
Generalised Regular MSC Languages

Benedikt Bollig1, Martin Leucker2, and Thomas Noll1

1 Lehrstuhl für Informatik II, Aachen University of Technology (RWTH), Germany
{bollig,noll}@informatik.rwth-aachen.de

2 Dept. of Computer and Information Science�, University of Pennsylvania, USA
leucker@cis.upenn.edu

Abstract. We establish the concept of regularity for languages consist-
ing of Message Sequence Charts (MSCs). To this aim, we formalise their
behaviour by string languages and give a natural definition of regular-
ity in terms of an appropriate Nerode right congruence. Moreover, we
present a class of accepting automata and establish several decidabil-
ity and closure properties of MSC languages. We also provide a logical
characterisation by a monadic second-order logic interpreted over MSCs.
In contrast to existing work on regular MSC languages, our approach
is neither restricted to a certain class of MSCs nor tailored to a fixed
communication medium (such as a FIFO channel). It explicitly allows
MSCs with message overtaking and is thus applicable to a broad range
of channel types like mixtures of stacks and FIFOs.

1 Introduction

Components of distributed systems usually communicate with each other via
message passing: A sender process sends a message over a channel, from which
it is taken by the receiver process. A prominent formalism to model this kind of
systems is that of Message Sequence Charts (MSCs) [8,9]. They are standard-
ised, can be denoted both textually and graphically, and are often employed in
industry. Furthermore, they are quite similar to the notion of sequence charts of
the Unified Modelling Language (UML) [2].

An MSC defines a set of processes and a set of communication actions be-
tween these processes. In the visual representation of an MSC, processes are
drawn as vertical lines. A labelled arrow from one line to another corresponds
to the communication event of sending the labelling value from the first process
to the second. As the vertical lines are interpreted as time axes, there is the
general rule that arrows must not go “upwards” because this would describe a
situation that a message is received before it has been sent. Figure 1(a) gives an
example of an MSC. Collections of MSCs are used to capture the scenarios that
a designer might want the system to follow or to avoid.

When one considers the dynamic behaviour of an MSC, i.e., the sequences of
actions that may be observed when the system is executed, one distinguishes be-
tween the so-called visual-order semantics and the causal-order semantics. The
� Most of the work was completed during the author’s employment at Lehrstuhl für
Informatik II, Aachen University of Technology, Germany.

M. Nielsen and U. Engberg (Eds.): Fossacs 2002, LNCS 2303, pp. 52–66, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

Generalised Regular MSC Languages 53

P Q R
a

b

c

e
d

S2
1(a)

S2
1(c)

S3
1(e)

R2
1(a)

R2
3(b)

R2
1(c)

R2
3(d)

S2
3(b)

R3
1(e)

S2
3(d)

(a) (b)

Fig. 1. An MSC and its formalisation

visual order assumes that the events are ordered as shown in the MSC. That is,
the events on a single process line are linearly ordered, and sending events pre-
cede their corresponding receiving events. For example, Process Q in Figure 1(a)
has to read the a symbol before it can read b. In the causal order-based semantics,
a concrete communication medium between the processes is taken into account,
e.g., a first-in-first-out (FIFO) channel. Furthermore, receiving events on the
same process line are not ordered unless they are “causality dependent”. For
instance, reading event b may occur before reading a: As Process P might have
sent a after R has sent b and assuming a single FIFO incoming channel for Q,
Q will potentially receive b before a. Note that, under the same communication
assumption, reading c must occur before reading d. To simplify our presentation,
we adopt the visual-order point of view in the following. But we would like to
stress that—with minor modifications—our very general approach also works
wrt. the causal order.

Given the system specification in the form of a collection of MSCs, one is
interested in doing formal analysis to discover errors at the early stages of system
design. Of course, the first question arising is which kinds of collections of MSCs
are amenable to formal methods. In a pioneering work by Henriksen et al. [7], a
definition of regularity of MSC languages is proposed. A characterisation in terms
of message-passing automata and in terms of monadic second-order logic is also
given. The paper explains in a convincing way the benefits of these alternative
descriptions, arguing that this is the “right” notion of regularity for MSCs. For
example, a characterisation in terms of finite devices (automata) gives evidence
for a collection of MSCs to be realisable.

However, this approach has a serious limitation. So-called “MSCs with mes-
sage overtaking” cannot be considered. But these are explicitly defined in the
official standard [8] and must be taken into account. The limitation stems from
the fact that, for establishing a link between MSCs and classical language the-
ory, the graphical representation of an MSC has somehow to be mapped to the
domain of strings. The straightforward approach, enumerating the possible lin-
earisations of the events that occur in an MSC, only works for simple types of
MSCs where the correspondence between a sending event and its receiving coun-

54 Benedikt Bollig, Martin Leucker, and Thomas Noll

terpart can be derived from the order in which they occur in the string. Note
that also [1] has to restrict the admissible class of MSCs in order to be able to
relate MSCs and string languages.

Our solution to this problem is to associate with every communication event
in the string representation of an MSC a natural number that explicitly es-
tablishes this correspondence. As it will become clear in the next section, this
allows us to drop any restriction on the set of MSCs under consideration. The
price to pay is that, for arbitrary collections of MSCs, we have to work with
strings, automata, etc. over infinite alphabets. For practical applications though,
the “simple” collections of MSCs are of interest. Therefore, within the domain of
(MSC word) languages, we will spot the regular ones. These are defined in terms
of a Nerode right congruence, which allows a straightforward generalisation to
languages over infinite alphabets.

