
Precise Exception Semantics

in Dynamic Compilation

Michael Gschwind and Erik Altman

IBM T.J. Watson Research Center
Yorktown Heights, NY 10598

Abstract. Maintaining precise exceptions is an important aspect of
achieving full compatibility with a legacy architecture. While asynchro-
nous exceptions can be deferred to an appropriate boundary in the code,
synchronous exceptions must be taken when they occur. This introduces
uncertainty into liveness analysis since processor state that is otherwise
dead may be exposed when an exception handler is invoked. Previous
systems either had to sacrifice full compatibility to achieve more free-
dom to perform optimization, use less aggressive optimization or rely on
hardware support.
In this work, we demonstrate how aggressive optimization can be used
in conjunction with dynamic compilation without the need for special-
ized hardware. The approach is based on maintaining enough state to
recompute the processor state when an unpredicted event such as a syn-
chronous exception may make otherwise dead processor state visible. The
transformations necessary to preserve precise exception capability can be
performed in linear time.

1 Introduction

Dynamic compilation is a powerful technique to optimize programs based on
execution behavior and to respond to changes in the execution profile. Dynamic
optimization can be used either as a technique in its own right, or in combination
with binary translation techniques.

Dynamic optimization includes techniques to perform code layout for im-
proved memory behavior, optimize frequently executed program paths, specula-
tively execute instructions or use value prediction [7,6,16,5,4,3,10].

A number of other optimization techniques are also highly effective in con-
junction with dynamic optimization by exploiting runtime program profile data,
such as dead code elimination, code sinking, unspeculation or partial redun-
dancy elimination [9]. These techniques are even more useful for binary transla-
tion where the original ISA may cause the program to compute extraneous state
which is hard to emulate and unnecessary, such as the computation of condition
codes as a side effect of every instruction [11].

To produce correct execution behavior, dynamic optimization has to be con-
servative in analyzing and optimizing programs. In particular, the visible state
of the program has to match the state of the unoptimized program at any point

R. N. Horspool (Ed.): CC 2002, LNCS 2304, pp. 95–110, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

96 Michael Gschwind and Erik Altman

during program execution. This requirement imposes significant restrictions on
the types of optimizations which can be performed without impacting program
correctness, because synchronous interrupts can expose parts of the state that
are otherwise invisible.

In the DAISY dynamic translation project we found that on a 4-wide machine
running the SPECint95 benchmarks, ILP can be reduced by up to 18%, and
by an average of 10% by the requirement that every (possibly dead) result be
placed in the architected register of the source architecture and further that each
result be placed in the architected register in order [2].

Consider the following code sequence:

1 add r4,r3,r4
2 lwz r3,0(r9)
3 add r4,r3,r3

Clearly, the instruction at line 1 is dead, but a page fault caused by the load
instruction at line 2 could make the value of r4 visible to the exception or signal
handler. In many cases, the only action taken by the handler may be to store
and restore the value in r4, but if the handler bases any actions on the values
stored in register r4, the program may fail. Thus, many dynamic optimizers
have either severely restricted the amount of dead program state computation
which can be eliminated [7]. Some dynamic optimizers have included a ‘safe
mode’ which disables such optimizations [4,3], but this is undesirable since this
approach (1) requires to identify which program rely on extensive program state
analysis in their exception handler, and (2) such programs are over their entire
execution, even if no exception ever occurs.

In this work, we present a solution to allowing dead state eliminating tech-
niques during dynamic optimization while retaining exact program behavior.
In particular, this approach is based upon deferring materialization of otherwise
dead code to the few instances where its results may be accessed by a synchronous
exception handler. This is achieved by invoking a repair function provided by
the dynamic optimizer environment which repairs the state of the program be-
fore actually passing control to a native synchronous exception handler (or its
translation, in dynamic binary translation).

Dynamic compilation is key to efficiently implementing this technique and
taking full advantage of it with other optimizations. A static compiler faces an
exponential growth in fixup code as operations are speculatively moved past
multiple branches, while a dynamic compiler only generates these fragments in
the (rare) event they are actually needed.

This paper is structured as follows: we give an overview of the basic approach
in Section 2. We present a sample algorithm for the elimination of dead code
in Section 3 and discuss applications to other optimization techniques such in-
struction scheduling and unspeculation in Section 4. We describe program state
repair in Section 5. We present initial results in Section 6. We discuss related
work in Section 7 and draw our conclusions in Section 8.

