Skip to main content

Comparing Synchronous and Asynchronous Parallel and Distributed Genetic Programming Models

  • Conference paper
  • First Online:
Genetic Programming (EuroGP 2002)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2278))

Included in the following conference series:

  • 808 Accesses

Abstract

We present a study that analyses the respective advantages and disadvantages of the synchronous and asynchronous versions of island-based genetic programming and also a relationship between the number of subpopulations in parallel GP and the asynchronous model. We also look at a new measuring system for comparing parallel genetic programming with panmictic model. At the same time we show an interesting relationship between the bloat phenomenon and the number of individuals we use.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. D. Andre and J R. Koza. “Parallel Genetic Programming: A Scalable Implementation Using The Transputer Network Architecture”. P. Angeline and K. Kinear editors. Advances in Genetic Programming 2, Cambridge, MA, 1996.

    Google Scholar 

  2. E. Cantú-Paz and D. Goldberg: “Predicting Speedups of Ideal Bounding Cases of Parallel Genetic Algorithms”. Proceedings of the Seventh International Conference on Genetic Algorithms. Morgan Kaufmann. 1997.

    Google Scholar 

  3. A. Tetamanzi, M. Tomassini,“Soft Computing”. Springer Verlag, Heideberg, Germany 2001

    Google Scholar 

  4. W.F. Punch: “How effective are multiple populations in Genetic Programming”. Genetic Programming 1998: Proceedings of the Third Annual Conference, J. R. Koza, W. Banzhaf, K. Chellapilla, K. Deb, M. Dorigo, D. B. Fogel, M. Garzon, D. Goldberg, H. Iba and R. L. Riolo (Eds),Morgan Kaufmann, San Francisco, CA, pp. 308–313, 1998.

    Google Scholar 

  5. M. Tomassini, F. Fernández, L. Vanneschi, L. Bucher, “An MPI-Based Tool for Distributed Genetic Programming” In Proceedings of IEEE International Conference on Cluster Computing CLUSTER2000, IEEE Computer Society. pp.209–216. 2000.

    Google Scholar 

  6. F. Fernández, M. Tomassini, L Vanneschi, L. Bucher, “The GP’s Tool”. http://www-iis.unil.ch/gpi/tool.html

  7. J. R. Koza, F. H. Bennett III, D. Andre, M.A. Keane: “Genetic Programming III. Darwinian Invention and Problem Solving”. Morgan Kaufmann Publishers. San Francisco. 1999.

    MATH  Google Scholar 

  8. Ricardo Poli: “Evolution of graph-like programs with parallel distributed genetic programming”. In proceedings of the 7th International Conference on Genetic Algorithms, T. Bäck (ed.), Morgan Kaufmann, San Francisco, CA, 1997, pp. 346–353.

    Google Scholar 

  9. F. Fernández, “Parallel and Distributed Genetic Programming models, with application to logic syntesis on FPGAs”, PhD Thesis. Universidad de Extremadura, February 2001.

    Google Scholar 

  10. F. Fernández, M. Tomassini, L. Vanneschi: “Studying the influence of Communication Topology and Migration on Distributed Genetic Programming”, In J. Miler, M. Tomassini, P.L. Lanzi, C. Ryan, A. G.B. Tettamanzi, W. Landdon, LNCS 2038 Genetic Programming, 4th European Conference, EuroGP 2001. Pp 51.63

    Google Scholar 

  11. Enrique Alba, José M. Troya: “Analyzing synchronous and asynchronous parallel distributed genetic algorithms”. Future Generation Computer Systems 17 (2001) 451–465

    Article  MATH  Google Scholar 

  12. W. Langdon and R. Poli. “Fitness causes bloat”. In P.K. Chawdhry et. al., editors. Soft Computing in Engineering Design and Manufacturing, pp 13–22. Springer London, 1997.

    Google Scholar 

  13. J. R. Koza: “Genetic Programming. On the programming of computers by means of natural selection”. Cambridge MA: The MIT Press. 1992.

    MATH  Google Scholar 

  14. MPI Forum (1995) MPI: A Message-Passing Interface Standard. http://www.mpi-forum.org/index.htm.

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fernández, F., Galeano, G., Gómez, J. (2002). Comparing Synchronous and Asynchronous Parallel and Distributed Genetic Programming Models. In: Foster, J.A., Lutton, E., Miller, J., Ryan, C., Tettamanzi, A. (eds) Genetic Programming. EuroGP 2002. Lecture Notes in Computer Science, vol 2278. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45984-7_32

Download citation

  • DOI: https://doi.org/10.1007/3-540-45984-7_32

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43378-1

  • Online ISBN: 978-3-540-45984-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics