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Abstract. This paper reports on a comprehensive approach to elimi-
nating array bounds checks in Java. Our approach is based upon three
analyses. The first analysis is a flow-sensitive intraprocedural analysis
called variable constraint analysis (VCA). This analysis builds a small
constraint graph for each important point in a method, and then uses
the information encoded in the graph to infer the relationship between
array index expressions and the bounds of the array. Using VCA as the
base analysis, we also show how two further analyses can improve the
results of VCA. Array field analysis is applied on each class and pro-
vides information about some arrays stored in fields, while rectangular
array analysis is an interprocedural analysis to approximate the shape
of arrays, and is useful for finding rectangular (non-ragged) arrays.

We have implemented all three analyses using the Soot bytecode opti-
mization/annotation framework and we transmit the results of the anal-
ysis to virtual machines using class file attributes. We have modified the
Kaffe JIT, and IBM’s High Performance Compiler for Java (HPCJ) to
make use of these attributes, and we demonstrate significant speedups.

1 Introduction

The Java programming language is becoming increasingly popular for the im-
plementation of a wide variety of application programs, including loop-intensive
programs that use arrays. Java compilers translate high-level programs to Java
bytecode and this bytecode is either executed by a Java virtual machine (usu-
ally including a JIT compiler), or it is compiled by an ahead-of-time compiler
to native code. In either case, the Java specifications require that exceptions be
raised for any array access in which the array index expression evaluates to an
index out of bounds.

A naive JIT or ahead-of-time compiler inserts checks for each array access,
which is clearly inefficient. These checks cause a program to execute slower due
to both direct and indirect effects of the bounds check. The direct effect is
that the bounds check is usually implemented via a comparison instruction,
and thus each array access has this additional overhead. The indirect effect is
that these checks also limit further optimizations such as code motion and loop
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transformations because the Java virtual machine specification requires precise
exception handling.

The problem of eliminating array bounds checks has been studied for other
languages and static analyses have been shown to be quite successful. However,
array bounds check analysis in Java faces several special challenges. Firstly the
length of an array is determined dynamically, when the array is allocated, and
thus the length (or upper bound) of the array may not be a known constant. Sec-
ondly, arrays in Java are objects, and these objects may be passed as references
through method calls, or may be stored as a field of some object. Thus, there
may be a non-obvious correspondence between the allocation site of an array
and the accesses to the array. Thirdly, multi-dimensional arrays in Java are not
necessarily rectangular, and so reasoning about the lengths of higher dimensions
is not simple. Finally, techniques that require transforming the program or in-
serting checks at other earlier program points are not as applicable in Java as in
other languages with less strict semantics about exceptions.

This paper describes a bounds check elimination algorithm which consists of
three analyses: variable constraint analysis (VCA for short), array field analysis,
and rectangular array analysis. The combination of these analyses can prove that
many array references are safe, without transforming the original program.

Variable constraint analysis builds a constraint graph for each array reference,
and then uses the graph to infer the relationship between the index of the array
reference and the array’s length. The analysis was designed to take advantage of
the fact that variables used in index expressions often have very short lifetimes—
by only building graphs for live variables of interest the graphs are kept quite
small. The associated worklist algorithm is also tuned in order to reduce the
number of iterations. As a result, the actual running time is linear in the size of
the method being analyzed.

Array field analysis is used to track the storage of array objects into class
fields. By analyzing assignments to fields that have certain modifier restrictions
(e.g., private and final) we are able to efficiently capture information about arrays
that may not be locally-allocated, but which still have limited scope.

Finally, rectangular array analysis approximates the shape of multidimen-
sional arrays. This analysis looks at the call graph for the whole application and
identifies multidimensional array variables with consistent rectangular shapes.

Both array field analysis and rectangular array analysis provide information
consulted by the VCA and therefore improve the analysis results.