Precise Exception Semantics in Dynamic Compilation 97

2 Basic Approach

The technique at the heart of this approach is annotation of generated code to
allow a native exception handler to repair the state of the program to reflect the
in-order state at any point in program execution where a synchronous exception
can arise.

Considering the example from the Introduction, we note that when an excep-
tion does not occur, eliminating instruction 1 would be a legal transformation.
By introducing a repair step before the transfer of control to the exception han-
dler, a legal code sequence can be achieved. Consider the following code, which
has eliminated instruction 1, but annotated instruction 2 with repair actions to
perform before control is passed to the exception handler.

1 *** on exception, repair: r4 = r3+r4
2 lwz r3,0(r9)
3 add r4,r3,r3

Thus, when instruction 2 raises an exception, the repair actions will restore
the value of r4 to that seen in the original program, but otherwise an instruction
has been eliminated.

This corresponds to the control flow graph (CFG) transformation in Figure 1
if the exception handler is viewed as a branch in the control flow graph which is
arguably correct.

To make program transformations based on dead state eliminating techniques
safe for use in dynamic optimization, several steps are necessary. During the op-
timization phase, enough information must be retained to regenerate eliminated
state. This includes information both about the operations which were elimi-
nated, as well as preserving the input values feeding the operation.

Transform

Handler
Exception

Exception

add r4,r3,r4

Handler

lwz r3,0(r9) lwz r3,0(r9)

Likely Unlikely

add r4,r3,r3

Likely Unlikely

add r4,r3,r4add r4,r3,r3

Transformed CFGOriginal CFG

Fig. 1. Control Flow Graph Transformation for Repair Code

98 Michael Gschwind and Erik Altman

When code is emitted, information about the eliminated computations has
to be emitted into the translation cache so it can later be used by the repair
mechanism. And, finally, when an exception occurs, a repair function must in-
terpret the information about eliminated state and recompute it so as to restore
the entire program state before control is passed to a translation of the native
exception handler.

3 Algorithm for Dead Code Elimination

Our algorithm for these optimizations is best demonstrated for the simplest
case, dead code elimination. While dead code elimination is not very useful for a
properly optimized program in the context of dynamic optimization, many opti-
mizations can be reformulated as having precise exception semantics by leaving
the original operations in place as dead operations computing values solely for
the purpose of maintaining precise exception state. Dead code elimination can
then be used to eliminate these operations. Also, dead code elimination is ex-
tremely useful when used in conjunction with binary translation where it can be
used to eliminate extraneous state introduced by the ISA, e.g., by condition code
setting instructions in CISC ISAs such as the Intel x86 or IBM System/390 [11].

We will assume that the original program representation has been converted
to an Internal Representation (IR) which has a single result value per operation.
In the case of instructions with multiple results (such as compute and set con-
dition code instructions), a machine instruction will be represented by multiple
IR operations. We also assume that the IR is in SSA form.1

Our algorithm uses a register equivalence list for liveness analysis and register
allocation, to ensure that input values of eliminated instructions will be available
if they are needed to compute the exact program state.

We will denote a live-range register equivalence as s3 ≡ 〈s4, s7〉 indicating
that at any point in the IR that a symbolic register s3 is mentioned, symbolic
registers s4 and s7 are to be considered live as well for the purpose of register
allocation.

The algorithm iterates over an operation list representing a single translation
group, and finds operations with a dead result. These operations can be elimi-
nated, provided their result can be reconstructed in the event of an exception.
To ensure this, the algorithm adds a use of the dead target symbolic register
name after the instruction killing the result2, and adds an entry to the register
equivalence list which equates the dead result symbolic register to the symbolic
input registers of the dead operation.3 These two steps ensure that all input reg-
isters of deleted operations are live to the latest point where the target register
1 Most dynamic compilers work on basic blocks or extended basic blocks, so this
transformation is straightforward.

2 The use node represents the use along the exception control flow. Since there are no
instructions along that path the uses along that arc can be folded into the mainline
control flow at the conceptual control flow split at exception raising instructions.

