shared by all parts of a term, but it must
be initialized at the start of each program.
Thus the implementation can be represented as a translation i on terms of Agrpg
defined by the following syntactic abstractions:
1(new_exn) = new,
v(handle M N) = let old =lexh

incallcc Ak.exh := Ay If (M) =1y then (exh := old; (k¢¥(N)))

else (old y)),

Y(raise M)) =lexh Y(M).
This yields a translation ¢ on programs: ¢(M) = newexh := Ax.L.3p(M) such
that if ¢(C)[] =4 newexh := Az.L.¢(C)[] then ¢ preserves A\r terms-in-
context.

Proposition 5. For any program M of Agrg, M | if and only if 6(M) {.

Proof. Define 1) as a map on evaluation contexts as follows:

(1) = [LYEV) = pE)pV) L],

Y(E[raise []]) = (E)[('exh []], ¥ (E[handle h []]) = o (E)[[];lexh h].

This map is used to define an operation "E[]T which extracts the current con-
tents of exh, represented as a list of pairs (h, F[]) of names and handler contexts:
T =1LTEV T ="ELY, .. TEhandle A []]T = TEL] = (B, $(E[])).

An inductive proof of soundness can then be based on the following facts:
E[(E'[M])], Elexh — 1] » E[(E)[Y(M)], Elexh — 1 TE[]T,

and if E[M],€ — E[M'],£' then:

Y(E)W(M)], Elexh — 1] — Y(E)[p(M")), & [exh v 1].

Corollary 3. FEquivalence of Ar terms with respect to Arcg contexts is conser-
vative over equivalence of Ar terms with respect to Arc contexts.

Thus the implementation cannot be soundly extended to one which preserves
Arc terms in context; the proof of Proposition M provides a counterexample —
#(C2)[(callcc f) #] converges.

5 Expressiveness and First-Order Formulas

Does Corollary Bl entail that exceptions can be expressed using continuations
and references if we don’t have continuations in our source language? We might
reasonably take the fact that the implementation of exceptions preserves Agr
equivalences to be the sufficient condition for it to be a satisfactory reduction of
ARE to Agc. However, we shall show that no translation from Arg to Arc can

142 James Laird

exist which adheres to our original criteria — compositionality and preservation
of contexts — as such a translation will preserve the truth of all I7; statements
which do not mention exceptions, whereas there is a such a statement which is
true in Agc but not in Arg.

Definition 6. For a programming language L, let the object language of L,
obj(L), be the language of first-order logic with two unary predicates Prog and
Eval and terms generated from X, together with a distinct set of logical variables
XYy 2y

Let M(L) be the obj(L)-structure with the domain Tmg in which each term of
obj(L) is interpreted as the corresponding term of L, and M(L) = Prog(t) if
and only if t € Prog, and M(L) |= Eval(t) if and only if t € Eval..

Proposition 6. If there is a compositional and context-preserving translation
¢ : L1 — Lo then for all I} sentences of obj(L1 N L2)), if M(L2) = 0 then
M(Ly) E 6.

Proof. It M(L1) FYy1 ... Yn-0(y1,...,yn) then there exist terms M, ... M, in
Ly such that M(Ly) = —0(M,..., M,). It is then straightforward to show by
structural induction that M(Ls) = —0(¢(M7), ..., ¢(M,)), and hence M(L3)
YY1 ... Yn.0 as required.

So to show that there is no compositional and context-preserving reduction from
L1 to Lo, it is sufficient to find a II; sentence 6 of obj(L£1 N L3) such that
M(L2) | 6 and M(Ly) = 0. In a A-calculus-based language this includes all
counterexamples in the form of a contextual equivalence of Lo which is broken
in £; since contextual equivalence of values U,V can be expressed in obj(L)
by the IT; sentence Vx.Eval(xU) <= Eval(xV). But we gain access to new
counterexamples which are not of this form; we shall give a context C[-] and a
value U of Ag such that for 0 = Vx,y.Prog(C[x]) A Eval(y C[x]) = Eval(y U) we
have M()‘RC) ': 6 and M()‘RE) b& 0.

Let T = (unit = 0) = 0, U = A\g : T.g, and C[] = V Af : T.([] : 0),
where V = AF.A\g.Az.new z := Aa.((z := M\y.x %); g a).F Aw.!z w. So O represents
the assertion that for any M : 0O containing only f : (unit = 0) = 0 free,
VAf.M < Ag.g.

Proposition 7. M(Agg) = 6.