All three analyses have been implemented using the Soot bytecode opti-
mization framework[9], but could be easily implemented in other compilers with
good intermediate representations. In order to convey the results of the analysis
to virtual machines we use the tagging/attributing capabilities of Soot to tag
each array access instruction to indicate if the lower bound and/or upper bound
checks can be eliminated. The Soot framework then produces bytecode output,
with the tag information stored in the attributes section of the class files. Vir-
tual machines or ahead-of-time bytecode-to-nativecode compilers can then use
these attributes to avoid emitting bounds checks based on the attributes. We
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have instrumented both the Kaffe JIT and IBM HPCJ ahead-of-time compiler
to read these attributes. We provide dynamic results showing the number of
array bounds checks eliminated, and the effect of the additional field and rect-
angular array analysis. We also provide runtime measurements demonstrating
significant speedups for both Kaffe and HPCJ.

The remainder of the paper is structured as follows. The base VCA algo-
rithm is presented in Section 2 and the two additional analyses are presented in
Section 3 and 4. Experimental results are given in Section 5, related work is in
Section 6 and conclusions are in Section 7.

2 Variable Constraint Analysis

The objective of our variable constraint analysis is to determine the relationships
between array index expressions and the bounds of the array. In Java, an array
access expression of the form a[i] is in bounds if 0 < ¢ < a.length — 1. If the
array access expression is out of bounds an ArrayIndexOutOfBoundsException
must be thrown, and this exception must be thrown in the correct context.

Our base analysis is intraprocedural and flow-sensitive. For each program
point of interest, we use a wariable constraint graph (VCG) to approximate
the relationships between variables. The VCG is a weighted directed graph,
where nodes represent variables, constants, or other symbolic representations;
and edges have a weight to represent the difference constraint between the source
and destination node. The interesting program points are the entry points of ba-
sic blocks. An array reference breaks a code sequence into two blocks, with the
actual array reference starting the second block.

The fundamental idea is that the entry of each basic block has a VCG to
reflect the constraints among variables at that program point. These VCGs are
approximated using an optimistic work-list-based flow analysis. By reducing the
size of the graphs, careful design of the work-list strategy, and the appropriate
use of widening operators, we have developed an efficient and scalable analysis.

In the remainder of this section we introduce the concept of the variable
constraint graph which is the essence of our algorithm. We then describe the
data-flow analysis and the techniques we used to improve the algorithm’s per-
formance.

2.1 The Variable Constraint Graph

Systems of difference constraints can be represented by constraint graphs, and
solved using shortest-path techniques[3]. We have adopted this approach for our
abstraction.

A node in a variable constraint graph represents the constant zero, or a local
with the int or array type. A graph edge has a value of L, an integer constant,
or T. For any constant ¢, the ordering | < ¢ < T holds. A directed edge from
node j to ¢ with a constant ¢ represents a difference constraint of 1 < j + c.
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The data-flow analysis uses constraint graphs to encode flow information. It
needs to change constraints between a set of variables after various statements.
The information changes are reflected by operating on the variable constraint
graph. In following text, we define operations ( or primitives ) applicable to our
constraint graph.

Creating a graph: As we will see later, the set of vertices of a graph at an in-
teresting program point can be pre-computed and never change again. There
is no constraint between variables at the initial state. Thus, the initializing
function accepts a set of vertices, while all edges are set to L which means
edges are uninitialized.

Adding an constraint: A new constraint is added in a graph by changing the
weight of the corresponding edge. In order to keep the tightest constraints
possible, the edge is assigned the minimum of its old and new weight. This
operation is named addedge in Table 2.

Deleting a constraint: When a constraint does not hold anymore, the corre-
sponding edge weight is set to T in the graph. Right now, a constraint is
deleted when detaching a node.

Detaching a node: When a variable is assigned a new value, its old edges
should be removed before adding new ones. However, the edges may be part
of some paths connecting other nodes, and we wish to retain this information.
Thus the detachnode primitive first builds edges from each predecessor to
each successor, and then removes all in and out edges.

Updating a node’s in and out edges: For an expression ¢ = i + ¢, we do
not kill the node i. Rather, all in-edges’ weights are increased by ¢, and all
out-edges’ weights are decreased by ¢, to reflect the constraint changes. We
call this operation update in Table 2.

Making the shortest path: A constraint graph also provides methods to find
the shortest path between two nodes or of all pairs. It implements single-
source shortest paths and all-pairs shortest paths algorithms[3].