3 The use node for the original register serves a dual function – it represents the
minimum range of validity of the repair note, and consequently how long the input

Precise Exception Semantics in Dynamic Compilation 99

1 foreach operation op
2 if dead (target (op))
3 convert2repairnote (op); %% Deletes op and inserts as repair note
4 foreach instruction killing target (op)
5 insert use (target (op))
6 insert equivalence (target (op) == sources (op))

Fig. 2. Basic Algorithm

may be live. Then, the dead instruction is removed and replaced by a repair note
in the IR. (The difference between an actual instruction and a repair note can
be a single bit flag field in the IR structure.)

This yields the algorithm in Figure 2, which is linear (O(N) where N is the
number of instructions in a CFG) in both time and the size of data structures.
This algorithm can successfully deal in a single pass with a group of dead in-
structions which are dependent on each other, provided the liveness check at line
2 is transitive, i.e., a source register to any instruction is only live if its output is
live. The transitive closure of live and dead values can be computed in a single
backward sweep of the dependence graph, and hence is O(n).

and. r4,r3,r4 | 1 s4’ = s3 & s4 | 1 { s4’ = s3 & s4 }
| 2 sc0’ = (s3 & s4) cmp 0 | 2 { sc0’ = (s3 & s4) cmp 0 }

lwz r3,0(r9) | 3 s3’ = [s9] | 3 s3’ = [s9]
add r4,r3,r3 | 4 s4’’ = s3’ + s3’ | 4 s4’’ = s3’ + s3’

| | use s4’ ; s4’ == < s3,s4 >
addi r5,r3,80 | 5 s5’ = s3’ + 80 | 5 { s5’ = s3’ + 80 }
lwz r3,0(r10) | 6 s3’’ = [s10] | 6 s3’’ = [s10]
addi. r5,r3,1 | 7 s5’’ = s3’’ + 1 | 7 s5’’ = s3’’ + 1

| | use s5’ ; s5’ == < s3’ >
| 8 sc0’’ = (s3’’ + 1) cmp 0 | 8 sc0’’ = (s3’’ + 1) cmp 0
| | use sc0’ ; sc0’ == < s3,s4 >
| |

PowerPC | INITIAL | INTERMEDIATE REPRESENTATION
ASSEMBLY CODE | INTERMEDIATE REPRESENTATION | AFTER ANNOTATION

(a) | (b) | (c)

Fig. 3. Example: PowerPC Destination registers are at left. A “.” after an op-
eration means set condition register 0 by comparing the result to 0

registers need to be available. If some output rX of a repair note A rX = r1 OP
r2 is required as input of another repair note B rZ = rX OP r3, this will extend
the live range of rX, and, because register live range equivalence is transitive, also
r1 and r2.

100 Michael Gschwind and Erik Altman

Consider the operation of this algorithm on the PowerPC code sequence in
Figure 3(a), and recall that excepting operations such as loads represent control
flow points for our purposes. The initial IR after SSA conversion for this code
is in Figure 3(b). The first operation (s4’ = s3 & s4) is dead after IR Op 4
(s4’’ = s3’ + s3’), so as shown in Figure 3(c), a use of s4′ is inserted and
s4′ ≡ 〈s3, s4〉 . IR Op 2 results from the fact that the PowerPC operation and.
sets condition register 0. The value in condition register 0 is dead at IR Op 8,
so we insert a use of sc0′ after Op 8, and sc0′ ≡ 〈s3, s4〉, as can be seen in
Figure 3(c). Finally, IR Op 5 is dead at IR Op 7, so we insert a use of s5′ after
Op 7, and s5′ ≡ 〈s3′〉, as can again be seen in Figure 3(c).

When this code is converted into the target assembly code, register allocation
will be performed on the symbolic registers and a register map table describing
how to reload physical registers from the translation to achieve the original
state [2]. For eliminated registers, this table will contain the names and formulae
of the symbolic registers. To reduce storage requirements, side tables may also
be dynamically recomputed when an exception occurs [15].

Note that this algorithm overly conservative because repair is not necessary
if no instruction can trigger a synchronous exception between the point of the
original instruction and the point where its result is killed. Also, repair needs
to be possible only up to the last instruction which can cause a synchronous
exception.