To support formal analysis, we introduce a new kind of automaton (MFA)
accepting linearisations of MSCs. More precisely, our notion of MFAs guarantees
that every accepted word is indeed a linearisation of an MSC. Moreover, we es-
tablish several closure properties and decidability results. In particular, we show
that language inclusion is decidable, a crucial property for model-checking appli-
cations. Our concept of automata is similar to the one introduced by Kaminski
and Francez [10]. Note, however, that in their setting the problem of language
inclusion is undecidable [14]. Furthermore, our framework is well suited for ex-
tensions. In [6], compositional message sequence graphs (CMSGs) are introduced
to describe larger classes of MSCs. Our automata model MFA is well prepared
to accept languages of CMSGs, which can be characterised by MSC languages
with regular representative linearisations, a concept defined and studied by Mad-
husudan and Meenakshi [12]. However, due to lack of space, this topic will be
discussed elsewhere.

Subsequently, we follow the line of [7] and develop an alternative automata-
theoretic characterisation based on message-passing automata as well as a de-
scription in terms of monadic second-order logic. Although the results are similar,
the proofs are of a different nature because it is generally impossible to lift proofs
directly from the setting of languages over finite alphabets to the infinite case.

Our main contribution is to develop a theory of regular collections of MSCs in
terms of Nerode right congruences, finite automata, message-passing automata,
and models of MSO formulas for the full class of MSCs. Thus, we provide the
formal basis for subsequent verification questions. Our approach has already
turned out to be useful in the setting of LTL model checking for MSCs [3].

Due to space constraints, we omit most proofs for the presented results. These
can be found in the full version of the paper [4].

2 Message Sequence Charts and Their Linearisations

In this section, we present our formal model for MSCs and establish a string
representation, which describes their behaviour in a linear way.

Generalised Regular MSC Languages 55

2.1 Message Sequence Charts

For N ≥ 2, let PN := {1, . . . , N} be a set of processes and Λ a finite message
alphabet. Let further ΣS := {Sqp(λ) | p, q ∈ PN , p �= q, λ ∈ Λ} and ΣR :=
{Rq

p(λ) | p, q ∈ PN , p �= q, λ ∈ Λ} denote the sets of send and receive actions,
respectively, and Σ := ΣS∪ΣR their union. An action Sqp(λ) stands for sending a
message λ from Process p to Process q, and Rq

p(λ) represents the corresponding
receive action, which is then executed by Process q. In this sense, Corr :=
{(Sqp(λ),Rq

p(λ)) | p, q ∈ PN , p �= q, λ ∈ Λ} relates those actions that belong
together. From now on, all premises and definitions are made wrt. a fixed set
PN of processes and a fixed message alphabet Λ.

An MSC is a tuple of the form M = ({Ep}p∈PN , {	p}p∈PN , f, L) where
{Ep}p∈PN is a family of pairwise disjoint finite sets of events, each of which
is totally ordered by a relation 	p⊆ Ep × Ep. (For simplicity, we consider 	p
as a relation over E :=

⋃
p∈PN Ep, the set of all events.) Let P : E ∪ Σ → PN

yield the process an event or an action belongs to, i.e., P (e) = p for any e ∈ Ep,
P (Sqp(λ)) = p, and P (Rq

p(λ)) = q. M is required to induce a partition E = S∪R
of the events into send (S) and receive events (R) such that f : S → R is a
bijective mapping satisfying the following:
– The visual order 	⊆E × E of M , i.e., the reflexive and transitive closure

of
⋃
p∈PN 	p ∪ {(e, f(e)) | e ∈ S}, is a partial order; in particular, it is

antisymmetric.
– L : E → Σ provides information about the messages being interchanged by

communicating events whereby, for all e ∈ S, there is some λ ∈ Λ such that
L(e) = SP (f(e))P (e) (λ) and L(f(e)) = RP (f(e))

P (e) (λ).

Figure 1(b) presents a formal version of the MSC shown in Figure 1(a).
A partial execution (configuration) of an MSC can be described by a down-

wards closed subset of events, containing those events that occurred so far. For-
mally, given an MSC M = ({Ep}p∈PN , {	p}p∈PN , f, L), a configuration of M is a
subset E′ of E satisfying E′ = ↓E′ := {e ∈ E | ∃e′ ∈ E′ : e 	 e′}. Let Conf (M)
denote the set of configurations of M . The execution of M can be described by
a transition relation −→M ⊆ Conf (M)×Σ×Conf (M) where c σ−→M c′ iff there
exists e ∈ E − c such that L(e) = σ and c′ = c ∪ {e}.

2.2 MSC Words

A suitable notion of regularity for a class of objects should have similarities with
existing notions for regular sets of objects. We will therefore reduce regularity
of collections of MSCs to regularity of word languages. Thus, we have to iden-
tify an MSC with a set of words, which will be called linearisations or MSC
words. A linearisation represents a possible execution sequence of the events oc-
curring in an MSC. To justify this view, it is necessary to guarantee that—up to
isomorphism—from a set of linearisations a corresponding MSC can be unam-
biguously inferred and vice versa. We are then able to define an equivalence on
MSC words whose equivalence classes on their own determine exactly one MSC
and, as a whole, stand for the set of all MSCs.