Merging two graphs: At confluence points we must merge constraint graphs
coming from more than one predecessor. All predecessor graphs will have the
same set of nodes, but their edges may have different weights. Thus, merging
graphs is done by simply merging edge weights. Note that unlike adding a
constraint, the merged edge weight is the maximum of the corresponding
incoming edge weights.

Negative cycles: Negative cycles may exist in a constraint graph for programs
with unreachable code due to useless branches. For example: if (i < j)
{if (j < i) { P:...}} would lead to a negative cycle at program point
P:, but of course this point is never reached. In the presence of negative
cycles in a path, we cannot compute the shortest path weight for nodes in
the path. Leaving them unchanged is a conservative approach to keep the
correctness of the analysis.

Figure 1 shows an example of constraint graphs. We are interested in the
graph before $3 because it has an array access and we want to know whether j
is in the bounds. The other two graphs only reflect the constraint changes.
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Fig. 1. The status of constraint graph changes

The statement s1 generates the constraints i —a < —1 and 0 — i < 0, result-
ing in edges from a to i and i to 0. The path from a to j implies the constraint
j —a < —3 by adding its edge weights. In statement s2 ¢ loses its contraints
from a and j and the path a — i — j ceases to exist; the constraint condition is
preserved though by a new edge directly from a to j with weight —3. Thus the
constraint j —a < —3 is still in effect before s3, even when ¢ was redefined. The
upper bound check for s3 can therefore be proved safe (we can not derive the
safe lower bound from this simple example, because it only implies 0 — j < 2).

2.2 Data-Flow Analyses

We developed two data-flow analyses in our intraprocedural algorithm. A special
live-local analysis, which is relatively simple, determines the set of local variables
which are related to array references. A more complicated analysis performs
abstract execution of the method, and gets a conservative approximation of
constraints among live locals. The first analysis limits the number of nodes in a
constraint graph and therefore reduces the computation of the second analysis.

Array-Related Liveness Analysis A variable constraint graph contains nodes
of locals and edges between them. The size of the graph can be reduced by in-
cluding only those locals that are used to compute an index or an array object
length in the future. A smaller constraint graph allows faster computation of
shortest paths, and may also reduce the number of iterations required for the
fixed-point computation.

In order to determine the nodes which should be in the variable constraint
graph, we apply a special live locals analysis, which collects only those variables
relating to array references. As with ordinary liveness analysis, it is a backward
flow analysis. Table 1 provides the key flow functions. The first column gives
the types of statements or expressions that may generate or kill live locals. The
second and third column should be used together. Only when at least one of the
local(s) in the condition set are live, does the statement generate live locals in the
gen set. Note that array references generate live locals without any conditions.

One can easily extend the liveness analysis to accommodate other special
nodes, such as class fields, array elements, and common subexpressions.
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Table 1. Liveness for array references

stmt/expr |cond gen|kill
i=j+c i j|a
i = a.length | 1 a |1
a=newT[]|la 1 |a
ali] a,i

if (topj) |i,7 4]
i=1+c

§= . i

Variable Constraint Analysis We use a forward, flow-sensitive, optimistic
data-flow analysis to approximate a variable constraint graph for each important
point in a method body.

The analysis is based on the control-flow graph of basic blocks as we explained
before. The entry of each basic block is associated with an input VCG whose
vertices are array-related live locals. The initial state of each graph has L for
all edges, except the entry point graph which has all T edges. The analysis is
driven by a work-list algorithm which computes an output VCG based on the
input VCG and the effect of the statements in the basic block. When processing
a conditional branch statement, it may generate different constraints for the
target block and the next block. After reaching a fixed point, the information
for each array access statement, S, is encoded by the VCG associated basic block
starting with S.

At any program point the set of interesting variables is known from array-
related liveness analysis. The abstraction computed by our analysis is all-pairs
shortest paths of a variable constraint graph. But instead of computing the
shortest paths at every program point, we only perform such computation at
the confluence point. In other places, we do simple operations on the graph. The
abstract information that changes is the weights associated with edges. For any
constant ¢, the ordering |l CcCc+1C c+2C ... C mazint T T must hold.

The base analysis deals only with local variables, which cannot be aliased,
nor can they be modified by method calls. Thus, the effect of each statement
on a VCG is quite straightforward. The flow function for each kind of relevant
statement is given in Table 2. Variables ¢, 7 and a represent nodes in the graph,
and c is an integer constant. Each graph has a 0 node.

The first column shows the kinds of statement which have effect on a VCA.
The second column lists the constraints can be generated from the statement in
the first column. The third column shows the node of which constraints should
be bypassed. The last column gives operations on the constraint graph according
to the statement. The rules in Table 2 use several primitives, which were defined
in section 2.1.

At a confluence point P, we use a set of output graphs from predecessors
and the old input graph of P to compute the new input graph. We firstly call
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Table 2. Statements generating constraints

|stmts | gen |detach|operations |
i=c 1—0<c |i detachnode(7)
0—i< —c addedge(0, 7, ¢)
addedge(7, 0, —c)
i=j+c i1—j<c |1 detachnode(7)
j—i< —c addedge(j, 7, ¢)
addedge(%, j, —c)
t=a.length [i—a<0 |1 detachnode(7)
a—1<0 addedge(a, 7, 0)
addedge(, a, 0)
a=mnew Tlclla—0<c¢ |a detachnode(a)
0—a<—c addedge(0, a, ¢)
addedge(a, 0, —c)
a=mnew Tllla—i<0 |a detachnode(a)
i—a<0 addedge(, a, 0)
addedge(a, 7, 0)
ali] 1—a< -1 addedge(a, i, —1)
0—-:7<0 addedge(%, 0, 0)
if (i < j) |target:
1—j< -1 addedge(j,7, —1)
else:
j—1<0 addedge(s, 7, 0)
1= j&e 1—0<c¢ |1 addedge(0, 7, ¢)
0—-:7<0 addedge(s, 0, 0)
i=i+c update(i, ¢)
1= i detachnode(4)

the merge operation to union all ouput graphs from predecessors, then apply a
special operation called widening on each new graph edge weight by comparing
it to the old graph edge weight. The widening operation looks at the changing
trend of an edge weight. If the weight is increasing, we set it to T directly. But
if the new weight is less than the old weight, we will discard the new weight and
use the old one. The widening technique speeds up the symbolic execution and
also stops infinite loops correctly.

Walking through a CFG in its topological order can speed up data-flow anal-
ysis. However, a simple depth-first search ( DFS ) algorithm cannot guarantee
an optimal order for the successors of a loop exit node. For our analysis, we
prefer to visit the loop body before the loop exit. To enforce a good ordering
we perform a DFS from exiting nodes of the CFG in reverse order first; then
the DFS from the starting node can consult the order of reversed DFS when it
meets a loop exit allowing us to put loop body nodes before loop exits.

Our work list algorithm puts the successors of a node, whose out set changes,
onto the work-list for recalculation. The work-list is handled as a heap using
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the order computed as above. By enforcing this order we ensure that inner loops
reach a fixed-point before the outer loops. Experiments show this is very effective
way of making our data-flow analysis run efficiently.

3 Array Field Analysis

The base analysis presented in the previous section does not handle arrays stored
in fields. In Java applications, programmers may use fields to hold some constant
value for code modularity and clarity. A class field with the private or final
modifier can only be assigned a value in the class declaring that field. Based on
this observation, we developed a simple analysis detecting a field holding a fixed
length array object.

For each class C, array field analysis examines the class fields. Let Feo be
the set of array-type fields modified by private or final declared in C. If F¢
is non-empty, then a table 7¢ is created, and for each f € Fe an entry 7¢[f] is
created and initialized to L. Each method m declared in C' is then considered.
Since the Soot framework provides typed locals, and ensures that a putfield or
putstatic is always in the form of an assignment from a local to a field, a simple
pre-scan of the types of locals of m can be used to avoid further processing of
methods that cannot change the value of any f € Fc¢.

For each method m that might change an array field, the body of m is
scanned. Let f = ¢ be an assignment to some f € Fo. A value 0(¢) is computed
as follows:

1. If £ is a newarray or multianewarray operation, then extract the array
length expression d and return §(d).

2. If £ is a local variable, the UD-DU chains provided by the Soot framework
are used to locate the definitions of £. If £ has more than one definition point,
return T, otherwise for a definition ¢ = x return 6(x).