Thus, as shown in Figure 4, we can reformulate the algorithm to insert the
use operator to keep alive a value only to the last possible exception point. Dead
values whose live range does not span an exception point are not backstopped by
a ‘use’ node and will be deleted by a subsequent dead code elimination pass unless
they are needed to feed a repair note which may be evaluated to reconstruct the
precise exception state. This algorithm takes O(N2) time, where N is again the
number of instructions in a CFG.

As mentioned earlier, we assume that the CFG is an extended basic block
with a single entry point and multiple exits. Figure 5 illustrates a CFG for an
extended basic block with P = 5 paths. Each path in the CFG is traversed in a
depth-first manner, keeping track of (1) the last excepting operation on a path
and (2) the last instruction on a path to write each register, as depicted in our
final recursive algorithm in Figure 6.

To make this point clearer, consider the (extended basic block) CFG in Fig-
ure 5. Taking the leftmost path, P1, instruction 1 is first encountered. It writes
to register r4. A bit later on this path, instruction 3 can raise a synchronous
exception, as noted by the E. Finally at the end of this path, instruction 5 writes
to register r4, thus killing (on this path) the result computed by instruction 1.
If instruction 1 is dead on all paths, then the algorithm:

– Notes that instruction 3 — the last excepting op — represents a potential
use of r4.

– Saves the information needed to compute r4 if an exception does occur at
instruction 3.

– Converts the killed ins, instruction 1, to a repair note and deletes it.

Precise Exception Semantics in Dynamic Compilation 101

foreach operation OP
if dead (target (OP))

insert equivalence (target (OP) == sources (OP))
repair ever := FALSE;
for all paths p starting at OP

repair path := FALSE
for all operations I on path p

if operation I can cause synchronous exception
repair ever := TRUE;
repair path := TRUE;
last excepting op := I;

if operation I kills target (OP) && repair path
insert use (target (OP), last excepting op)
next path;

convert2repairnote (OP);

Fig. 4. Algorithm augmented so as to avoid repair notes if they are not needed

 Exception Causing Ins
= Synchronous

dfn

1
2

3

4

5

7
Instruction

8

11

6

9

12

10

P3

P4 P5

P2P1

E

E

E

r4=

r4=

r4=

r4=

E

Fig. 5. CFG for Extended Basic Block of code with single entry and multiple
exits

102 Michael Gschwind and Erik Altman

final (OP, prev writer, last excepting op)
{

if (!OP) { // Handle end of recursion
forall src {

first_use[src].op = NULL;
first_use[src].intervening_exception = NONE;

}
return first_use;

}

if operation OP can cause synchronous exception
last_excepting_op := OP;

curr_result_reg := target(OP)
killed_ins := prev_writer[curr_result_reg];
prev_writer[curr_result_reg] := OP;

if killed_ins != NONE {
if (dead (killed_ins)) {
// it is dead along all paths; computation can be removed totally
insert_equivalence (target(killed_ins) == sources(killed_ins))
convert2repairnote(killed_ins);
if (dfn [last_excepting_op] >= dfn[killed_ins]){

insert_use (target(killed_ins), last_excepting_op)
} else {

set_candidate_for_delete(killed_ins);
}

} else {
// instruction is live among some paths, but dead on current path
// candidate for code sinking (PRE), will be performed below

}
}

if ! branch (OP) {
first_use = final (OP->left, prev_writer, last_excepting_op)

} else {
first_use_left = final (OP->left, prev_writer, last_excepting_op)
first_use_right = final (OP->right, prev_writer, last_excepting_op)

// register-wise combination on control flow splits
first_use = combine (first_use_left, first_use_right)

}

// perform sinking if possible, inserting repair note if necessary
push_op_down(OP, first_use[curr_result_reg].op);
if (first_use[curr_result_reg].intervening_exception) {

insert_use (target(OP), first_use[curr_result_reg].intervening_exception)
insert_equivalence (target(OP) == sources(OP))
convert2repairnote(OP);

}

forall src in sources(OP){
first_use[src].op = OP;
first_use[src].intervening_exception = NONE;

}
if operation OP can cause synchronous exception

forall regnames defined in architecture
if first_use[src].intervening_exception == NONE

first_use[src].intervening_exception = OP;

return first_use;
}

Fig. 6. Final algorithm

Precise Exception Semantics in Dynamic Compilation 103

Similar actions occur on path P4. When instruction 4 is encountered, it writes
to register r4 and hence kills the result of instruction 1. However, no excepting
instructions have been encountered on this path, hence no repair note need be
added. Continuing down path P4, instruction 10 is noted as last excepting op.
At instruction 11, register r4 is written, thus killing the result computed at
instruction 7. If instruction 7 is dead on all paths, then 3 steps akin to those
above on path P1 are performed.