56 Benedikt Bollig, Martin Leucker, and Thomas Noll

S2
1(a)

S2
1(a)

R2
1(a)

R2
1(a)

S2
1(a)

S2
1(a)

R2
1(a)

R2
1(a)

M1 M2

Fig. 2. MSCs generated by α1 and α2

So one of the main prob-
lems is how to define an
MSC word. For example, w =
S21(a)S21(a)R2

1(a)R2
1(a) ∈ Σ∗

might define the MSC M1 given
in Figure 2. But as w is also a
correct linearisation of the MSC
aside, we could likewise imagine
that w represents M2, relating
the first and the fourth position
of w. We therefore cannot unambiguously correlate a word in Σ∗ with an MSC.
Faced with causal-order semantics, the problem of relating events will be even
more involved. In particular, if we make use of nondeterministic channels (which
might allow MSCs to behave both in a FIFO manner and as a stack, for exam-
ple), we need some information about which positions belong together. For this
purpose, each position of a word w ∈ Σ∗ is equipped with a natural number in-
dicating the matching positions (namely those showing the same number). The
words α1, α2 ∈ (Σ× IN)∗ from Figure 3 are such MSC words. Notice that α1 will
determine the MSC M1, whereas M2 will emerge from α2. To avoid these diffi-
culties, [7] and [1] do not allow an MSC like M2. However, M2 is a perfect “MSC
with message overtaking”, which is explicitly allowed in the MSC standard [8,9].

Developing our theory step by step, we first call a word α ∈ (Σ × IN)∗

– proper iff for all (σ, τ) ∈ Corr , π ∈ IN, and prefixes α′ of α, |α′|(τ,π) ≤
|α′|(σ,π) ≤ |α′|(τ,π) + 1, and

– complete iff it is proper and for all (σ, τ) ∈ Corr and π ∈ IN, |α|(σ,π) =
|α|(τ,π).

Thus, in a proper word every receiving event (we sometimes refer to positions of
MSC words as events) must be preceded by a sending counterpart, and, for each
number π and each send action, at most one “open” sending event is admitted.

Definition 1 (MSC Word). A word σ1 . . . σ�π1 . . . π� ∈ (Σ × IN)∗ is called an MSC
word iff it is complete. Let MW denote the set of all MSC words and PW the
set of proper words.

To see some examples, look at the words α1, . . . , α4 ∈ (Σ × IN)∗ given in
Figure 3. As mentioned before, α1 and α2 are MSC words, whereas α3 is certainly
proper but not complete and α4 is not even proper. We will refer to α1 and α2
as exemplary MSC words throughout the rest of the paper.

Given a proper word α = σ1 . . . σ�π1 . . . π� ∈ PW, we determine which positions are
matching. For i, j ∈ {1, . . . , �}, we write i ↘α j iff i < j, (σi, σj) ∈ Corr , and
j = min{k | k > i and πk = πi and (σi, σk) ∈ Corr}.

Referring to the previous example, 1↘α1 3 and 2↘α1 4 as well as 1↘α2 4
and 2↘α2 3.

Generalised Regular MSC Languages 57

α1 =
S2

1(a)
1

S2
1(a)
3

R2
1(a)
1

R2
1(a)
3 α2 =

S2
1(a)
1

S2
1(a)
2

R2
1(a)
2

R2
1(a)
1

α3 =
S2

1(a)
2

S1
2(b)
1

R1
2(b)
1

S1
2(b)
1

R2
1(a)
2 α4 =

S2
1(a)
2

S1
2(b)
1

R1
2(b)
1

S1
2(b)
1

S2
1(a)
2

Fig. 3. Exemplary words

2.3 From MSC Words to MSCs

Let us show that MSC words indeed represent MSCs. Falling back on the match-
ing relation, a word α = σ1 . . . σ�π1 . . . π� ∈ MW generates an MSC M(α) := ({Ep}p∈PN ,
{	p}p∈PN , f, L) where

– Ep = {n ∈ {1, . . . , �} | P (σn) = p},
S = {n ∈ {1, . . . , �} | σn ∈ ΣS},
R = {n ∈ {1, . . . , �} | σn ∈ ΣR},

– n 	p m iff n,m ∈ Ep and n ≤ m,
– f(n) = m iff n↘α m, and
– L(n) = σn.

For example, α1 generates the MSC M1 illustrated in Figure 2, whereas α2
generates M2.

Moreover, there is no problem in extending the above definition to proper
words, which then determine prefixes of MSCs.

Note that two different proper words can stand—up to isomorphism—for
one and the same MSC or configuration of an MSC, respectively: Since the
naturals are only used for identifying matching positions, we have some freedom
in choosing the actual value. Furthermore, we are free to choose the linearisation
of independent events. Therefore, we define two equivalence relations ≈⊆ PW×
PW and ∼⊆ MW×MW. The first identifies words with equivalent projections
onto the second component; the latter, as introduced further below, allows to
permute the positions of an MSC word.

Thus, for α = σ1 . . . σ�π1 . . . π� ∈ PW and β = τ1 . . . τmρ1 . . . ρm ∈ PW, let α ≈ β iff
σ1 . . . σ� = τ1 . . . τm and for all i, j ∈ {1, . . . , �}, i↘α j iff i↘β j.

For instance, let αn1 emerge from α1 by replacing 3 in the natural-number
component with some n ∈ IN. Then, αn1 ∈ MW iff n �= 1, and αn1 ∈ MW implies
α1 ≈ αn1 . But notice that α1 �≈ α2 because the second condition in the definition
of ≈ is violated.

For a proper word α = σ1 . . . σ�π1 . . . π� ∈ PW, let open(α) ⊆ ΣS × IN denote the
set of those send events that are not followed by a matching receive event, i.e.,
open(α) := {(σi, πi) | σi ∈ ΣS and there is no j > i such that i↘α j}. We call
the elements of open(α) open events. A word α ∈ PW is called in normal form
iff for all prefixes σ1 . . . σkπ1 . . . πk of α, σk ∈ ΣS implies πk = min{π ∈ IN | (σk, π) �∈
open(σ1 . . . σk−1π1 . . . πk−1)}. Thus, for every sending event, the lowest available number
is chosen. Note that every equivalence class in PW/≈ contains exactly one word

58 Benedikt Bollig, Martin Leucker, and Thomas Noll

in normal form. For α ∈ PW, let furthermore nf(α) = β iff α ≈ β and β is in
normal form. For instance, nf(α1) = α21, whereas α2 is already in normal form
so that nf(α2) = α2. nf is applied to sets of words in the expected manner.