Proof. Let M = new_exn h.(handle h (f Az.raiseh); L); f Aw.L and
D[] = new_exnk.handlek ((([-] Az.handle k (x *); L) Ay.raisek); L).
Then D[V A\f.M] || but D[Ag.g] -

The proof that M(Arc) [= 6 can be outlined via a series of lemmas about <pc
and ~pc. First we show that terms of type 0 containing only f : T = 0 free
can be reduced to a “head-normal form”.

Write newy := v.M for newyj.newys...newy,.y1 ‘= v1;Y2 = V2;...;Yn =
U M.

Exceptions, Continuations and Macro-expressiveness 143

Lemma 3. If M : 0 is a Arc term containing only f : T = 0 free, then there
are some Agc-values U : T, T such that M Spc newqy :=7v.fU.

Proof. The following facts (proved using approximation relations) are used to
inductively reduce terms of type M : 0 to head-normal form:

Elabort M]:0 ~pc M

Elcallcc M| : 0 ~rc E[M Az.abort E[x]]

Elnew z.M] ~gc new z.E[M]

newy := U.E[ly;] ~pc newy := 0. E[v;]

newy :=v.Ey; := U] ~gc

NeW Y1 = U1 ... Yim1 = Vim1.Yit1 := Uikl - - - Yn := Up.Y; := U.E[%].

If this reduction process does not terminate, then M is equivalent to Lgq.

The following lemma is proved using approximation relations.

Lemma 4. i If a is not free in W then:
newz := Aa.((z := W); M).newy :=0.12U
~pc newz := Wnewy :=0.M[U/a].

ii For any term M (f) and value V' which do not contain z free:
new z := V.M[Ay.lzy/f] ~rc M[V/f].

The final lemma is a refinement of Lemma [3]

Lemma 5. For any term M = newy := v.Aw.N : unit = 0, containing only
x:unit = 0 free, M <pc .

Proposition 8. For any Agpc-term M(f) : 0 which contains only f : (unit =
0) = 0 free, VAf.M Sgc Ag.g.

Proof. By Lemmalf3] there exist U, v such that M <rc newy :=7.f U and hence
VAfM

Spe Agr.new z := Aa.(z := Ab.x %); g a.(newy :=U.f U)[Aw.lz w/ f]

~po Agr.new z := Aa.(z := Mb.x *); g a.(newy := 0.2 U) [Mw.!z w/ f]

<krc Agz.new z := \b.x xnewy :=v.g UMw.!z w/f] (By Lemma i)

~po Agr.newy :=v.g UAb.z %/ f] (By Lemma @lii)

~pc Agx.g (newy :=0.U)[Ab.x */ f]

Sre Agz.gz (By LemmaB) ~rc Ag.g.

Corollary 4. There is no compositional and context-preserving reduction from
>\RE to >\RC-

6 Conclusions

What relevance do these results have to the design, implementation and applica-
tion of programming languages? Whilst expressiveness can mean the facility to
write concise, flexible and efficient programs, the kind of expressive power which
is embodied in our counterexamples does not appear to be particularly useful.
Indeed, quite the reverse — combining continuations and exceptions gives the

144 James Laird

“power” to write programs with unpredictable behaviour, and this should be
balanced against the usefulness of these effects when permitting such combina-
tions. A better way to combine the simplicity of exceptions with the power of
continuations could be to provide dynamically bound control constructs which
still allow complex, continuation-style behaviour, such as prompts [3].

The difficulty of predicting on an ad hoc basis how control effects will inter-
act suggests that more formal ways of reasoning about them would be useful.
One possibility is equational reasoning using “control calculi” such as AC [2] or
At [8]. The counterexample in Section 3 shows the limitations of these calculi,
however, in that their equational theories are not consistent with the presence
of exceptions.

There are many other ways to model or reason about control, but one which
deserves mention is game semantics. The results described here arose from a
semantic study of exceptions and continuations in a fully abstract games model
[J5]. Thus one of the conclusions they support is a methodological one; game
semantics — with its focus on definability and full abstraction — can be a useful
tool for investigating relative expressiveness. Moreover game-based reasoning can
be readily converted into syntactic examples (using definability results) which
can be understood in isolation from the semantics.

Acknowledgments

I would like to thank Guy McCusker and the referees for their comments.

