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Abstract. The main goal of this paper is to prove a Digital Jordan–
Brouwer Theorem and an Index Theorem for simplicity 26-surfaces. For
this, we follow the approach to Digital Topology introduced in [2], and
find a digital space such that the continuous analogue of each simplicity
26-surface is a combinatorial 2-manifold. Thus, the separation theorems
quoted above turn out to be an immediate consequence of the general
results obtained in [2] and [3] for arbitrary digital n-manifolds.
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Introduction

Several different notions of digital surface have been introduced on the grid ZZ3,
within the graph theoretical approach to Digital Topology, since Morgenthaler
and Rosenfeld [9] defined the (26, 6)- and (6, 26)-surfaces in 1981. Without going
into all the existing notions, let us recall the (α, β)-surfaces, for α, β ∈ {6, 18, 26}
and (α, β) �= (6, 6), defined by Kong and Roscoe [7], which extend the original
notion to other couples of adjacencies in ZZ3, and the strong n-surfaces, n ∈
{18, 26}, of Bertrand and Malgouyres [6], where the set of strong 26-surfaces
strictly contains all the (26, 6)-surfaces (see [4]). More recently, Couprie and
Bertrand [5] have introduced the notion of simplicity n-surface, for n ∈ {6, 26};
and they have also shown that any strong 26-surface is a simplicity 26-surface.

Usually, some kind of separation theorem is obtained in order to show that
these discrete objects are suitable digital counterparts to the notion of topological
surface in the Euclidean space IR3. For instance, in [7] and [6] it is shown that
a digital version of the Jordan–Brouwer Theorem holds for (α, β)-surfaces and
strong 26-surfaces, respectively. Moreover, Morgenthaler and Rosenfeld show in
[9] an Index Theorem for (26, 6)- and (6, 26)-surfaces. However, similar results for
simplicity 26-surfaces cannot yet be found in the literature. Our main goal in this
paper is to prove a digital Jordan–Brouwer Theorem and an Index Theorem for
these surfaces. These results have been found within the framework for Digital
Topology introduced in [1] and [2].
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A digital space, as defined in [2], is a pair (K, f) consisting of a polyhedral
complex K, which represents the spatial layout of pixels, and a lighting func-
tion f providing a “continuous interpretation” for each digital image in K. In
this approach, a quite natural notion of digital n-dimensional manifold arises for
which general digital versions of the Jordan–Brouwer and Index Theorems are
stated and proved in arbitrary dimension (see [2,3]). Moreover, (α, β)-surfaces
and strong 26-surfaces turn out to be digital 2-manifolds (digital surfaces) for
suitable digital spaces (R3, fαβ) and (R3, fBM ), respectively, defined on the stan-
dard cubical decomposition of the Euclidean space R3 (see [1,2]). This means,
in particular, that the proof of such separation theorems can be directly applied
to these kinds of surfaces. However, there does not exist a lighting function f
on the device model R3 such that every simplicity 26-surface is a digital surface
in the digital space (R3, f). For this reason, in this paper, we consider a weaker
version for one of the axioms defining lighting functions, in order to deal with
a larger class of digital spaces for which the proofs of the general separation
theorems quoted above still work. From these results, we derive in Section 3 a
Jordan–Brouwer Theorem and an Index Theorem for simplicity 26-surfaces as
follows. Firstly, we translate the notion of simplicity 26-surface into terms of the
device model R3 (see Section 2). Then we find, also in Section 3, a lighting func-
tion f ss on R3 satisfying the new weaker axiom, and we show that any simplicity
26-surface is a digital surface in the digital space (R3, f ss). The long proof of
this result is outlined in Section 4, while Section 1 introduces the basic notions
of the approach to Digital Topology in [1,2] that are needed in this paper.

It is worth pointing out that simplicity 26-surfaces are not the only digital
surfaces in the space (R3, f ss). At the present time, we do not know about the
existence of a digital space whose digital surfaces coincide with the class of
simplicity 26-surfaces. This will be the subject of a future work. On the other
hand, the class of simplicity 6-surfaces is the class of digital surfaces in the
digital space (R3, f6,26) given in [1]. This is a consequence of the fact that the
former class coincides with Morgenthaler and Rosenfeld’s (6, 26)-surfaces ([5]),
and these are exactly the digital surfaces in (R3, f6,26) (see [1]).