In the following, we will not distinguish ≈-equivalent words.

Definition 2 (MSC Word Language). A set L ⊆ MW is called an MSC
word language iff L = L≈ where L≈ denotes the ≈-closure of L.
Note that, for any MSC word language L, it holds L = nf(L)≈.

Characterising regular languages within the scope of MSCs, a certain re-
striction of words and MSCs will prove to be important. Given a natural num-
ber B, α ∈ MW is called B-bounded iff for all prefixes α′ of α and actions
σ ∈ ΣS , |open(α′) ∩ {(σ, π) | π ∈ IN}| ≤ B. This means that, for every
send action, the number of open events is bounded by B. Examples for 2-
bounded MSC words are α1 and α2. Note that we could likewise call α B-
bounded iff for all prefixes α′ of α, |open(α′)| ≤ B, i.e., the total number of open
send events is bounded by B, or also iff for all prefixes α′ of α and p ∈ PN ,
|open(α′) ∩ {(σ, π) | π ∈ IN, P (σ) = p}| ≤ B, which means that the number of
open events per process is bounded by B.

The definitions differ in the concrete bound, and the appropriate definition
taken may vary depending on an underlying channel type. However, all presented
results hold for every of these definitions.

2.4 Linearisations of MSCs

To finally relate MSCs to the rich theories of languages and automata over words,
the concept of linearisations of an MSC is essential. We call an MSC word α =
σ1 . . . σ�π1 . . . π� ∈ (Σ × IN)∗ a linearisation of an MSC M = ({Ei}i∈PN , {	i}i∈PN , f, L)
with a set of events E = {e1, . . . , e�} iff there are c1, . . . , c� ∈ Conf (M) with
∅ σ1−→Mc1 σ2−→M · · · σ�−→Mc� and there is a bijective mapping χ : E → {1, . . . , �}
such that for all e ∈ E, L(e) = σχ(e), and for all e ∈ S, e′ ∈ R, f(e) = e′ implies
χ(e) ↘α χ(e′). Lin(M) denotes the set of linearisations of M . For a set M of
MSCs, we canonically define Lin(M) :=

⋃{Lin(M) | M ∈ M}. For instance,
the exemplary word α1 is a linearisation of the MSC M1 shown in Figure 2, and
α2 is a linearisation of M2. When, above, we spoke of isomorphism of two MSCs,
we actually meant “inducing the same set of linearisations” instead.

An MSC is called B-bounded iff all of its linearisations are B-bounded. A
collection of MSCs (a collection of MSC words, respectively) is B-bounded iff
all members are B-bounded. Furthermore, we speak of boundedness in general
iff we deal with B-boundedness for an arbitrary B.

We now turn towards∼⊆ MW×MW, the second natural equivalence relation
to study on linearisations of MSCs because it takes permutations of positions
into account. For example, in Figure 1, it makes no real difference whether
S23(b) occurs before R2

1(a) or after it. Given Σ, we define the dependence relation
D(Σ) ⊆ (Σ × IN)2 and write (σ, π)D(Σ)(σ′, π′) iff P (σ) = P (σ′) or [(σ, σ′) ∈
Corr and π = π′] or [(σ′, σ) ∈ Corr and π = π′]. It turns out that the pair
(Σ × {1, . . . , B}, D(Σ) ∩ (Σ × {1, . . . , B})2) is a Mazurkiewicz trace alphabet

Generalised Regular MSC Languages 59

[5] for every natural B—a fact which was already used in [11] providing a direct
link between Mazurkiewicz traces and MSCs.

We then define the relation ∼ to be the least equivalence relation satisfying
the following: If α = β1(σ, π)(σ′, π′)β2 and α′ = β1(σ′, π′)(σ, π)β2 for suitable
β1, β2 and not (σ, π)D(Σ)(σ′, π′), then α ∼ α′.

This section concludes with the following important properties of sets of lin-
earisations that are induced by MSCs. In particular, they establish the expected
connections between linearisations and the equivalence relations ≈ and ∼.

Theorem 1. For an MSC M and α ∈ Lin(M), Lin(M) = Lin(M(α)).

Theorem 2. For α ∈ MW, Lin(M(α)) = [α](≈∪∼)∗ .

Theorems 1 and 2 can be shown by employing standard techniques taken, for
example, from the Mazurkiewicz trace theory. The proofs are left to the reader.

3 Regular MSC Word Languages and Their Automata

We already mentioned that the regularity of collections of MSCs will be defined
in terms of regular MSC word languages. But as MSC words are defined over the
infinite alphabet Σ×IN, we have to modify the usual notion of regularity. In [10],
a definition of regular word languages over infinite alphabets is proposed by pro-
viding an extended automata model that employs a finite transition relation but
generates a behaviour catering for the fact that we deal with an infinite alpha-
bet. However, important questions for these automata are undecidable. Thus,
we follow a different approach. We first constitute an algebraic characterisation
of regularity by means of a slightly adapted version of the Nerode right congru-
ence, which allows a straightforward extension to infinite alphabets. Then, we
establish its equivalence to an automata model that has similarities with the one
described in [10] but is better suited for MSCs and provides desired properties.

3.1 Regular MSC Word Languages

Given an MSC word language L, recall the definition of the Nerode right con-
gruence ≡L ⊆ PW×PW: α ≡L β iff ∀γ ∈ (Σ × IN)∗.(αγ ∈ L iff βγ ∈ L). As we
want to identify ≈-equivalent words, we define ≈∼L ⊆ PW×PW as an extension
of the Nerode right congruence by α≈∼Lβ iff nf(α) ≡L nf(β).

Definition 3 (Regular MSC Word Language). An MSC word language L
is called regular iff ≈∼L has finite index.

The next characterisation of regular MSC word languages prepares for prov-
ing their correspondence with a certain class of finite automata, which we intro-
duce further below.

Theorem 3. Let L be an MSC word language. L is regular iff nf(L) is a regular
word language over Σ ×Q for a finite subset Q of IN.

60 Benedikt Bollig, Martin Leucker, and Thomas Noll

Corollary 1. Regular MSC word languages are bounded.

The next theorem will be useful when, in Section 4, we consider ∼-closed
MSC word languages.

Theorem 4. Let L be a ∼-closed regular MSC word language. Then nf(L)∼ is
a regular word language over a finite alphabet.

The proof of Theorem 3 is technically involved while the one for Theorem 4
proceeds by establishing a link to Mazurkiewicz trace theory and borrows deeper
results to show the claim. Cf. the long version of the paper for details.

3.2 MSC Finite-Memory Automata

We now present an automata model characterising the class of regular MSC word
languages. Our definition is inspired by [10] but modified to suit the requirements
for MSCs and to allow stronger decidability results. Our model can be described
as a finite automaton that makes use of a finite window whose positions occur in
the labellings of the transitions—as well as elements of Σ—and indicate where to
store a symbol of the infinite alphabetΣ×IN (concerning send actions) and where
to take it from (concerning receive actions), respectively. Normal forms of regular
MSC word languages could also be accepted by “standard” finite automata and
we can use this fact to establish certain closure properties. However, not every
finite automaton accepts normal forms of MSC words so that we do not get
a precise automata-theoretic characterisation of regular MSC word languages
which is the basis for a powerful algorithmic support of the theory on MSCs.

Definition 4 (MSC Finite-Memory Automaton). An MSC finite-memory
automaton (MFA) is a quintuple of the form A = (S, r,∆, q0, F) where

– S is a nonempty finite set of states,
– r ≥ 1 is a natural number called window length,
– ∆ ⊆ S × (Σ × {1, . . . , r})× S is the transition relation,
– q0 ∈ S is the initial state, and
– F ⊆ S is the set of final states.

s0

s1 s12 s2

s21

#

S,1

R,1

S,2 R,1

S,1R,2

R,2

s0

s1

s2

#

S,1 R,1

S,2 R,2

A1: A2:

Fig. 4. Two MFAs

Figure 4 shows two MFAs, each
with a window of length two. Let
thereby S stand for S21(a) and R for
R2
1(a).

Given an MFA A as above, a
configuration of A lists the current
state and the current window en-
tries, which are either numbered
send events or empty (denoted by
#). Thus, let ConfA := S× ((ΣS ×
IN)∪{#})r denote the (infinite) set
of configurations of A. We define a
transition relation =⇒A⊆ ConfA ×
(Σ × IN)× ConfA as follows:

Generalised Regular MSC Languages 61

– For σ ∈ ΣS , (s,w)
(σ,π)
=⇒A (t,v) iff (σ, π) does not occur in w and there is a

transition (s, (σ, k), t) ∈ ∆ such that w[k] = #, v[k] = (σ, π), and for each
l �= k, w[l] = v[l].

– For σ ∈ ΣR, (s,w)
(σ,π)
=⇒A (t,v) iff there is a transition (s, (σ, k), t) ∈ ∆

such that w[k] = (τ, π) where (τ, σ) ∈ Corr , v[k] = #, and for each l �= k,
w[l] = v[l].

Thus, the meaning of a transition (s, (Sqp(λ), k), t) is the following: If A is in
state s, it is able to read an input symbol (Sqp(λ), π), π ∈ IN, iff the kth position of
its window is currently free and, furthermore, (Sqp(λ), π) does not occur elsewhere
in the window, i.e., there is no further open (Sqp(λ), π)-labelled send event. Taking
the transition, the automaton stores (Sqp(λ), π) in the kth position and enters
state t. If, in contrast, the automaton reads an input symbol (Rq

p(λ), π), there
has to be a transition (s, (Rq

p(λ), k), t) such that the kth position of the window
currently shows the corresponding send symbol (Sqp(λ), π). Replacing this symbol
with #, the automaton enters state t.

A run of A on a word σ1 . . . σ�π1 . . . π� ∈ (Σ × IN)∗ is a corresponding sequence
(s0,w0)(s1,w1) . . . (s�,w�) of configurations such that s0 = q0, w0 = #r, and

for each i ∈ {1, . . . , �}, (si−1,wi−1)
(σi,πi)=⇒A (si,wi). The run is accepting iff

s� ∈ F and w� = #r. L(A) := {α | there is an accepting run of A on α} forms
the language defined by A. We conclude that matching events in an accepted
word use one and the same position of the window for their “agreement”.

Due to the conditions we laid down for making transitions and accepting
words, an MFA will accept MSC words only. A receive symbol has to be pre-
ceded by a corresponding send symbol, which, on its part, has to wait for the
corresponding receive symbol before repeating the identical send symbol. Thus,
we make sure that an accepted word is proper. Furthermore, as a run is ac-
cepting as soon as it ends in a final configuration featuring an empty window,
completeness of accepted words is ensured. Moreover, the recognised language
is ≈-closed because matching symbols can be read with—up to the MSC-word
condition—arbitrary natural numbers. Notice that a regular MSC word language
is not necessarily ∼-closed, a key feature allowing [12] to model CMSGs in terms
of MSC word languages. We sum up these considerations as follows:

Proposition 1. Given an MFA A, L(A) is an MSC word language.

