Optimizing Static Power Dissipation by
Functional Units in Superscalar Processors*

Siddharth Rele!, Santosh Pande?, Soner Onder?, and Rajiv Gupta*

! Dept of ECECS, University of Cincinnati, Cincinnati, OH-45219
2 College of Computing, Georgia Tech, Atlanta, GA-30318
3 Dept. of Computer Science, Michigan Tech. Univ., Houghton, MI 49931
4 Dept. of Computer Science, The Univ.of Arizona, Tucson, Arizona 85721

Abstract. We present a novel approach which combines compiler, in-
struction set, and microarchitecture support to turn off functional units
that are idle for long periods of time for reducing static power dissipation
by idle functional units using power gating [2,9]. The compiler identifies
program regions in which functional units are expected to be idle and
communicates this information to the hardware by issuing directives for
turning units off at entry points of idle regions and directives for turning
them back on at exits from such regions. The microarchitecture is de-
signed to treat the compiler directives as hints ignoring a pair of off and
on directives if they are too close together. The results of experiments
show that some of the functional units can be kept off for over 90% of
the time at the cost of minimal performance degradation of under 1%.

1 Introduction

To cater to the demands for high performance by a variety of applications,
faster and more powerful processors are being produced. With increased perfor-
mance there is also an increase in the power dissipated by the processors. High
performance superscalar processors achieve their performance by exploiting in-
struction level parallelism (ILP). ILP is detected dynamically and instructions
are executed in parallel on multiple functional units. Therefore one source of
power dissipation is due to the functional units. It is well known that ILP is
often distributed nonuniformly throughout a program. As a result many of the
functional units are idle for prolonged periods of time during program execution
and therefore the power dissipation by them during these periods is wasted.
The goal of this work is to minimize power dissipated by functional units
by exploiting long periods of time over which some functional units are idle.
The power consumed by functional units falls into two categories: dynamic and
static. With current technology the dynamic power is the dominating component
of overall power consumption and by using clock gating techniques the dynamic
power dissipated by functional units during idle periods can be reduced [4,12,13].
However, it is projected that in a few generations the static power dissipation will

* Supported by DARPA award no. F29601-00-1-0183.

R. N. Horspool (Ed.): CC 2002, LNCS 2304, pp. 261-275, 2002.
© Springer-Verlag Berlin Heidelberg 2002

262 Siddharth Rele et al.

equal dynamic power dissipation [11]. Specifically for different kinds of adders
and multiplers, the increase in static power with changing technology is shown
in Table 1 [5]. Therefore it is important to also minimize the static power con-
sumption when the functional units are idle.

Table 1. Static power dissipation by functional units

Functional Technology (um)
unit type 0354 | 018 | 0.3 [0.10 | 007
| Adders | Static power dissipation (mW) |

Ripple Carry 0.07 0.08 0.12 0.14 0.15
Carry Lookahead| 0.09 0.11 0.19 0.20 0.19
Manchester Carry| 0.10 0.16 0.23 0.25 0.28

| Multipliers | Static power dissipation (mW) |
Serial 0.29 0.32 0.43 0.51 0.50
Serial /Parallel 0.35 0.41 0.48 0.55 0.58
Parallel 0.37 0.46 0.50 0.60 0.62

There are two known techniques that are suitable for reducing static power
dissipation by functional units during long periods of idleness. The first tech-
nique is power gating [10,9] which turns off devices by cutting off their supply
voltage. The second technique uses the dual threshold voltage technology — by
raising the threshold voltage during idle periods of time the static power dis-
sipation is reduced [14]. In both of the above approaches there is a turning on
latency involved, that is, when the unit is turned back on (either by providing
the supply voltage or lowering the threshold voltage) it cannot be used imme-
diately because some time is needed before the circuitry returns to its normal
operating condition. While the latency for power gating is typically few (5-10)
cycles [2], the latency for dual threshold voltage technology is much higher. In
this work we assume that power gating is being employed to turn off functional
units and we assume a latency of ten cycles for turning a functional unit on in
all our experiments.