3. If £ is an integer constant ¢, return c.

4. Otherwise, return T.

The table information 7¢[f] is then updated by merging the existing value for

To[f] with the computed §(¢) according to Table 3; note that 6(¢) is never L.
When the intraprocedural VCA analysis meets an array type field read of the

form a = o.f where o has class type C, it consults the array field analyzer to get

Table 3. The rule for updating the field table

LI et [T]
c2|lc2|cl : cl==c2|T
T : else
TNT T T
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the value 7¢[f]. If 7¢[f] has a constant value ¢, we can analyse this statement
as if it was a = new T[c] (see rule in Table 2).

Our experience shows that this usually happens for a field with an initializer,
where all assignments are made in the constructors. For simplicity, our imple-
mentation of array field analysis focuses only on the first dimension of array
objects.

4 Rectangular Array Analysis

Another opportunity lies in rectangular arrays. Because multidimensional arrays
in Java can be ragged, it is more difficult to get good array bounds analysis for
multidimensional arrays. However, in scientific programs arrays are most often
rectangular. Thus, we have developed a whole-program analysis using the call
graph to identify rectangular arrays that are passed to methods as parameters.

A multidimensional array can be allocated by explicit new instruction, or
an array initializer. The initializer is compiled by javac or jikes as individual
allocations to give a potentially ragged array of array objects. An array of arrays
is created, then each element is assigned a subarray object. Figure 2(a) shows a
typical Java example, and Figure 2(b) shows the resulting bytecode. We use a
simple pattern matcher that can find this idiom and recover a rectangular array’s
creation from its sparse representation to a dense one, as shown in Figure 2(c).

a = newarray (int[1)[2];

$r2 = newarray (int)[1]; a = multianewarray
$r2[0] = 1; int[2] [1];
al0] = $r2; $r2 = al0];
$r3 = newarray (int)[1]; $r2[0] = 1;
int[1[] a = {{1}, $r3[0] = 2; $r3 = al[1l;
{233; al1ll = $r3; $r3[o] = 2;
a) An array b) Compiled code by c) Recovered code
initializer javac and jikes

Fig. 2. Recover the creation of rectangular arrays

After finding all the creation sites for rectangular arrays, we then perform a
simple whole program analysis to find which variables must be associated with
rectangular arrays. To achieve this we build an array type propagation graph.
The graph nodes consist of two special nodes for TRUE and FALSE, plus nodes
representing method parameters, locals, returns, class fields, and array elements.
To minimize the size of the graph we only include nodes for those variables whose
static types indicate that they are multidimensional array objects.

A variable in the graph is connected to the TRUE node if it is assigned a
new multi-array expression, a=multianewarray T[i] [j]. A variable a is con-
nected to the FALSE node if it appears in the statement afi] = ¢ and a is a
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multidimensional array. An assignment a = b adds an edge between a and b.
To handle assignments due to parameter passing, we add edges between actual
arguments and formals for each method call. For virtual and interface calls we
use a conservative call graph to find all potential target methods. If a local is
passed to or gets a return value from a method which is out of our analysis con-
text (i.e. we do not have the method body to examine), we make a conservative
assumption and connect the variable to the FALSE node."

After building the propagation graph, we want to find all nodes which are
reached starting at the TRUE node (were allocated as rectangular), and are not
reached starting at the FALSE node (may have become ragged). We achieve this
as follows. First we traverse the graph, starting from the FALSE node, marking
these nodes as reachable from FALSE. Then we traverse the graph starting at
the TRUE node, finding all reachable nodes that are not marked FALSE. This
set indicates that the members are always assigned rectangular arrays.

To use rectangular array information, the constraint graph has some special
nodes to represent the subarrays. For example, we use A[ to represent the second
dimension length of A.

5 Experimental Results

We have implemented the algorithm in the context of the Soot framework. In this
section we present and discuss the experimental results that we have obtained.
The results are grouped into three categories:

1. We measured the dynamic characteristics of the variable constraint analysis
in terms of two most important factors affecting the algorithm’s performance:
the size of variable constraint graphs and the number of iterated blocks to
reach the fixed point.