Note that the algorithm in Figure 6 uses dfn — a depth first numbering of
nodes — to determine whether an excepting operation has occurred between
an operation and its killer. This dfn represents the relative position of each
instruction on a path, and is monotonically increasing from the start to the end
of any path. For example, on path P1 in Figure 5, the instructions’ dfn’s are 1,
2, 3, 4, 5, while on path P4 they are 1, 2, 7, 9, 10, 11.

The algorithm described here uses recursive descent to visit each node in
the control flow graph in depth first order. The bottom half of this algorithm
performs code sinking (partial redundancy elimination) on the upward pass of
the recursive descent algorithm. Each node is visited twice (during the downward
and the upward pass), so we posit that the algorithm is O(N).

For each register name, the first use following the current op is maintained
in first_use. On control flow splits, data from both paths is combined. The
combine function propagates upward the first_use of the a register if it is
only used along a single path, or defines the control flow split as the first use
if the register is used along both paths. (Other types of combine operations are
possible, but lead to code duplication. This is a trade-off which could make good
use of profile data available in a dynamic compilation system.)

This algorithm can be further extended to consider register pressure when
making optimization decisions, since in some circumstances the optimization
technique presented here can extend two live ranges to eliminate one dead live-
range, thereby increasing register pressure and forcing the register allocator to
spill registers to memory.

1 { s4’ = s3 & s4 }
2 { sc0’ = (s3 & s4) cmp 0 }
3 s3’ = [s9]

use s4’ ; s4’ == < s3, s4 >
4 s4’’ = s3’ + s3’
5 { s5’ = s3’ + 80 }
6 s3’’ = [s10]

use s5’ ; s5’ == < s3’ >
use sc0’ ; sc0’ == < s3, s4 >

7 s5’’ = s3’’ + 1
8 sc0’’ = (s3’’ + 1) cmp 0

Fig. 7. Reduced Live Range of Repair

104 Michael Gschwind and Erik Altman

Applying the modified algorithm to the example, the live range of repair
notes is reduced as can be seen by comparing Figure 7 to Figure 3(c). However,
none are actually eliminated in this particular example.

4 Other Optimizations

The algorithm presented in the previous section can be adapted trivially to
schedule instructions later than their original schedule (code sinking). A repair
note is then inserted in the original instruction slot. Note that no special provi-
sions have to be made to preserve the input values of the repair note, since they
are also an input to the rescheduled instruction:

foreach operation op

if schedule below (op)

%% Deletes op and inserts as repair note.

convert2repairnote (op);

Unspeculation (partial redundancy elimination) can be handled by a combi-
nation of dead code elimination along paths where a computation is redundant,
and code sinking for those paths where the instruction is needed.

A similar approach can also be applied to other optimizations, such as con-
stant propagation, constant folding and commoning, where the original code
becomes dead and is treated as described in Section 3.

An approach based on repairing state can also be used to eliminate memory
operations if disambiguation is possible at dynamic compile time. However, this
is only possible in a uniprocessor context, as multiprocessor configurations may
introduce additional producers and consumers for memory values which cannot
be adequately analyzed.

When performing instruction scheduling during dynamic optimization, state
repair can also be used to achieve precise exceptions. We give a list scheduling
algorithm modified to incorporate state repair for achieving precise exception
semantics.

do {
ready_ins := initially_ready(CFG);
ins := select_ins(ready_ins);

if (ins can cause exception){
predecessors := predecessors (ins, CFG);
issue_repair_notes_from_list (predecessors);

}

ready_ins := ready_ins UNION successors(ins, CFG)
} until (ready_ins = EMPTY_SET)

Precise Exception Semantics in Dynamic Compilation 105

5 Repair Handler

Since repair notes are rarely evaluated (only on synchronous exceptions), no
actual code is generated. Instead, the repair notes are stored in compact form in
main memory, and interpreted by an interpretative evaluator on demand. Thus,
the cost of repair notes consists of time penalties when entering the exception
handler to interpret the repair notes associated with the current instruction
group, and the cost to store the repair notes and the interpretative evaluator for
the repair notes.