1 Our Approach to Digital Topology

The main purpose of Digital Topology is to study the topological properties
of digital images. Digital images are discrete objects in nature, but they usu-
ally represent continuous objects or, at least, they are perceived as continuous
objects. In our approach to Digital Topology [1], [2] we propose a multilevel
architecture to represent, using different levels, each digital object together with
the continuous perception that an observer may have of it, that we call its con-
tinuous analogue. In addition, several other intermediate levels allow us to relate
the properties of digital objects with the corresponding properties of their con-
tinuous analogues. However, for simplicity, we introduce in this section only the
levels of this architecture that are explicitly used in this paper.
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The first level, called device model , is a homogeneously n-dimensional locally
finite polyhedral complex K, which is used to represent the spatial layout of
space elements (xels for short). Each n-cell in a device model K represents a xel,
and so the digital object displayed in an image is a subset of the set celln(K) of
n-cells inK; while the other lower dimensional cells inK are used to describe how
the xels could be linked to each other. In addition, the selection of a continuous
analogue for each digital object in a device model K is determined by a lighting
function f defined on K. So, a digital space is a pair (K, f); that is, a device
model K together with a “continuous interpretation” for each digital object in
K. Next we describe these two notions in detail.

By a homegeneously n-dimensional locally finite polyhedral complex we mean
a set K of polytopes, in some Euclidean space IRd, provided with the natural
ordering given by the relationship “to be face of”, that in addition satisfies the
four following properties:

1. If σ ∈ K and τ is a face of σ then τ ∈ K.
2. If σ, τ ∈ K then σ ∩ τ ∈ K is a face of both σ and τ .
3. For each point x in the underlying polyhedron |K | = ∪{σ;σ ∈ K} of K,

there exists a neighbourhood of x which intersects only a finite number of
polytopes in K; in particular, each polytope of K is a face of a finite number
of other polytopes in K.

4. Each polytope σ ∈ K is a face of some n-dimensional polytope in K.

These complexes are particular cases of cellular complexes, as they are usually
defined in polyhedral topology. So, in this paper, polytopes in K will be simply
referred to as cells, and K itself will be called a polyhedral complex. The next
paragraph recalls some elementary notions from polyhedral topology used in this
paper. We refer to [10] for further notions on this subject.

Given a polyhedral complex K and two cells γ, σ ∈ K, we shall write γ ≤ σ
if γ is a face of σ, and γ < σ if in addition γ �= σ. A centroid-map on K is a map
c : K → |K | such that c(σ) belongs to the interior of σ; that is, c(σ) ∈ ◦σ= σ−∂σ,
where ∂σ = ∪{γ; γ < σ} stands for the boundary of σ.

Remark 1. The device model Rn, called the standard cubical decomposition of
the Euclidean n-space IRn, is the complex determined by the collection of unit
n-cubes in IRn whose edges are parallel to the coordinate axes and whose centers
are in the set ZZn. The centroid-map we will consider in Rn associates each cube
σ with its barycentre c(σ), which is a point in the set Zn. Here, Z = 1

2ZZ stands
for the set of points {z ∈ IR; z = y/2, y ∈ ZZ}. In particular, if dimσ = n then
c(σ) ∈ ZZn, where dimσ denotes the dimension of σ; and, thus, every digital
object O in Rn can be identified with a subset of points in ZZn.

Before proceeding with the definition of lighting function, we need to intro-
duce the following notions.

The first two notions formalize two types of “digital neighbourhoods” of a
cell α ∈ K in a given digital object O ⊆ celln(K). Indeed, the star of α in O
is the set stn(α;O) = {σ ∈ O;α ≤ σ} of n-cells (xels) in O having α as a face.
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Similarly, the extended star of α in O is the set st∗n(α;O) = {σ ∈ O;α∩σ �= ∅} of
n-cells (xels) in O intersecting α. Finally, the support of a digital object O is the
set supp(O) of cells of K (not necessarily xels) that are the intersection of n-cells
(xels) in O. Namely, α ∈ supp(O) if and only if α = ∩{σ;σ ∈ stn(α;O)}. Notice
that O ⊆ supp(O) for any digital object O, and the elements in supp(O)−O are
the lower dimensional cells of K that directly connect at least two xels in O.