2. Then we show the results of the base intraprocedural analysis, followed by
the array field analysis and rectangular array analysis as they are added in
separately, and finally combined. The results are presented as percentages of
lower and upper bound checks that can be proved safe.

3. Our analyses results are encoded in the attributes of class files. To measure
the real impact to the run-time performance of Java programs, we modified
Kaffe JIT and HPCJ compiler to read and take advantages of such attributes.
The run-time measurements show speed-ups in most of benchmarks.

We chose several benchmarks including both general and numerical ones:
as well as Spec and scimark2, LCS, an implementation of a Longest Common
Subsequence algorithm, and MCO, an algorithm for finding an optimal order of
matrix multiplication.

Before doing experiments, we measured the overhead of array bounds checks
within each benchmark. In the Spec benchmarks we found ‘mpegaudio’ has a

! For our experiments, we analyzed only the benchmark code, and treated the library
as out of context.
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Table 4. Characteristics of the algorithm

Graph size ||Blocks| Iter|NonZero

(avg) | (max) (avg)| Blocks
db 3.17 6 280| 1.28 89
jack 2.5 6| 2076 1.04 1892
javac 2.45 6|| 3347 1.27 1631
mpegaudio|| 3.42 10|| 6987 1.10 6670
raytrace 2.56 6 626 1.31 476

scimark?2 5.8 12 388| 1.79 301
LCS 9 13 59| 2.8 55
MCO 4.6 11 98| 2.0 95

large overhead, as do LCS, MCO and three sub-benchmarks in scimark2. These
are all typical examples of array-intensive programs. Other benchmarks in our
study serve as examples of normal programs which are less array dedicated.

5.1 Dynamic Characteristics of the Algorithm

Table 4 shows some of the dynamic properties of our algorithm applied to the
different benchmarks. The Blocks column gives the number of basic blocks in the
program, while the NonZero Blocks column gives the number of blocks that have
non-empty live sets for local variables, and so have non-empty constraint graphs.
Only NonZero blocks were used in the calculation of average and maximum
constraint graph sizes, and every (non-empty) constraint graph includes at least
one node for the constant zero. From this, the size of the constraint graphs is
quite reasonable: the average size never exceeds 10 nodes, and the maximum size
is no more than 13. These are quite practical factors.

The Iter column is the average number of times a block is processed as the
analysis iterates toward a fixed point. It is a good indicator of how long the
analysis will run, and suggests that in a practical sense the running time of our
algorithm is linear in the code size. There is an impact due to loop nesting; in
small benchmarks, LCS, MCO and scimark2, the code bodies are dominated by
nested loops and hence, the factor is higher than other benchmarks. Nevertheless,
the factor remains relatively small.

5.2 Dynamic Results and Discussion

Figure 3(a) shows the percentage of bounds checks our basic intraprocedural
analysis is able to detect are safe to remove. Note that these are dynamic statis-
tics, obtained by instrumenting the class files and inserting profiling instructions
before each array reference bytecode. Lower bounds and upper bounds are mea-
sured separately in the first two bars for each benchmark, while the last bar
gives the percentage of array references with both safe checks.
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Fig. 3. Dynamic Results of VCA

The intraprocedural algorithm can determine that a fairly high percentage of
the lower bound checks are safe. Safety of upper bound checks is more difficult
to ascertain. Still, the results for the array-intensive benchmarks (rightmost five)
are encouraging; these are the benchmarks which will benefit the most, and also
in which we achieve the best results.

By analyzing the fields holding constant length array objects, the intrapro-
cedural analysis can get more information about field accesses. The success of
this method, however, depends on the application: ‘mpegaudio’ and ‘raytrace’
improve greatly, while others are more or less unaffected (Figure 3(b)). Rect-
angular analysis also proves to be very application-dependent. It is of benefit
only to those benchmarks using multidimensional arrays. LU, SOR, and LCS
and MCO improve dramatically with the addition of this analysis.

The last experiment shows the result of the combined use of field and rectan-
gular analyses. Because these are essentially independent analyses, the combined
improvement is close to the sum of the improvements seen individually. With
most of our benchmarks this brings the percentage of checks we could eliminate
to 50% or more; again, array-intensive benchmarks fare best, and in some cases
we identify almost 100% of array bounds checks as safe.

Relative runtime performance improvements for the instrumented versions
of the Kaffe JIT and HPCJ are given in Figure 4. Both systems were modified
to read the array attribute information stored within the class file and to apply
that data during code generation. If array bounds checks are required, a test-
and-branch code sequence is inserted prior to the array access. Note that a
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Fig. 4. Speedup for Kaffe and HPCJ

well-known optimization for bounds checking involves making use of the 2’s-
complement representation of integer values to perform just a single unsigned
comparison that encompasses both upper and lower bound checks (see [6]:144);
this data thus represents the use of attribute information only when both bounds
are declared safe.
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If an array access is deemed safe from the attribute information, no such
checks are created—this is done during actual (just-in-time) code generation for
Kaffe, and at an internal, intermediate stage for HPCJ. In the latter case, this
eliminates the potential array bounds exception that may restrict subsequent
internal optimizations, resulting in different code output. For this reason we
present results with and without HPCJ’s own optimizations applied.

Finally, note that every array access is an object access, and so null pointer
checks are also required at these points. Depending on machine architecture and
how objects are organized this check can be combined with the array bounds
check, and so removing the latter may require inserting explicit null pointer
checks [9]. Best performance results therefore occur when both kinds of checks
are eliminated; our results include this optimization. Kaffe results were gathered
on a dual Pentium II, 400MHz, 384Meg of memory, Linux OS kernel 2.2.8 and
glibe-2.1.3; HPCJ results are from a Pentium I1I 500MHz, 192Meg, Windows N'T.

In each case the result of using the intraprocedural analysis combined with
both field and rectangular analyses is compared with the effect of artificially
disabling all bounds checks. A couple of cases (LU in Kaffe, LU and FFT in
HPCJ (opt)) exhibit interesting anomalous results that we have been able to
attribute to code cache effects. In all other cases, however, we achieve significant
performance increases, roughly corresponding to the quality of information we
were able to collect.

6 Related Work

Array bounds check optimization has been performed for other languages, such
as Pascal, Fortran, and Ada[8] for a long time. The problem of runtime overhead
of array bounds checks was first addressed in [7]. R. Gupta[4,5] extended their
work by using data-flow analysis to move checks out of loops. These algorithms
were working on languages that do not require precise exceptions, which allow
an exception to be thrown before the original exception point.

More recently, Bodik et. al.[1] presented an algorithm called ABCD (Elim-
inating Array Bounds Checks on Demand) for general Java applications, The
algorithm uses a different form of constraint graphs to solve bounds checks. It
builds an extended SSA form for a method body. The e-SSA guarantees that
all uses (by name) of a variable are bounded by the same constraints, the value
range, at runtime. Based on the new form, a constraint graph is constructed,
where nodes are locals and constants, and weighted edges are constraints rep-
resenting inequality relationship between nodes. The relationship between array
and index is inferred by a customized depth first search.

VCA has some similarity to this approach in that both are using inequality
graphs to represent constraints. However, there are several differences between
our algorithm and ABCD approach:

1. The ABCD algorithm is based on an extended SSA form, and uses one graph
to summarize constraints from all statements in a method. Thus, the control-
flow information is included in the constraint graph. Our VCA approach
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does not rely on any underlying program representation form, it uses a fixed
number of small program-point specific constraint graphs.

2. Based on e-SSA form, the ABCD algorithm can be used in a demand-driven
manner. Each demand (query) is solved individually, and may be performed
on selected array references that occur in hot spots. Although each query
is relatively expensive, ABCD does have an overall speed advantage over
VCA. The VCA approach is designed to analyze all array references at once,
and is intended for off-line usage. Our experimental results show that our
techniques for reducing the size of the graphs and reducing the number of
iterations works well to keep the cost of VCA reasonable.

3. The VCA approach keeps constraints of lower and upper bounds in the same
graph, which is not the case in the ABCD approach.

4. In our algorithm, the constraint graph serves as the basis of other two anal-
yses. For certain types of applications, the impacts of these analyses can be
significant. Currently it is not clear how class fields and multidimensional
arrays information can be used to help the ABCD algorithm.