References

1. Matthias Felleisen. On the expressive power of programming languages. In Science
of Computer Programming, volume 17, pages 35-75, 1991. 133l [133] 134 [[35], 137,
37,

2. Matthias Felleisen, Daniel P. Friedman, Eugene E. Kohlbecker, and Bruce Duba.
A syntactic theory of sequential control. Theoretical Computer Science, 52:205 —
207, 1987. [134] [139, [T44]

3. C. Gunter, D. Rémy, and J. Riecke. A generalization of exceptions and control
in ML like languages. In Proceedings of the ACM Conference on Functional Pro-
gramming and Computer Architecture, pages 12-23, 1995. [33], [36] 138, 138,
44

4. J. Laird. Full abstraction for functional languages with control. In Proceedings
of the Twelfth International Symposium on Logic In Computer Science, LICS ’97.
IEEE Computer Society Press, 1997. [144]

5. J. Laird. A fully abstract game semantics of local exceptions. In Proceedings of
the Sizteenth International Symposium on Logic In Computer Science, LICS ’01.
IEEE Computer Society Press, 2001. [144]

6. M. Lillibridge. Unchecked exceptions can be strictly more powerful than Call/CC.
Higher-Order and Symbolic Computation, 12(1):75-104, 1999. [I33]

7. J. Mitchell. On abstraction and the expressive power of programming languages.
In Proc. Theor. Aspects of Computer Software, pages 290-310, 1991. [33] 031

10.

11.

12.

13.

14.

Exceptions, Continuations and Macro-expressiveness 145

. C-H. L. Ong and C. Stewart. A Curry-Howard foundation for functional com-

putation with control. In Proceedings of ACM SIGPLAN-SIGACT syposium on
Principles of Programming Languages, Paris, January 1997. ACM press, 1997.
39, 144

. M. Parigot. Au calculus: an algorithmic interpretation of classical natural deduc-

tion. In Proc. International Conference on Logic Programming and Automated
Reasoning, pages 190-201. Springer, 1992. [[34]

J. Reynolds. Theories of Programming Languages. Cambridge University Press,
1998. [134), [T40]

Jon G. Riecke. The Logic and Expressibility of Simply-Typed Call-by-Value and
Lazy Languages. PhD thesis, Massachusetts Institute of Technology, 1991. Avail-
able as technical report MIT/LCS/TR-~523 (MIT Laboratory for Computer Sci-
ence). 33 037

J. Riecke and H. Thielecke. Typed exceptions and continuations cannot macro-
express each other. In J. Wiedermann, P. van Emde Boas and M. Nielsen, editor,
Proceedings of ICALP ’99, volume 1644 of LNCS, pages 635 —644. Springer, 1999.
34, 341 [T34], M40

A. Sabry and M. Felleisen. Reasoning about programs in continuation-passing
style. LISP and Symbolic Computation, 6(3/4):289-360, 1993. @39

H. Thielecke. On exceptions versus continuations in the presence of state. In
Proceedings of ESOP 2000, volume 1782 of LNCS. Springer, 2000. [134] [34] [[34],
=,

Appendix

(* SML_NJ code corresponding to sections 3 - 5.%)

(* Counterexample from section 3: *)

open SMLofNJ.Cont;

exception E;exception F

fun My x = ((y (fn z => raise E)) handle E =>();raise F);
(* (callcc (fn k => (M (fn x => throw k x)))) O;

raises exception E whereas
callcc (fn k => (M (fn x => throw k (x ()))) O));
raises exception F *)

(* Implementation of exceptions described in section 4:%*)
fun diverge x = diverge x;

val exhandler
val new_exn M

ref (fn x:unit ref => (diverge ()):unit);
=M (ref O);

fun handle_xn h x = let val old = !'exhandler in

(callcc (fn k =>

((exhandler := (fn y =>

(if (y = h)
then ((exhandler:= old); (throw k ()))
else (old y))));

((fn v => ((exhandler:= old);v)) (x (O)))))

end;

146 James Laird

(*It’s necessary to ‘‘thunk’’ the second argument to handle_xn.*)
fun raise_xn h = diverge (!exhandler h);

(*Counterexample from section 5: *)
datatype Empty = empty of Empty;
fun V g (£: (unit -> Empty) -> Empty) (x:unit -> Empty) =
let val z = (ref diverge) in

((z:= (fn u => ((z:= (fn y => x ()));(w)));

((diverge (g (fn w => (!'z w)))))) :Empty
end;
fun N f = let exception H in

(diverge (f (fn w=>raise H)) handle H=>();f diverge)

end;
fun argl x = diverge (diverge (x ()) handle F => ());
fun arg2 z = raise F;
(x*diverge (((V N) argl) arg2) handle F=>(); converges, *)
(xdiverge (((fn g => g) argl) arg2) handle F =>(); diverges.*)

	Exceptions, Continuations andMacro-expressiveness
	Introduction
	Contribution of This Paper

	Exceptions, Continuations and References
	Macro-expressiveness: Some Simple Examples

	Interference between Control Effects
	Implementing Exceptions with Continuations
	Expressiveness and First-Order Formulas
	Conclusions