For example, let us consider the MFAs A1 and A2 illustrated by Figure 4
and behaving in a FIFO manner and as a stack, respectively. For the sake of
clarity, let S stand for S21(a) and R for R2

1(a). Note that our MFAs permit only
Process 1 to send and only Process 2 to receive a message a.

Recall our exemplary words α1 and α2. In fact, α1 ∈ L(A1) and α2 ∈ L(A2),
but α1 �∈ L(A2) and α2 �∈ L(A1). An accepting run of A1 on α1 first writes
(S21(a), 1) into the first position of the window and then (S21(a), 3) into the second,
whereupon the window is cleared in the same order, reading first (R2

1(a), 1) and
then (R2

1(a), 3).
Our notion of MFAs covers exactly the class of regular MSC word languages.

62 Benedikt Bollig, Martin Leucker, and Thomas Noll

Theorem 5. An MSC word language L is regular iff there is an MFA A such
that L = L(A).

Proof. Exploiting Theorem 3, we specify respective automata.
(=⇒) Let A = (S,−→, q0, F) be a finite automaton with −→⊆ S × (Σ ×Q)×S
for a finite set Q ⊆ IN such that L(A) = nf(L). The MFA A′ = (S′, r,∆, q′0, F

′)
satisfying L(A′) = L(A)≈ = L is given by S′ = S, r = |Q|, (s, (σ, k), t) ∈ ∆ iff

s
(σ,k)−→ t, q′0 = q0, and F ′ = F .

(⇐=) Given an MFA A = (S, r,∆, q0, F), let first Q = {1, . . . , r} and let
A′ = (S′,−→, q′0, F ′) be the corresponding finite automaton satisfying L(A′) =
nf(L(A)), defined as follows: S′ = S×((ΣS×Q)∪{#})r, −→⊆ S′×(Σ×Q)×S′
where (s,w)

(σ,π)−→ (t,v) iff both (s,w)
(σ,π)
=⇒A (t,v) and σ ∈ ΣS implies π =

min{π′ ∈ IN | (σ, π′) does not occur in w}, q′0 = (q0,#r), and F ′ = F ×{#r}. ✷

Given an MSC word language in terms of an MFA, the first natural question
is whether it defines the trivial language.

Theorem 6. It is decidable whether a regular MSC word language given by an
MFA is empty.

We obtain this result applying the construction shown in the proof of Theorem 5.

Theorem 7. The class of regular MSC word languages is closed under union,
intersection, concatenation, and Kleene star.

Theorem 7 follows from Theorem 3 and the fact that the concatenation of two
MSC words in normal form is again in normal form.

To support the algorithmic handling of MFAs, one could alternatively provide
automata-theoretic constructions that also establish the above closure proper-
ties. These are explained in the full version of the paper.

The class of regular MSC word languages is not closed under complement
because the complement of a regular MSC word language is always unbounded.
Thus, the standard way to show decidability of language inclusion does not
work. However, in contrast to the general case of regular languages over infinite
alphabets where this problem is undecidable (see [14]), we can show decidability
in our setting, again applying the construction used for proving Theorem 5. This
is of great importance for the development of model-checking algorithms.

Theorem 8. Given MFAs A1 and A2, it is decidable whether L(A1) ⊆ L(A2).

4 Regular MSC Languages and Their Automata

4.1 Regular MSC Languages

We now extend our theory of regular MSC word languages to collections of MSCs.
Regularity of such a collection is reduced to regularity of the set of corresponding
linearisations.

Generalised Regular MSC Languages 63

Definition 5 (Regular MSC Language). A collectionM of MSCs is called
a regular MSC language iff Lin(M) is a regular MSC word language.

According to this definition, the set of linearisations of a regular MSC lan-
guage is necessarily ∼-closed by Theorem 2. Hence, regular MSC languages can-
not be characterised by MFAs because these accept also non-∼-closed languages.
We therefore develop a generalisation of message-passing automata [7] that ac-
cepts exactly regular MSC word languages corresponding to regular MSC lan-
guages. Note that a regular MSC language is bounded.

One might ask at this stage for the reason considering regular MSC word
languages as well as regular MSC languages because the latter seem to be the
first choice studying linearisations of MSCs. This is true when we abstract from a
communication medium between the processes of an MSC. Consider for example
the MSC presented in Figure 1(b). In the visual-order approach, there is no
difference whether S23(b) occurs before R2

1(a) or vice versa. However, turning
towards more complex semantics of MSCs, this might not be true any longer.
Suppose the two processes communicate via a one element buffer. Then the only
linear execution we will see is that R2

1(a) occurs before S23(b). Thus, the set of
linearisations of an MSC is no longer necessarily ∼-closed. It is indeed possible
to model communication mediums by means of certain MFAs, which enrich a
specification in form of MSCs [3].

4.2 Generalised Message-Passing Automata

The following automata model employs different automata components, each
of which executes the actions of one single process. They communicate with
each other over a window roughly as featured by an MFA. The length of this
window is still bounded by a natural number r. The crucial point is that the
window entries are no longer single send events (each paired with a natural num-
ber) but sequences of send events (each paired with a natural number and an
additional message). To preserve ∼-closedness of the recognised languages, the
components rather have to restrict themselves, whereas the window is a commu-
nication medium only. For example, we could imagine an automata component
that has to keep a send action waiting until it executes a certain receive action,
which, in turn, has to be preceded by a corresponding send action executed
by another component. In fact, our view generalises the model proposed in [7],
which has its origins in [15].
Definition 6 (Generalised Message-Passing Automaton). A generalised
message-passing automaton (GMPA) is a family A = ({Ap}p∈PN , r, qin , F,Mess)
of local automata together with a natural number r ≥ 1, a global initial state
qin , a set of global final states F , and a nonempty finite set of messages Mess.
A local automaton is of the form Ap = (Sp, ∆p) where Sp is a nonempty finite
set of local states and ∆p ⊆ Sp × (Σp ×{1, . . . , r}×Mess)× Sp is a set of local
transitions (Σp contains the actions belonging to Process p). qin is an element
and F a subset of SA :=×p∈PNSp, the set of global states of A.