The shutting down of functional units is most effectively accomplished by
employing a combination of compiler and hardware techniques. To understand
the reasons for this claim lets examine the problems that we must address in de-
signing an algorithm for turning functional units off and then back on, and then
evaluate the suitability of the means for solving the problem, that is, whether to
use compiler support or hardware support in addressing the problem. We also
describe the approach that we take in addressing each of the problems.

Identifying idle regions. In order to turn off a functional unit we first must
identify regions of code in the program over which the functional unit is expected
to be idle. The use of hardware for predicting or detecting idle regions has the
following problems. First the additional hardware for predicting idle regions will
also consume additional power throughout the execution as it must remain active

Optimizing Static Power Dissipation by Functional Units 263

all along. Second we will not be able to exploit the idle regions during the warm
up period of the prediction mechanism — only after enough history has been
acquired by the prediction hardware will the predictions be effective.

Our solution to the above problems is to rely on the compiler to identify pro-
gram regions with low ILP and thus low functional unit demands. The compiler
can examine all of the code off-line and therefore identify suitable regions for
turning the functional units off. Furthermore it can also identify the type of func-
tional units and determine the number of functional units that should be turned
off without degrading performance. This information is then communicated to
the hardware by generating special off and on directives.

Tolerating the latency of turning a functional unit off. The functional
unit must be turned off sufficiently prior to entering the program region in which
it can be kept idle. This is because there is a latency for turning the unit off and
we must account for this latency to mazimize the power savings. The latency
arises because time is needed to drain the functional unit by allowing it to
execute the instructions already assigned to it. Let us assume that we have two
functional units of a given type and we would like to turn one of them off.
When the off directive is encountered, the functional units may already have
instructions assigned to them. One of the unit must be selected and drained
before it is turned off.

This problem is also not suitable for handling by hardware because even if
we were to overcome the problems described earlier and develop a mechanism
for efficiently detecting idle regions in hardware, now we would have to predict
them even earlier. Therefore our solution is to allow the compiler to place the of £
directive sufficiently in advance of reaching the idle region whenever possible.

Tolerating the latency of turning a function unit on. The functional unit
must also be turned on prior to exiting the idle region. This is because there
is a several cycle latency before which the functional unit comes on-line and is
ready to execute operations [2]. By tolerating this latency we can minimize the
performance degradation while executing instructions from the region following
the idle region. Again our solution to this problem is to place the on directive
sufficiently in advance of exiting the idle region whenever possible.

Dealing with variable length idle regions. Sometimes the duration of an
idle region may vary from being very small in one execution of the region to very
long in the next execution of the same region. For example, the idle region may
contain a while loop or conditionals which may lead to this variation. Introduc-
tion of an off directive in such a situation can be based upon a conservative
policy or an aggressive policy. A compiler based upon a conservative policy will
introduce the off and on directives only if it is certain that the duration of the
idle region is long. The problem with this approach is that the reductions in
power dissipation that could be obtained by turning a unit off are sacrificed.
We propose to use an aggressive policy in which the compiler introduces the
off and on directives to maximize savings. If the duration of the idle region is

264 Siddharth Rele et al.

long, power savings result. On the other hand if the duration is very small, the
on directive is issued on the heals of issuing an off directive. If the latter situ-
ation arises frequently, while little or no savings in power result, some amount
of dynamic power is dissipated during switching of the functional unit state.
Moreover the performance is hurt as the functional unit goes off-line for several
cycles each time such a spurious pair of off and on directives are encountered.
We address this issue by providing adequate microarchitecture support for nul-
lifying spurious off and on pairs. The microarchitecture is designed to treat the
compiler directives as hints ignoring a pair of off and on directives if they are
too close together. In this way the state of the unit is not actually switched, the
unit stays on-line, and dynamic power for switching the unit off and on as well
as the degradation in performance are minimized.

We have incorporated the power-aware instructions into the MIPS-T instruc-
tion set and simulated a superscalar architecture which implements these in-
structions using our FAST simulation system [3]. The compiler algorithms have
been incorporated into the lcc compiler. The results of experiments show that
some of the functional units can be kept off for over 90% of the time resulting
in a corresponding reduction in static power dissipation by these units. More-
over the power reductions are achieved at the cost of very minimal performance
degradation — well under 1% in all cases.

