LISA: An Interactive Environment
for Programming Language Development

Marjan Mernik, Mitja Leni¢, Enis Avdicausevié, and Viljem Zumer

University of Maribor, Faculty of Electrical Engineering and Computer Science
Institute of Computer Science
Smetanova 17, 2000 Maribor, Slovenia

Abstract. The LISA system is an interactive environment for program-
ming language development. From the formal language specifications of
a particular programming language LISA produces a language specific
environment that includes editors (a language-knowledgable editor and
a structured editor), a compiler/interpreter and other graphic tools. The
LISA is a set of related tools such as scanner generators, parser gener-
ators, compiler generators, graphic tools, editors and conversion tools,
which are integrated by well-designed interfaces.

1 Introduction

We have developed a compiler/interpreter generator tool LISA ver 1.0 which
automatically produces a compiler or an interpreter from the ordinary attribute
grammar specifications [2] [8]. But in this version of the tool the incremen-
tal language development was not supported, so the language designer had to
design new languages from scratch or by scavenging old specifications. Other
deficiencies of ordinary attribute grammars become apparent in specifications
for real programming languages. Such specifications are large, unstructured and
are hard to understand, modify and maintain. The goal of the new version of
the compiler /interpreter tool LISA was to dismiss deficiencies of ordinary at-
tribute grammars. We overcome the drawbacks of ordinary attribute grammars
with concepts from object-oriented programming, i.e. template and multiple in-
heritance [4]. With attribute grammar templates we are able to describe the se-
mantic rules which are independent of grammar production rules. With multiple
attribute grammar inheritance we are able to organize specifications in such way
that specifications can be inherited and specialized from ancestor specifications.
The proposed approach was successfully implemented in the compiler /interpreter
generator LISA ver. 2.0 [5].

2 Architecture of the Tool LISA 2.0

LISA (Fig. 1) consists of several tools: editors, scanner generators, parser gener-
ators, compiler generators, graphic tools, and conversion tools such as fsa2rex,
etc. The architecture of the system LISA is modular. Integration is achieved

R. N. Horspool (Ed.): CC 2002, LNCS 2304, pp. 1-4, 2002.
© Springer-Verlag Berlin Heidelberg 2002

2 Marjan Mernik et al.

with strictly defined interfaces that describe the behavior and type of integra-
tion of the modules. Each module can register actions when it is loaded into
the core environment. Actions are methods accessible from the environment.
These actions can be executed via class reflection. Their existence is not verified
until invocation, so actions are dynamically linked with module methods. The
module can be integrated in the environment as a visual or core module. Vi-
sual modules are used for the graphical user interface and visual representation
of data structures. Core modules are non-visual components, such as the LISA
language compiler. This approach is based on class reflection and is similar to
JavaBeans technology. With class reflection (java.lang.reflect.® package) we can
dynamically obtain a set of public methods and public variables of a module,
so we can dynamically link module methods with actions. When the action is
executed, the proper method is located and invoked with the description of the
action event. With this architecture it is also possible to upgrade our system
with different types of scanners, parsers and evaluators, which are presented as
modules. This was achieved with a strict definition of communication data struc-
tures. Moreover, modules for scanners, parsers and evaluators use templates for
code generation, which can be easily changed and improved.

4 Lsa o o
vin peh Grbim Gan Tree View esssges fstins Mindw
T e

Bomwn B Cw %0 P

@ Uik Iangar e
Grneeatn .

|+ TERm val
Eheck gramimes tyse

Thid Expreesical

XK | = TERN compute

ealusliarribation EIFE. indy, [TEEM. inks|e
i;

EIPR.val = TENM.va

Fig. 1. LISA Integrated Development Environment

From formal language definition also editors are generated. The language-
knowledgable editor is a compromise between text editors and structure editors
since just colors the different parts of a program (comments, operators, reserved

LISA: An Interactive Environment for Programming Language Development 3

words, etc.) to enhance understandability and readability of programs. Gener-
ated lexical, syntax and semantic analysers, also written in Java, can be compiled
in an integrated environment without issuing a command to javac (Java com-
piler). Programs written in the newly defined language can be executed and
evaluated. Users of the generated compiler/interpreter have the possibility to
visually observe the work of lexical, syntax and semantic analyzers by watching
the animation of finite state automata, parse and semantic tree. The anima-
tion shows the program in action and the graphical representation of finite state
automata, the syntax and the semantic tree are automatically updated as the
program executes. Animated visualizations help explain the inner workings of
programs and are a useful tool for debugging. These features make the tool LISA
very appropriate for the programming language development. LISA tool is freely
available for educational institutions from: http://marcel.uni-mb.si/lisa .
It is run on different platforms and require Java 2 SDK (Software Development
Kits & Runtimes), version 1.2.2 or higher.

3 Applications of LISA

We have incrementally developed various small programming languages, such
as PLM [3]. An application domain for which LISA is very suitable is a de-
velopment of domain-specific languages. To our opinion, in the development of
domain-specific languages the advantages of the formal definitions of general-
purpose languages should be exploited, taking into consideration the special
nature of domain-specific languages. An appropriate methodology that consid-
ers frequent changes of domain-specific languages is needed since the language
development process should be supported by modularity and abstraction in a
manner that allows incremental changes as easily as possible. If incremental lan-
guage development [7] is not supported, then the language designer has to design
languages from scratch or by scavenging old specifications. This approach was
successfully used in the design and implementation of various domain-specific
languages. In [6] a design and implementation of Simple Object Description
Language SODL for automatic interface creation are presented. The applica-
tion domain was network applications. Since the cross network method calls
slow down performance of our applications the solution was Tier to Tier Object
Transport (TTOT). However, with this approach the network application devel-
opment time has been increased. To enhance our productivity a new domain-
specific SODL language has been designed. In [1] a design and implementation of
COOL and AspectCOOL languages has been described using the LISA system.
Here the application domain was aspect-oriented programming (AOP). AOP is a
programming technique for modularizing concerns that crosscut the basic func-
tionality of programs. In AOP, aspect languages are used to describe properties,
which crosscut basic functionality in a clean and a modular way. AspectCOOL
is an extension of the class-based object-oriented language COOL (Classroom
Object-Oriented Language), which has been designed and implemented simul-
taneously with AspectCOOL. Both languages were formally specified with mul-

4 Marjan Mernik et al.

tiple attribute grammar inheritance, which enables us to gradually extend the
languages with new features and to reuse the previously defined specifications.
Our experience with these non-trivial examples shows that multiple attribute
grammars inheritance is useful in managing the complexity, reusability and ex-
tensibility of attribute grammars. Huge specifications become much shorter and
are easier to read and maintain.

4 Conclusion

Many applications today are written in well-understood domains. One trend in
programming is to provide software development tools designed specifically to
handle such applications and thus to greatly simplify their development. These
tools take a high-level description of the specific task and generate a complete ap-
plication. One of such well established domain is compiler construction, because
there is a long tradition of producing compilers, underlying theories are well
understood and there exist many application generators, which automatically
produce compilers or interpreters from programming language specifications. In
the paper the compiler /interpreter generator LISA 2.0 is briefly presented.

References

1. Enis Avdi¢ausevié¢, Mitja Leni¢, Marjan Mernik, and Viljem Zumer. AspectCOOL:
An experiment in design and implementation of aspect-oriented language. Accepted
for publications in ACM SIGPLAN Notices. 3

2. Marjan Mernik, Nikolaj Korbar, and Viljem Zumer. LISA: A tool for automatic
language implementation. ACM SIGPLAN Notices, 30(4):71-79, April 1995. 1

3. Marjan Mernik, Mitja Leni¢, Enis Avdicausevi¢, and Viljem Zumer. A reusable
object-oriented approach to formal specifications of programming languages.
L’Objet, 4(3):273-306, 1998. 3

4. Marjan Mernik, Mitja Leni¢, Enis Avdi¢audevi¢, and Viljem Zumer. Multiple
Attribute Grammar Inheritance. Informatica, 24(3):319-328, September 2000. 1

5. Marjan Mernik, Mitja Leni¢, Enis Avdicaudevi¢, and Viljem Zumer. Com-
piler/interpreter generator system LISA. In IEEE CD ROM Proceedings of 33rd
Hawaii International Conference on System Sciences, 2000. 1

6. Marjan Mernik, Uros Novak, Enis Avdicausevi¢, Mitja Leni¢, and Viljem Zumer.
Design and implementation of simple object description language. In Proceedings
of 16th ACM Symposium on applied computing, pages 203-210, 2001. 3

7. Marjan Mernik and Viljem Zumer. Incremental language design. IEE Proceedings
Software, 145(2-3):85-91, 1998. 3

8. Viljem Zumer, Nikolaj Korbar, and Marjan Mernik. Automatic implementation
of programming languages using object-oriented approach. Journal of Systems
Architecture, 43(1-5):203-210, 1997. 1

	LISA: An Interactive Environment for Programming Language Development
	Introduction
	Architecture of the Tool LISA 2.0
	Applications of LISA
	Conclusion
	References