For a GMPA A, the (infinite) set of its configurations is defined by ConfA :=
SA×{χ | χ : ΣS ×{1, . . . , r} → (IN×Mess)∗}. Let s[p] be the pth component of

64 Benedikt Bollig, Martin Leucker, and Thomas Noll

a global state s ∈ SA. Furthermore, for W : ΣS × {1, . . . , r} → (IN×Mess)∗, let
W[(σ, k) / w] denote the function that coincides with W with the exception that,
for (σ, k), it yields w. We define =⇒A⊆ ConfA × (Σ × IN)× ConfA as follows:

– For σ ∈ ΣS with P (σ) = p, (s, W)
(σ,π)
=⇒A (t, V) iff for all k′ ∈ {1, . . . , r}

and m′ ∈ Mess, (π,m′) does not occur in W(σ, k′), and there is a transition
(s[p], (σ, k,m), t[p]) ∈ ∆p such that V = W[(σ, k) / W(σ, k) · (π,m)] and, for all
l ∈ PN − {p}, s[l] = t[l].

– For σ ∈ ΣR with P (σ) = p and (τ, σ) ∈ Corr , (s, W)
(σ,π)
=⇒A (t, V) iff there are

a transition (s[p], (σ, k,m), t[p]) ∈ ∆p and a word w ∈ (IN×Mess)∗ such that
W(τ, k) = (π,m) · w, V = W[(τ, k) / w], and, for all l ∈ PN − {p}, s[l] = t[l].

A run of A on a word σ1 . . . σ�π1 . . . π� ∈ (Σ × IN)∗ is defined in analogy to the
MFA case. That is, we are dealing with a sequence (s0, W0)(s1, W1) . . . (s�, W�) of
configurations such that s0 = qin , W0(σ, k) = ε for all (σ, k) ∈ ΣS × {1, . . . , r},
and (si−1, Wi−1)

(σi,πi)=⇒A (si, Wi) for each i ∈ {1, . . . , �}. The run is accepting iff
s� ∈ F and W�(σ, k) = ε for all (σ, k) ∈ ΣS × {1, . . . , r}. Finally, L(A) := {α |
there is an accepting run of A on α} denotes the language defined by A.

Let Reach(A) denote the set of configurations reachable within a run of A.
For B ∈ IN, we call A B-bounded iff for all (s, W) ∈ Reach(A) and σ ∈ ΣS ,∑
k∈{1,...,r} |W(σ, k)| ≤ B. We call it bounded iff it is B-bounded for some B.
Let us formulate the fundamental result of this section.

Theorem 9. Let L ⊆ MW be an MSC word language. The following statements
are equivalent:

1. There is a regular MSC languageM with Lin(M) = L.
2. L is a ∼-closed regular MSC word language.
3. There is a bounded GMPA A such that L(A) = L.
Proof. The equivalence of 1. and 2. immediately follows from the definitions.
Given a bounded GMPA, it is an easy task to define an equivalent MFA which
shows that 3. implies 2. The other direction, however, is more involved and
requires some results on regular Mazurkiewicz trace languages and related au-
tomata due to Zielonka [15]. We give a sketch of the proof and refer to the full
version for the details.

Given a ∼-closed regular MSC word language L, we build a bounded GMPA
A with L(A) = L. The outline of this construction is as follows: We first observe
that, for a certain B, nf(L)∼ can be considered to be a regular Mazurkiewicz
trace language over Σ × {1, . . . , B} with an appropriate dependence alphabet.
Then we can find an asynchronous automaton recognising nf(L)∼. The under-
lying distributed alphabet will comprise, apart from alphabets for each process,
some additional components, which guarantee that the induced dependence re-
lation complies with D(Σ) (see also the proof of Theorem 4). These additional
components have to be factored into the process components and the transi-
tion relation, making the transformation of the asynchronous automaton into a
GMPA complicated. Concretely, the transitions synchronously taken by several

Generalised Regular MSC Languages 65

local automata have to be simulated by message passing. For example, consider
Process P1 sending a message to Process P2 by executing (σ, k). Actually, an
equally labelled transition would have to be taken on the part of an additional
component, in which (σ, k) is involved. But as in the GMPA such a component
is not at the disposal of P1, P1 guesses a corresponding move and writes it, along
with the original message, into the message pool. The receiving process can take
this message if the guessed move corresponds to the actual state of the additional
component, which P2 carries along. Our construction is similar to the one in [7]
and uses the time-stamping protocol for non-FIFO computations described in
[13] to ensure boundedness of the constructed GMPA ✷

Thus, bounded GMPAs characterise exactly the ∼-closed regular MSC word
languages and therewith exactly the regular MSC languages. For example, the
2-bounded GMPA A given in Figure 5 recognises the (≈ ∪ ∼)∗-closure of{(

S21(a)
1

S21(a)
2

R2
1(a)
1

R2
1(a)
2

S12(b)
1

R1
2(b)
1

)n ∣∣∣∣∣ n ≥ 0

}
.