The remainder of the paper is organized as follows. In section 2 we discuss
instruction set extensions and microarchitecture modifications required to im-
plement the new instructions. In section 3 we discuss in detail the compiler
algorithms for introducing on and off instructions. In section 4 we describe our
implementation and in section 5 we present results of experiments. Conclusions
are given in section 6.

2 Architectural Support

Power aware instruction set. As mentioned earlier, we support instructions
that will allow us to turn functional units on or off. Such instructions must also
indicate the type of functional unit that is to be turned on or off. The solution
we developed adds an on or an off directive as a suffix to existing instructions.
The type of functional unit that is to be turned on or off is the same type as
that is used to execute the instruction to which the directive is added. In case
multiple functional units of a particular type are present, the decision as to which
specific unit will be turned off is left up to the hardware. In some architectures
certain operations can be executed by functional units of more than one type
(e.g., integer and floating point). However, we assume that in such cases the of f
and on directives are attached to instructions that must execute on a functional
unit of specific kind.

We have incorporated the on and off directives to the MIPS-I Instruction
Set Architecture (ISA) which supports MIPS 32 bit processor cores. This ISA
was selected for its simplicity and the availability of encoding space to allow
us to encode on and off into existing instructions. A subset of instructions we

Optimizing Static Power Dissipation by Functional Units 265

add.on switch ON one integer adder

add.off switch OFF one integer adder

mul.on switch ON one integer multiplier unit
mul.off switch OFF one integer multiplier unit

add.s.on switch ON one float adder

add.s.off switch OFF one float adder
mul.s.on switch ON one float multiplier unit
mul.s.off switch OFF one float multiplier unit
mov.s.on move values between float regs

and switch ON float unit
mov.s.off move values between float regs
and switch OFFfloat unit

Fig. 1. A subset of energy-aware instructions

modified is shown in Fig. 1. These instructions can also be issued without any
operands in which case they do not perform any operation except for switching
a unit of the appropriate type on or off. These are needed when on or off
directives cannot be added to an existing instruction because the code does not
already contain an instruction of the appropriate type around the point at which
the compiler chooses to place the directive.

On and off semantics for an out-of-order superscalar processor. The
on directive is acted upon immediately following its detection, that is, when the
instruction with the on suffix has been decoded, a functional unit of the appro-
priate type is turned on. It takes a few cycles for the circuitry to reach normal
operational state after which the unit can perform useful work. The turning off
of a functional unit cannot be done immediately following the decode. This is
because if the unit that is turned off was the last on unit of its type, then no func-
tional unit will be available for executing the instruction carrying the suffix and
the processor will deadlock. Therefore in this case, following the decode, an on
unit is selected and marked as pending-off. When the instruction that marks
the unit retires, the unit is actually turned off and its status is changed from
pending-off to off. This approach works because it guarantees that all instruc-
tions requiring the unit would have executed before the unit is turned off as all
instructions are retired in-order even though they may execute on the functional
unit out-of-order in the superscalar processor. At the same time, introduction
of an off directive does not constrain the out-of-order execution capability of
the processor. The states of the functional units are maintained as part of the
processor state. A status table is maintained that indicates for each functional
unit whether it is currently turned on, currently turned off, or if it is in the
pending-off state. No new instructions are assigned to a functional unit by the
issue mechanism if the unit is in off or pending-off state.

Nullifying spurious off-on pairs. While savings in static energy consump-
tion result when a functional unit is shutdown, a certain amount of performance

266 Siddharth Rele et al.

loss may be incurred when a unit is turned off as well as a certain amount of
dynamic power is expended in bringing the circuit to its normal operating state.
We rely upon the compiler to identify suitable idle regions during which turning
off of a functional unit is not expected to hurt performance and the dynamic
power expended in turning the unit on is far smaller than the static power saved
by turning it off. For this strategy to work well, it is important that the idle
regions be long in duration. However, it is possible that the code representing
the idle region varies greatly in duration from its one execution to another. For
example, the idle region may be formed by a while loop. If very little time is
needed to execute the idle region then the unit will be turned off and then imme-
diately turned on. In this situation the savings in static power will be minimal.
However, loss of performance will still be incurred while executing the code im-
mediately following the idle region and dynamic power will still be expended in
turning the unit on.