For ease of writing, we use the following notation: supp(K) = supp(celln(K)),
stn(α;K) = stn(α; celln(K)) and st∗n(α;K) = st∗n(α; celln(K)). Finally, we shall
write P(A) for the family of all subsets of a given set A.

Definition 1. Given a device model K, a lighting function on K is a map
f : P(celln(K)) × K → {0, 1} satisfying the following five axioms for all O ∈
P(celln(K)) and α ∈ K:

1. object axiom: if dimα = dimK, then f(O,α) = 1 if and only if α ∈ O;
2. support axiom: if α /∈ supp(O) then f(O,α) = 0;
3. monotone axiom: f(O,α) ≤ f(celln(K), α);
4. local axiom: f(O,α) = f(st∗n(α;O), α); and,
5. complement connectivity axiom: if O′ ⊆ O ⊆ celln(K) and α ∈ K are such

that stn(α;O) = stn(α;O′), f(O′, α) = 0 and f(O,α) = 1, then: (a) the set
of cells α(O′;O) = {ω < α; f(O′, ω) = 0, f(O,ω) = 1} is not empty; and,
(b) the set ∪{ ◦ω;ω ∈ α(O′;O)} is connected in ∂α.

If f(O,α) = 1 we say that f lights the cell α for the object O.

As quoted above, the lighting function f provides a continuous interpretation
for each digital object in a digital space (K, f), which is represented by an
Euclidean polyhedron in the fifth level of our architecture. To introduce these
polyhedra we use an arbitrary but fixed centroid–map c : K → |K | on the device
model K.

Definition 2. Let O ⊆ celln(K) be a digital object in the digital space (K, f).
The continuous analogue of O is the underlying polyhedron |AO | of the simplicial
complex AO, whose k-simplexes are 〈c(α0), c(α1), . . . , c(αk)〉 where α0 < α1 <
· · · < αk are cells in K such that f(O,αi) = 1, for 0 ≤ i ≤ k. The complex AO
is called the simplicial analogue of O.

Since continuous analogues represent the continuous interpretation that an
observer makes of digital objects, our architecture allows us to introduce digital
notions in terms of the corresponding continuous ones. For example, we will say
that an object O is connected if its continuous analogue |AO | is a connected
polyhedron. Similarly, if we consider the set of xels celln(K) − O as the com-
plement of the digital object O, we say that celln(K) − O is connected if the
complement of the object’s continuous analogue |Acelln(K) |−|AO | is a connected
topological space. And, an object O is also naturally called a m-dimensional dig-
ital manifold if |AO | is a combinatorial m-manifold without boundary; that is,
we call O a digital surface (2-manifold) if it looks like a surface. However, doing
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this, the problem of characterizing these notions in digital terms arises (see [2]
for connectivity, and [1],[2] for digital surfaces).

But, even more interesting than the definition of new digital notions is the
possibility of translating results from polyhedral topology, through the levels of
this architecture, in order to obtain general results in Digital Topology. Two
examples of this powerful technique are the Digital Jordan–Brouwer and Index
Theorems for arbitrary m-manifolds proved in [2] and [3], respectively, which
generalize the well–known result of Morgenthaler and Rosenfeld ([9]) to all types
of (α, β)-surfaces ([7]) and to the strong 26-surfaces ([6]). At this point, it is worth
pointing out that, sometimes, the continuous result can be translated into digital
terms directly, as was the case of the Digital Jordan–Brouwer Theorem; but, in
general, some previous work must be done at the continuous level to adapt the
continuous result before the translation can be carried out.

In this paper we consider, however, a class of digital spaces larger than the
class for which these separation theorems were proved in [2] and [3]. The lighting
functions defining this restricted class of spaces satisfy, in addition to the five
axioms in Definition 1, the following condition

Subspace condition: Let O′ ⊆ O ⊆ celln(K) be two digital objects
and α ∈ K a cell such that stn(α;O) = stn(α;O′), f(O′, α) = 0
and f(O,α) = 1. Then, if O ⊆ O ⊆ celln(K), f(O, β) = 1 for every
β ∈ α(O′;O).