5 A Logical Characterisation

We formulate a monadic second-order logic that characterises exactly the class of
regular MSC languages. Given supplies Var = {x, y, . . .} of individual variables
and VAR = {X,Y, . . .} of set variables, the syntax of MSO(PN , Λ) is defined by

ϕ ::= Lσ(x) | x ∈ X | x 	 y | ¬ϕ | ϕ1 ∨ ϕ2 | ∃xϕ | ∃Xϕ ∈ MSO(PN , Λ)

where σ ∈ Σ, x, y ∈ Var, and X ∈ VAR. Given an MSC, individual variables are
interpreted as events and set variables as sets of events. Lσ(x) is satisfied if the
event of x is labelled with σ, 	 is interpreted as the partial order of the MSC,
and the remaining constructs are defined as usual. We only consider formulas
without free variables. For ϕ ∈ MSO(PN , Λ) and B ∈ IN, let MB

ϕ := {M | M is
B-bounded, M |= ϕ}. We conclude with the fundamental result of this section.

Theorem 10. Given a setM of MSCs,M is a regular MSC language iff there
exist a formula ϕ ∈ MSO(PN , Λ) and B ∈ IN such that Lin(M) = Lin(MB

ϕ).

The proof follows the outline of [7] although the concrete steps are different.

s0

s2

s1

S2
1(a),1,X

S2
1(a),1,Y

R1
2(b),1,X t0

t2

t1

R2
1(a),1,X

R2
1(a),1,Y

S1
2(b),1,XA:

Fig. 5. A 2-bounded GMPA

66 Benedikt Bollig, Martin Leucker, and Thomas Noll

References

1. R. Alur and M. Yannakakis. Model checking of message sequence charts. In
Proceedings of the 10th International Conference on Concurrency Theory, volume
1664 of Lecture Notes in Computer Science, pages 114–129. Springer, 1999.

2. João Araújo. Formalizing sequence diagrams. In Proceedings of the OOPSLA’98
Workshop on Formalizing UML. Why? How?, volume 33, 10 of ACM SIGPLAN
Notices, New York, 1998. ACM Press.

3. Benedikt Bollig and Martin Leucker. Modelling, Specifying, and Verifying Message
Passing Systems. In Claudio Bettini and Angelo Montanari, editors, Proceedings
of the Symposium on Temporal Representation and Reasoning (TIME’01), pages
240–248. IEEE Computer Society Press, June 2001.

4. Benedikt Bollig, Martin Leucker, and Thomas Noll. Generalised Regular MSC
Languages. Technical Report AIB-03-2002, RWTH Aachen, January 2002.

5. Volker Diekert and Yves Métivier. Partial commutation and traces. In G. Rozen-
berg and A. Salomaa, editors, Handbook on Formal Languages, volume III.
Springer, Berlin-Heidelberg-New York, 1997.

6. Elsa Gunter, Anca Muscholl, and Doron Peled. Compositional message sequence
charts. In Tiziana Margaria and Wang Yi, editors, Proceedings of the 7th Interna-
tional Conference on Tools and Algorithms for the Construction and Analysis of
Systems (TACAS’01), volume 2031 of Lecture Notes in Computer Science, pages
496–511. Springer, April 2001.

7. J. G. Henriksen, M. Mukund, K. Narayan Kumar, and P. S. Thiagarajan. Regular
collections of message sequence charts. In Proceedings of 25th International Sym-
posium on Mathemtical Foundations of Computer Science (MFCS’2000), volume
1893 of Lecture Notes in Computer Science, pages 405–414. Springer, 2000.

8. ITU-TS. ITU-TS Recommendation Z.120anb: Formal Semantics of Message Se-
quence Charts. Technical report, ITU-TS, Geneva, 1998.

9. ITU-TS. ITU-TS Recommendation Z.120: Message Sequence Chart 1999 (MSC99).
Technical report, ITU-TS, Geneva, 1999.

10. Michael Kaminski and Nissim Francez. Finite-memory automata. Theoretical
Computer Science, 134(2):329–363, November 1994.

11. Dietrich Kuske. Another step towards a theory of regular MSC languages. In Pro-
ceedings of the 19th International Symposium on Theoretical Aspects of Computer
Science (STACS’02), 2002, Lecture Notes in Computer Science. Springer, 2002.

12. P. Madhusudan and B. Meenakshi. Beyond message sequence graphs. In Proceed-
ings of the 21st Conference on Foundations of Software Technology and Theoretical
Computer Science, Lecture Notes in Computer Science. Springer, 2001.

13. M. Mukund, K. Narayan Kumar, and M. Sohoni. Keeping track of the latest gossip
in message-passing systems. Technical Report TCS-95-3, School of Mathematics,
SPIC Science Foundation, Madras, India, 1995.

14. Frank Neven, Thomas Schwentick, and Victor Vianu. Towards regular languages
over infinite alphabets. In Proceedings of 26th International Symposium on Mathe-
matical Foundations of Computer Science (MFCS’01), Lecture Notes in Computer
Science. Springer, 2001.

15. WiesLlaw Zielonka. Notes on finite asynchronous automata. R.A.I.R.O. — Infor-
matique Théorique et Applications, 21:99–135, 1987.

	Generalised Regular MSC Languages
	1 Introduction
	2 Message Sequence Charts and Their Linearisations
	2.1 Message Sequence Charts
	2.2 MSC Words
	2.3 From MSC Words to MSCs
	2.4 Linearisations of MSCs

	3 Regular MSC Word Languages and Their Automata
	3.1 Regular MSC Word Languages
	3.2 MSC Finite-Memory Automata

	4 Regular MSC Languages and Their Automata
	4.1 Regular MSC Languages
	4.2 Generalised Message-Passing Automata

	5 A Logical Characterisation
	References