Our implementation of on and off is so designed that we are able to dynam-
ically nullify spuriuous off and on pairs and thus avoid the dynamic power that
would otherwise be dissipated during the transitions. When an instruction with
off directive is encountered, a unit is selected and marked as pending-off. If
an instruction with the on directive is encountered while the status of the unit
is still pending-off, the unit state is changed to on from pending-off. When
the instruction associated with the off directive retires, it will examine the sta-
tus of the functional unit that it marked as pending-off. If the status is still
pending-off, the unit is turned off; otherwise it is left on. Thus, the overall
impact of the above approach is that if the on directive is encountered while
the functional unit is in pending-off state, the functional unit is not actually
turned off. Thus the off-on pair does not turn the unit off and then back on.

wait = wait++;
if (wait == 1000) break;

1: ...,

2 : mul.off — turn unit off
3: if (x> 0) {

4 wait = 0;

5: while(1) {

6 :

7

8 :

}

9 : mul.on — turn unit on
10 : for (i =0 ; i < 100; i++)
11 : sum += al[i] * 10;

Fig. 2. Nullification of OFF and ON pair

For the example in Fig. 2, the code from line 3 to 8 takes very short time
to execute when x < 0; otherwise it takes a long time to execute. During the
execution of this code we would like to turn the multiplier off since it is not
required. If x > 0 we get power savings by turning the unit off. However, if

Optimizing Static Power Dissipation by Functional Units 267

x < 0, the off and on directives are encountered in rapid succession and the unit
is not turned off and then immediately turned back on. Before the instruction
with the off directive retires, we would have already decoded the instruction
with the on directive and changed the status of the unit from pending-off to
on. Therefore when the instruction with off directive retires, it will find the
functional unit status as on and therefore it will not turn it off. As a result the
spurious off-on pair will be nullified.

3 Compiler Support

Our approach. Our compiler is designed to introduce off and on suffixed in-
structions in such a way that the following two goals are met. First we need to
remove idleness by turning functional units off without causing an increase in
program execution time (i.e., we want to reduce static power dissipation without
causing performance degradation). Second the functional units that are turned
off should be off for prolonged periods of time so that the dynamic power dis-
sipated during on-off and off-on transitions is small in comparison to static
power saved by keep the units off. Both the above goals are met by careful
placement of on and off suffixed instructions.

In order to achieve the first goal of minimizing performance degradation we
take the following approach. We classify the basic blocks in a program into two
categories: hot blocks whose execution frequencies are greater than a certain
threshold value and cold blocks which are all the remaining blocks in the pro-
gram. We also analyze the functional unit usage in each block to identify its
requirements and consequently identify the units that are expected to be idle in
that block. We place the off and on directives in cold blocks bordering the hot
blocks in which the unit is expected to be idle. This situation is illustrated by
the example in Fig. 3a. In contrast the example in Fig. 3b illustrates a situa-
tion in which we forego the removal of idleness since the block neighboring the
hot block in which unit is idle is another hot block where the unit is not idle.
This is because the potential placement points for off and on directives are also
hot and therefore such instructions will be executed with high frequency. Thus,
our approach removes idleness only if such removal does not adversely effect
performance.

In order to achieve the second goal of maximizing power savings mentioned
above we do not place instructions carrying off and on directives at boundaries
of a region formed by a single basic block. Instead we identify larger subgraphs
in the control flow graph that represent control constructs (e.g., loops) which
we refer to as power blocks. Then we classify the power blocks as hot or cold. In
addition, from the requirements of individual blocks in a power block, we identify
which functional units are idle throughout the execution of the power block.
When power-aware code is generated, the off and on directives are placed at
boundaries of power blocks using the principles described earlier and illustrated
in Fig. 3.

268 Siddharth Rele et al.
Cold
4

Hot IDLE

ON Hot IDLE

OFF Hot NOT IDLE

-

B,

Cold
(a) Reving idleness without (b) Allowing idleness to avoid
performance degradation. performance degradation.