5. ABCD is capable of catching partial redundant bounds checks. VCA is not
able to do that currently.

VCA’s primary advantage is in its interaction and integration with other
analyses. In isolation, VCA is capable of recognizing nearly the same percent-
ages of safe upper bounds on the SPEC JVM98 benchmarks as reported in[1].
However, when combined with array field analysis and rectangular array anal-
ysis, VCA can outperform ABCD significantly. Experiments show that VCA
with rectangular array analysis is very effective on micro benchmarks using two-
dimensional arrays. In addition, we have provided complete experimental results
showing runtime speedups. We also think the approach of formulating a problem
in constraint graphs and solving it by using data-flow analysis can be useful for
other problems.

R. Shaham et. al. [11,10] described an algorithm for identifying live regions
of arrays to detect array memory leaks in Java. Although in a very different
experimental setting, their representation and analysis are very similar to VCA.
In both cases constraint graphs and data-flow analyses are used to compute
inequalities between variables. However, their focus is on finding relationships
between special class fields across method boundaries based on supergraphs of
a few particular library classes. Although the supergraph can make our field
analysis more powerful, our VCA approach focuses on intraprocedural analysis
for general Java applications, and we handle different statements in more detail.
Another important aspect of our VCA approach is that we use different tech-
niques to reduce the cost of data-flow analysis, such as limiting constraint graph
node size, and enforcing iteration in pseudo-topological order.

Compared with other algorithms, our VCA works on bytecode level and
does not change the program. The analysis results are encoded in the class
file attributes. Thus, there are no problems with precise exception semantics.
It is capable of preserving information from various sources. Although it uses
a relatively sophisticated abstraction for the data-flow analysis, the techniques
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used in the algorithm reduce the overhead to a minimum. VCA can be very easily
extended to take advantage of results from other analyses. We demonstrated how
the two extended algorithms can improve the analysis results dramatically for
array intensive benchmarks.

To target the scientific programs which use multidimensional arrays fre-
quently, our rectangular array analysis provides very important information to
the VCA, which helps the conservative VCA remove almost one hundred per
cent bounds checks in some typical applications. To the best of our knowledge,
very few other works takes advantage of knowing array shapes. Further, we be-
lieve the array shape information can also help memory layout of array objects
in a virtual machine[2].

7 Conclusions

In this paper we have presented a collection of techniques for eliminating array
bounds checks in Java. Our base analysis, variable constraint analysis (VCA),
is a flow-sensitive intraprocedural analysis that approximates the constraints
between important program variables at program points corresponding to array
access statements. The analysis has been made efficient by reducing the size of
the graphs, choosing an appropriate worklist order, and applying a widening at
loop entry points. As shown in the experimental results, the size of the graphs
is small (around 10 nodes for our benchmarks), and the average number of
iterations per basic block is always less than 3.

In order to improve the precision of the base VCA analysis, we have de-
scribed two additional techniques. Array field analysis is applied to each class
to find those array type fields that always hold an array with a fixed constant
length. Rectangular array analysis is applied to a whole program to find those
variables that always refer to rectangular, non-ragged, arrays. Given the infor-
mation from these analyses, the intraprocedural VCA analysis was improved to
include information about fields, and upper dimensions for multi-dimensional
arrays.

Our analyses were implemented in the Soot optimization/annotation frame-
work, and we provided dynamic results that showed that effectiveness of the base
VCA analysis and the incremental improvements due to field and rectangular ar-
ray analysis. These results were quite encouraging and demonstrated that almost
all checks could be eliminated for those benchmarks with very regular compu-
tations. We also provided experimental results for Kaffe and IBM’s HPCJ to
demonstrate that significant runtime savings can be achieved as a result of the
analysis. Currently our attributes are not verifiable, we are just using them as
an experimental tool to convey dataflow facts from our tool to the ahead-of-time
or JIT compiler.

Our next phase of work will be to integrate a side-effect analysis into the
framework, and improve upon information for arrays stored in objects. We would
also welcome the opportunity to provide our attributed class files to other groups
in order to see the runtime impact on other virtual machines.
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