When a synchronous exception occurs, control first passes to the repair han-
dler. To compute the entire program state, the repair handler sequentially evalu-
ates all repair notes in a single forward sweep. Then, all registers are assigned to
their “home locations” (typically, the identity mapping) before control is trans-
ferred to the translation of the exception handler.

[Initially, all registers are assumed to

be in their home locations]

0x00 lwz R32, 0(R9) [r3 := R32]

0x04 add R3, R32, R32 [r4 := R3]

0x08 lwz R33, 0(R10) [r3 := R33]

0x0C addi R5,R33,1 [-unchanged-]

0x10 cmpi CR0,R5,0 [-unchanged-]

Fig. 8. Annotations mapping physical to architected registers

Consider again the previous code example, which may have been assembled
into the PowerPC code fragment in Figure 8. Because the algorithm did not
consider register pressure, the optimized code fragment requires more than the
original number of registers, leading to register numbers greater than R31. It
is desirable to utilize available registers if the target architecture has more reg-
isters than the source architecture, but could lead to performance degradation
otherwise, making consideration of register pressure an important aspect.

Register mappings are updated incrementally, and indicated after each as-
sembly instruction, as shown in Figure 8. Target architecture registers are indi-
cated by capitalized register names.

Figure 9 shows the repair notes stored for the code fragment in Figure 8. Note
that to reduce the number of bits necessary for storing the symbolic registers
associated with repair notes, their (separate) name space can also be allocated
using coloring, as is done in Figure 9.

106 Michael Gschwind and Erik Altman

S0 = R3 & R4

SC0 = (R3 & R4) cmp 0

0x00: [r4 := S0; cr0 := SC0]

S0 = R3 + 80

0x08: [r5 := S0; cr0 := SC0]

Fig. 9. Repair Notes

6 Results

To evaluate the performance potential of dead code elimination and code sink-
ing in dynamic optimization environments, we used the DAISY environment to
evaluate the optimization opportunity. This evaluation was performed for two
systems, IBM PowerPC and IBM System/390.

To gauge the performance opportunity, we applied the algorithm in Figure 6
to the DAISY group intermediate representation to determine the number of
intermediate operations that can be eliminated from the execution path. The
intermediate operations are defined as having a single destination and a variable
number of inputs. PowerPC and System/390 instructions requiring multiple des-
tinations were cracked into a sequence of simpler instructions.

Figure 10 shows the number of intermediate operations eliminated compared
to the case when optimization is retarded by conservative assumptions about
excepting instructions. This number of operations directly reflects the number
of primitive operations which must be executed on a VLIW platform (such as
BOA [10]). The number similarly reflects the number of simple micro-ops that
would be executed in a layered instruction set implementation of a superscalar.

The percentage of IR operations which can be eliminated in the benchmarks
presented have been computed for two different system operation points of the
DAISY dynamic compilation system. These correspond to aggressive and con-
servative ILP extraction policies, labelled (a) and (c) respectively for each of
the benchmarks in Figure 10.

For PowerPC code almost 5% of primitive operations are removed on average
in the aggressive case compared to only about 3% in the conservative case. For
reasons explained below, more primitive operations are removed for System/390
code: 12% and 10% on average respectively for the aggressive and conservative
cases.

The code which was analyzed here was compiled with high optimization levels
to mirror typical tuned SPEC code. Hence, any optimization opportunity found
here is over what any state-of-the-art offline compiler can achieve. In particular
for System/390, an additional improvement is achieved by eliminating the com-
putation of dead condition codes which are nearly always set as a byproduct of
System/390 arithmetic instructions. Since emulating condition codes of one ar-
chitecture on another often requires a long sequence of instructions, eliminating
these computations is particularly important for achieving good performance in
system emulation [10].