Fig. 3. Idleness removal strategy

We have given an overview of our approach. Now we describe the three main
steps of our algorithm in more detail. The first step involves construction of an
power-aware flow graph. The second step identifies the power blocks. The third
and final step introduces the off and on suffixed instructions.

The power-aware flow graph (PAFG). Our compiler begins by building the
PAFG which is a control flow graph whose basic blocks are annotated with two
types of information: the resource requirements; and the execution counts.

The requirements of each block is calculated by first identifying the number
of operations requiring each functional unit type in the block. This information
by itself is enough for those functional unit types where only one functional
unit of that type is present. If an operation requiring the functional unit of a
certain type is present, the unit of that type is required. However, the above
method is inadequate if there are multiple functional units of a given type. We
must access the level of instruction level parallelism present in the operations
that use the functional unit type to compute the requirements. The dependences
among statements are examined to identify the parallelism and accordingly the
requirements are computed. In particular, if two instructions that can execute
in parallel require the same type of functional unit, then two such units are
required. In other words the requirements of a basic block are computed such
that they represent the number and type of units required to exploit the ILP
present in the block. Another issue that must be considered during computation
of requirements is that many instructions other than the integer add instruction
may use the integer adder. For example, base + offset computation to compute
the address of an array element requires an integer adder.

The profile information that annotates the basic blocks is derived from prior
executions of the program. This information is used for identifying hot blocks.
If the execution count for a particular block is more than a threshold, it is
considered to be hot. The threshold value is set according to the formula given
below. In this formula N is a tunable parameter that can be changed to generate
higher or lower number of hot blocks and thus control how aggressively idleness
is removed.

Optimizing Static Power Dissipation by Functional Units 269

Execution Count of Most Frequently Executed Block

Threshold =
Some constant value N

An example code segment and its power-aware flow graph are shown in Fig. 4a
and 4b. The requirements are annotated as a vector of values enclosed in angular
brackets (the first value corresponds to integer adders and second for integer
multipliers) while the profiling information is annotated as the execution count
enclosed within square brackets. We set the threshold value as MaxzValue/10
for identifying hot blocks.

Identifying power blocks. In order to identify longer periods of time over
which a functional unit can be turned off, we identify subgraphs representing
larger constructs such as loops, if-statements, and switch statements. These sub-
graphs are referred to as power blocks. A hierarchical graph at the power block
level is created in which each power block indicates the start and the end nodes
of the subgraph forming the power block. In addition, a power block holds the
summary of all the information regarding the basic blocks that form the power
block. The requirements of a power block are computed from the requirements
of the hot blocks in the block. The reason for this will be clear when we discuss
how off and on directives are generated. There is only one entry point into a
power block, that is, the start node of the power block dominates all the blocks
inside the power block and hence the control has to flow through that block.
Therefore if the start node is hot, the whole power block is marked as hot even
though all the basic blocks belonging to it may not be hot.

The higher level tree constructed from power blocks for our example is shown
in Fig. 4c. Each leaf in this tree is a basic block. Internal nodes corresponding
to higher level control constructs are the power blocks.

Inserting power-aware instructions. Once all the information regarding the
requirements of each basic as well as power block is recorded in the respective
blocks, we traverse the PAFG for code generation. Our basic approach for intro-
ducing the off and on instructions is as follows:

— For each user function we start by turning all units, except a minimal config-
uration of units, off. The minimal configuration is required so that execution
can proceed and the processor does not deadlock. Typically this configura-
tion will include an integer adder.

— For each call to a library function we assume that all units are on during the
execution of the library function. This is because we do not analyze code for
library functions and therefore in order to guarantee that no performance
degradation occurs, we must keep all units on. Instructions to turn on units
that are off are therefore introduced immediately prior to the call and upon
return these units can be again turned off. The impact of this restriction can
be reduced by performing our optimizations at link time.

270

Siddharth Rele et al.

void main() {
for (i = 0 ;

i < 100

if (sum < 1000)

i++)

}

© 00 3 O Ut W

—
= .

}

sum = sum + arr[i];

else {
sum = sum / 1000;
count++;

print (count,sum) ;

(a) Sample code segment.

<1,0> [100]
sum < 1000

True
<2,0> [96]

sum = sum + arr[i]
i++

<1,0> oy

True

I print(count,sum) |

count++;

(b) Power-aware flow graph.

Func

<2,0>

<ALL>

‘ i=0 H Loop HFunc() ‘»‘ End ‘

<1,0> <2,0>

<1, 1>

‘ sum < 1000 }—>‘

sum [+] H sum [/] ‘

|:| Hot Blocks

|:| Hot Power Blocks

(c) Hierarchical tree with power blocks.

True

sum = sum + arrfi]
i++

sum = sum / 1000;
count++;
i++

False

mul.on
mul.on

!

print(count,sum)

(d) Final code.

Fig. 4. Introducing directives

Optimizing Static Power Dissipation by Functional Units 271

— If a particular user function is called in a hot block such that the number
of calls to the function exceed the threshold, then the current framework
bypasses the analysis of that function, on the grounds that any switching
inside this function would be too frequent and hence not beneficial (it may
in fact jeopardize the execution speed).

— We compare each block with all its successors to check if there is a difference
in the power requirements of the blocks. If there is a difference, then we try
to generate off and on instructions at the boundaries after checking whether
the blocks involved are hot or cold according to the strategy outlined earlier
in this section. When a hot power block is adjacent to cold blocks, typically
off instructions are generated prior to entering the power block. From the
requirements of the power block we identify the units to be turned on or
off. Recall that the requirements of the power block are computed from hot
blocks in it. Therefore within the hot power block there may be cold blocks
which require a unit that is currently off. Therefore, upon entry to such a
cold block such a unit is turned on and upon exit it is turned off again.
Notice that all instructions being introduced are being placed in cold blocks.

The code generated for our example is given in Fig. 4d. We assume that we
have 2 integer adders and 2 integer multipliers (floating point units are omitted
because we assume all operations in the code are integer operations). Note that
at the beginning we turn all functional units off except the integer adder which
represents the minimal configuration for this example. The loop represents a
hot power block and the block preceding the loop is a cold block. Therefore we
introduce instructions according to the requirements of the power block prior
to entering it. Since the hot basic block in the loop containing the statements
7 sum = sum~+arr[i]” and ”i++" requires two adders to exploit ILP, we turn on
an additional adder before entering the loop. Notice that the multiplier (which
we assume also performs the divide operation) is off in the loop. Therefore if we
enter the cold block containing the statement ”sum = sum/1000”, a multiplier
is turned on and upon exit it is turned off. Finally, prior to executing the library
function call for printf all off units are turned on — since at this point adders
are already on, only the multipliers need to be turned on.

4 Experimental Results

Implementation. We have implemented and evaluated the techniques de-
scribed in this paper. We used the lcc [3] compiler for our work. lburg was used to
produce code generator from compact specifications. The original code was exe-
cuted on test data to generate profile information which is used by the compiler
to generate on and off instructions. We use a cycle level simulator generated
using the FAST [3] system. FAST generates a cycle level simulator, an assembler
and a disassembler from a microarchitecture and instruction set specifications.
In our experiments we simulated a superscalar that supported out-of-order
execution and consisted of 2 integer adders, 2 integer multipliers, 1 floating point

272 Siddharth Rele et al.

adder, and 1 floating point multiplier. It uses control speculation (i.e. branch
prediction) and implements a precise exception model using a reorder buffer and
a future file. The number of outstanding branches is not limited and branch
mispredictions take a variable number of cycles to recover.

We used six benchmarks in our experiments. From Mediabench [6] we have
used two programs: rawcaudio.c and rawdaudio.c. From DSPstones we have taken
three programs: fir2dim.c, n-real-updates.c, and fir.c. The last benchmark, com-
press.c, is from SPEC95.