Precise Exception Semantics in Dynamic Compilation 107

% eliminated

0

5

10

15

20

25

a c a c a c a c a c a c a c a c a c

compress gcc go ijpeg li m88ksim perl tpcc vortex

% eliminated

0

5

10

15

20

25

a c a c a c a c a c a c a c

gcc go ijpeg li m88ksim perl system

Fig. 10. Dead code elimination opportunities for IBM PowerPC (top) and IBM
System/390 (bottom)

108 Michael Gschwind and Erik Altman

Differences between the aggressive and conservative ILP extraction policies
were the result of several factors: the thresholds used for determining when
groups are extended, the maximum allowable group size, and the infinite resource
ILP target [8]. Aggressive group formation policy generates larger instruction
groups in an effort to extract more ILP from the code. As expected, larger group
size did lead to more opportunity for dead code elimination, since all registers
must be considered live on group transitions.

7 Related Work

While early work on dynamic compilation was concerned mostly with reduc-
ing the overhead per translated instruction, the applicability of more aggressive
optimizations has become an issue in more recent work.

Special purpose optimizations for deferring the full materialization of condi-
tion codes have been performed in previous architecture emulation systems, such
as Wabi [13]. However, this type of deferred materialization has usually required
that all source values be copied to defined storage to be used for later materi-
alization. This required significantly more overhead than the present approach,
but was a significant performance improvement compared to full instantiation
of condition codes which usually requires quite complex operations to match the
semantics of the emulated architecture.

DAISY explores the use of aggressive ILP optimizations in dynamic binary
translation [7,6,11,8,1]. DAISY uses aggressive speculation, but performs in-
order commit operations to the emulated processor state to achieve precise ex-
ceptions. DAISY exploits the atomic nature of VLIW instructions in the target
architecture to perform dead code elimination in the scope of a single long in-
struction word.

The DYNAMO dynamic optimization system performs dynamic optimiza-
tion on HP-PA binaries, with the target being the HP-PA instruction set [4,3].
DYNAMO allows for aggressive optimizations, but uses program annotation or
a user-selectable conservative optimization mode to deal with binaries where
precise exception behavior is an issue.

The Transmeta binary translation system for Intel x86 code [14] and the BOA
system for IBM PowerPC code [10] use a hardware rollback/commit scheme to
ensure precise exception behavior. At the beginning of each translation, the entire
processor state is checkpointed at the entry of each translation group. When an
exception is raised, the entire processor state is rolled back to the translation
fragment entry state, and then the interpreter interprets instructions sequentially
to compute all processor state.

Le [15] and Altman et al. [2] show how a repair mechanism can be used to
reduce the cost of register allocation in binary translation.

Maintaining full program state for exception handling is related to the prob-
lem of presenting the full program state of optimized programs to debuggers. In
both cases, otherwise unused state which is not being computed by the optimized
program may be accessed [12].

Precise Exception Semantics in Dynamic Compilation 109

The constraints for a presenting program state in a debugger are different,
since it may be acceptable to devote more time to both the compilation and
state recovery process. On the other hand, an optimizing compiler must be able
to deal with a state query at arbitrary points, whereas a dynamic compilation
system is aware that such queries are by restricted to those points where an
instruction can raise a synchronous exception.

In fact, debuggers running under a dynamic compilation system present an
interesting mix of these dual requirements. In DAISY, we solve this by detecting
code modification or similar events (due to the setting of a breakpoint) and can
dynamically recompile the effected code.

8 Conclusion

Maintaining precise exceptions is an important aspect of achieving full compati-
bility with a legacy architecture. While asynchronous exceptions can be deferred
to an appropriate boundary in the code, synchronous exceptions must be taken
when they occur. This introduces uncertainty into the liveness analysis since
otherwise dead processor state may be exposed when an exception handler is
invoked. Previous systems either had to sacrifice full compatibility to achieve
more freedom to perform optimization, use less aggressive optimization or rely
on hardware support.

In this work, we have demonstrated how aggressive optimization can be used
in conjunction with dynamic compilation without the need for specialized hard-
ware. The approach is based on maintaining enough state to recompute the
processor state when an unpredicted event such as a synchronous exception may
make otherwise dead processor state visible. The transformations necessary to
preserve precise exception capability can be performed in linear time.

References

1. E. Altman and K. Ebcioğlu. Simulation and debugging of full system binary trans-
lation. In Proc. of the 13th International Conference on Parallel and Distributed
Computing Systems, pages 446–453, Las Vegas, NV, August 2000. 108

2. E. Altman, K. Ebcioğlu, M. Gschwind, and S. Sathaye. Efficient instruction
scheduling with precise exceptions. In preparation. 96, 100, 108

3. V. Bala, E. Duesterwald, and S. Banerjia. Dynamo: A transparent Dynamic Opti-
mization System. SIGPLAN PLDI, pages 1–12, June 18-21, 2000, Vancouver, BC,
June 2000. 95, 96, 108

4. V. Bala, E. Duesterwald, and S. Banerjia. Transparent dynamic optimization: The
design and implementation of Dynamo. Technical Report 99-78, HP Laboratories,
Cambridge, MA, June 1999. 95, 96, 108

5. H. Chung, S.-M. Moon, and K. Ebcioğlu. Using value locality on VLIW machines
through dynamic compilation. In Proc. of the 1999 Workshop on Binary Trans-
lation, IEEE Computer Society Technical Committee on Computer Architecture
Newsletter, pages 69–76, December 1999. 95

110 Michael Gschwind and Erik Altman

6. K. Ebcioğlu and E. Altman. DAISY: dynamic compilation for 100% architectural
compatibility. In Proc. of the 24th Annual International Symposium on Computer
Architecture, pages 26–37, Denver, CO, June 1997. ACM. 95, 108

7. K. Ebcioğlu and E. Altman. DAISY: dynamic compilation for 100% architectural
compatibility. Research Report RC20538, IBM T. J. Watson Research Center,
Yorktown Heights, NY, 1996. 95, 96, 108

8. K. Ebcioğlu, E. Altman, S. Sathaye, and M. Gschwind. Execution-based scheduling
for VLIW architectures. In Euro-Par ’99 Parallel Processing – 5th International
Euro-Par Conference, number 1685 in Lecture Notes in Computer Science, pages
1269–1280. Springer Verlag, Berlin, Germany, August 1999. 108

9. K. Ebcioğlu, R. Groves, K. Kim, and G. Silberman. VLIW compilation techniques
in a superscalar environment. In Proc. of the ACM SIGPLAN 1994 Conference
on Programming Language Design and Implementation, volume 29 of SIGPLAN
Notices, pages 36–48, Orlando, FL, June 1994. ACM. 95

10. M. Gschwind, E. Altman, S. Sathaye, P. Ledak, and D. Appenzeller. Dynamic and
transparent binary translation. IEEE Computer, 33(3):54–59, March 2000. 95,
106, 108

11. M. Gschwind, K. Ebcioğlu, E. Altman, and S. Sathaye. Binary translation and
architecture convergence issues for IBM System/390. In Proc. of the International
Conference on Supercomputing 2000, Santa Fe, NM, May 2000. ACM. 95, 98, 108

12. J. Hennessey. Symbolic Debugging of Optimized Code. ACM Transactions on
Programming Languages and Systems, July 1982, Volume 4, Issue 3, pages 323–
344, ACM Press. 108

13. P. Hohensee, M. Myszewski, and D. Reese. WABI CPU emulation. In Hot Chips
VIII, Palo Alto, CA, 1996. 108

14. E. Kelly, R. Cmelik, and M. Wing. Memory controller for a microprocessor for
detecting a failure of speculation on the physical nature of a component being
addressed. US Patent 5832205, November 1998. 108

15. B. Le. An out of order execution technique for runtime binary translators. In Proc.
of the Eighth International Conference on Architectural Support for Programming
Languages and Operating Systems, volume 33 of SIGPLAN Notices, pages 151–158,
San Jose, CA, 1998. ACM. 100, 108

16. S. Sathaye, P. Ledak, J. LeBlanc, S. Kosonocky, M. Gschwind, J. Fritts, Z. Filan,
A. Bright, D. Appenzeller, E. Altman, and C. Agricola. BOA: Targeting multi-
gigahertz with binary translation. In Proc. of the 1999 Workshop on Binary Trans-
lation, IEEE Computer Society Technical Committee on Computer Architecture
Newsletter, pages 2–11, December 1999. 95

	Precise Exception Semantics in Dynamic Compilation
	Introduction
	Basic Approach
	Algorithm for Dead Code Elimination
	Other Optimizations
	Repair Handler
	Results
	Related Work
	Conclusion
	References