Removing idle time. To access the effectiveness of our idle time removal
technique we measured the wutilization of functional units before and after op-
timization. We define utilization as the percentage of total program execution
time (in cycles) for which the unit is on and busy executing instructions.
In Table 2 we show the utilization of the various functional unit types in the
processor — for integer units the numbers represent average utilization of the
two units. As we can see, except for the integer adders, the other units have
very low utilization because while they are on, they are often not executing any
operations. In other words there must be times when these units can be turned
off. After applying our techniques we measured the utilization again. As shown
in Table 3 the utilization of the integer adders shows very little change. This is
because during the execution of the optimized code these units were always on.
For the other three types of units the utilization has become very high because
they are busy executing operations while they are on. This means that for most
of the times that they were idle, we were able to turn them off. In other words
these units were off for over 90% of the time for all programs except compress.
Recalling the data in Table 2, we can see that turning off units for 90% of the
time results in significant savings in static power dissipation.

Table 2. Utilization of functional units in original code

Utilization (%)
Benchmark Integer Float

Adder | Mult | Adder | Mult

rawcaudio.c 87.71 |0.0252 | 0 0

rawdaudio.c 88.76 10.00159 0 0

fir2dim.c 59.45 7.01 0 0

n-real-updates.c || 61.62 2.37 0 0

fir.c 52.26 | 2.65 0 0
compress.c 90.08 | 0.045 | 25.70 | 29.06

Performance degradation. We also measured the degradation in the perfor-
mance by comparing the total execution cycle counts for original and optimized
code (see Table 4). The degradation is less than 1% due to the fact that we place

Optimizing Static Power Dissipation by Functional Units 273

Table 3. Utilization of functional units in optimized code

Utilization (%)
Benchmark Integer Float
Adder | Mult | Adder | Mul

rawcaudio.c 87.73 | 99.7 99.7 | 99.7
rawdaudio.c 88.77 199.76 | 99.76 |99.76
fir2dim.c 59.73 | 85.03 | 99.70 99.70
n-real-updates.c || 61.62 | 94.53 | 99.44 [99.44
fir.c 52.72 192.42 | 99.38 |99.38
compress.c 90.31 | 98.90 | 23.99 |51.15

Table 4. Performance degradation

|| Benchmark || Unoptimized | Optimized || Degradation ||
rawcaudio.c 6,588,776 6,591,742 -0.0147
rawdaudio.c 5,028,710 5,049,175 -0.0041
fir2dim.c 4,676 4689 -0.28
n-real-updates.c 2,697 2,697 0
fir.c 2,413 2,424 -0.46
compress.c 453,823 454,877 -0.232

the on and off instructions in cold blocks and units are turned on upon decode
of instruction with the on suffix. The latter action reduces stalling of instructions
due to unavailability of functional units.

Transition activity vs off durations. For each idle period that a unit is
turned off, we have a pair of transitions: on-to-off and then off-to-on. While
the static power saved during the off periods depends upon the duration of the
off periods, the dynamic power spent during transitions depends upon the total
number of transitions actually performed.

Table 5 gives the total number of transition pairs for all the functional units
types. There are no transitions for integer adders because they are always on and
for integer multipliers the number given is the sum of the transitions encoun-
tered by both units of this type. These are the transitions which were actually
performed during execution. Table 6 gives the average duration for which units
were turned off. As we can see these durations are quite long - ranging from
several hundred to several thousand cycles.

Since the durations for which functional units are off are quite long and
the number of transition pairs is relatively modest, we can conclude that our
approach is quite effective in saving static power wasted by idle functional units.

Effectiveness of nullification strategy. We also measured the number of
transition pairs which were nullified by our architecture design because they

274 Siddharth Rele et al.

Table 5. Non-nullified transition pairs

Integer Float
Benchmark Adder | Mult | Adder | Mult
rawcaudio.c 0 769 748 735
rawdaudio.c 0 800 919 712
fir2dim.c 0 2 1 1
n-real-updates.c 0 2 1 1
fir.c 0 2 1 1
compress.c 0 113 212 286

Table 6. Average off duration in cycles

Integer Float

Benchmarks Adder | Mult | Adder | Mult
rawcaudio.c - 8552 | 8789 | 8944
rawdaudio.c - 5481 | 6296 | 7075
fir2dim.c - 3987 | 4674 | 4674
n-real-updates.c - 2550 | 2682 | 2682
fir.c - 2230 | 2409 | 2409

compress - 10929 | 496 847

Table 7. Nullified transition pairs

Integer Float
Benchmarks Adder | Mult | Adder | Mult
rawcaudio.c 0 445 148 148
rawdaudio.c 1510 298 149 149
fir2dim.c 0 0 0 0
n-real-updates.c 0 0 0 0
fir.c 2 0 0 0
compress 958 0 1539 0

were too close together. The number of nullified transition pairs is given in
Table 7. As we can see, this number is quite significant for some benchmarks as
they contain variable length idle regions which are quite often of small duration.
Therefore our approach of allowing the compiler to aggressively remove idle time
and then relying on the hardware to nullify the operations if they are not useful
has proven to be very successful.

5

Optimizing Static Power Dissipation by Functional Units 275

Conclusions

The static power component of power dissipation is on a rise [2,9]. We presented
a technique for reducing this static power to some extent by switching off the
idle units. Our approach uses a combination of compiler, instruction set, and
microarchitecture support for maximizing power savings and minimizing perfor-
mance degradation. Static power reduction of over 90% was achieved for units
that were found to be mostly idle at the cost of well under 1% increase in exe-
cution times.

References

1.

ot

10.

11.

12.

13.

14.

D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A Framework for Architectural-
Level Power Analysis and Optimizations. In International Symposium on Com-
puter Architecture (ISCA), pages 83-94, Vancouver, British Columbia, June 2000.
J. A. Butts and G. S. Sohi. A Static Power Model for Architects. In IEEE/ACM
International Symposium on Microarchitecture (MICRO), pages 191-201. Decem-
ber 2000. 261, 262, 263, 275

C. Fraser and D. Hanson. lcc: A Retargetable C' Compiler: Design and Implemen-
tation. Adison Wesley Publishing Company, 1995. 271

M. Horowitz, T. Indermaur, and R. Gonzalez. Low-Power Digital Design. In IEEE
Symposium on Low Power Electronics, pages 8-11, 1994. 261

K. S. Khouri and N. K. Jha. Private Communication. June 2001. 262

C. Lee, M. Potkonjak, and W. H. Mangione-Smith. Mediabench: A tool for eval-
uating and synthesizing multimedia and communications systems. In IEEE/ACM
International Symposium on Microarchitecture (MICRO), Research Triangle Park,
North Carolina, December 1997. 272

MIPS Technologies, 1225 Charleston Road, Mountain View CA-94043. MIPS32
4k Processor Core Family, Software Users Manual, 1.12 edition, January 2001.

S. Onder and R. Gupta. Automatic Generation of Microarchitecture Simulators.
In IEEE International Conference on Computer Languages (ICCL), pages 80-89,
Chicago, Illinois, May 1998. 264, 271

M. D. Powell, S-H. Yang, B. Falsafi, K. Roy, and T. N. Vijaykumar. Gated-
Vdd:a Circuit Technique to Reduce Leakage in Deep-Submicron Cache Memories.
In ACM/IEEE International Symposium on Low Power Electronics and Design
(ISLPED), 2000. 261, 262, 275

K. Roy. Leakage Power Reduction in Low-Voltage CMOS Design. In IEEE Inter-
national Conference on Circuits and Systems, pages 167-173, 1998. 262

S. Thompson, P. Packan, and M. Bohr. MOS Scaling: Transistor Challenges of the
21st Century. Intel Technology Journal, Q3, 1998. 262

V. Tiwari, R. Donnelly, S. Malik, and R. Gonzalez. Dynamic Power Management
for Microprocessors: A Case Study. In International Conference on VLSI Design,
pages 185-192, 1997. 261

V. Tiwari, D. Singh, S. Rajgopal, G. Mehta, R. patel, and F. Baez. Reducing
Power in High-Performance Processors. In Design Automation Conference (DAC),
pages 732-737, 1998. 261

Q. Wang and S. Vrudhula. Static Power Optimization of Deep Submicron CMOS
Circuits for Dual Vi Technology. In International Conference on Computer-Aided
Design (ICCAD), pages 490-496, 1998. 262

	Optimizing Static Power Dissipation by Functional Units in Superscalar Processors
	Introduction
	Architectural Support
	Compiler Support
	Experimental Results
	Conclusions
	References