This is a sufficient condition to ensure that each digital object O in a digital space
(K, f) induces a digital subspace (K(O), fO), where K(O) = {α ∈ K;α ≤ σ ∈
O} is the subcomplex of K induced by the cells in O and the lighting function
fO is defined by fO(O′, α) = f(O,α)f(O′, α) for every O′ ⊆ O and α ∈ K(O).
It is not difficult to observe that the proofs given in [2] and [3] do not make use
of this additional condition anywhere; and, thus, the Jordan–Brouwer and Index
Theorems hold for the extended class of digital spaces considered in this paper.

2 About Simplicity 26-Surfaces

Couprie and Bertrand [5] define a simplicity 26-surface as a “thin” subset of
ZZ3 such that a certain neighbourhood of each one of its points constitutes a
simple closed curve under the structure of a particular graph, which is defined
using the notions of homotopy and simple point. In the same paper [5], two local
characterizations of simplicity 26-surfaces are provided. One of them states that
any simplicity 26-surface can be obtained by concatenating a certain family of
patterns according to a number of rules; in particular, the patterns around each
point must define a cycle. In this paper we will use this characterization as the
definition of simplicity 26-surfaces.

Before introducing this definition of simplicity 26-surfaces in terms of digital
objects in the device model R3, we firstly recall, in this language, some basic
notions of the graph–theoretical approach to Digital Topology. For this, we use
the identification between the sets ZZ3 and cell3(R3) given in Remark 1.
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Given a xel σ ∈ cell3(R3) we consider the following three neighbour-
hoods ([8]): N26(σ) = {τ ∈ cell3(R3);σ∩ τ �= ∅}, N18(σ) = {τ ∈ N26(σ); dimσ∩
τ ≥ 1} ∪ {σ}, and N6(σ) = {τ ∈ N26(σ); dimσ ∩ τ = 2} ∪ {σ}. Notice that
N26(σ) = st∗3(σ;R

3). Two xels σ, τ ∈ cell3(R3) are said to be n-adjacent if
τ ∈ N∗n(σ) = Nn(σ) \ {σ}, where n ∈ {6, 18, 26}. Given a digital object
O ⊆ cell3(R3) and two xels σ, τ ∈ O, a n-path in O from σ to τ is a sequence
(σi)ki=0 ⊆ O such that σ0 = σ, σk = τ , and σi−1 is n-adjacent to σi, for 1 ≤ i ≤ k.
Notice that n-paths define an equivalence relation in the object O, whose classes
are called the n-components of O. Finally, a digital object O ⊆ cell3(R3) is said
to be n-connected if it consists of only one n-component.

Next, we introduce the family of patterns defining simplicity 26-surfaces. For
this we need the following

Definition 3. Let O ⊆ cell3(R3) be a digital object. A vertex α ∈ R3 is said to be
maximal with respect to O if st3(α;O) �= ∅ and, in addition, st3(α;O) = st3(β;O)
for any other vertex β ∈ R3 such that st3(α;O) ⊆ st3(β;O). If α is maximal
with respect to O, we say that st3(α;O) is a maximal trace (or simply a trace)
of O.

Given a digital object O ⊆ cell3(R3), the set of traces of O will be denoted
by Tr(O), while Tr(σ,O) will stand for the traces of O containing a given xel
σ ∈ O.

Couprie and Bertrand define in [5] a graph on the set of traces of a given
digital object as follows.

Definition 4 (Def. 16 in [5]). Let O ⊆ cell3(R3) be a digital object. The
vertices of the graph GTr(O) are the traces of O, and two distinct traces t1, t2 ∈
Tr(O) are adjacent in GTr(O) if the intersection t1 ∩ t2 consists of exactly two
elements.

Remark 2 (Lemma 15 in [5]). The traces of an arbitrary digital object O may
correspond (up to rotations and symmetries) to 21 different patterns. However,
only the eight patterns from the set A26 = {a1, . . . , a8} depicted in Fig. 1 may
appear in a simplicity 26-surface.

Definition 5 (Th. 17 in [5]). A 26-connected digital object S ⊆ cell3(R3) is
said to be a simplicity 26-surface if the following conditions are satisfied for any
xel σ ∈ S:

1. T26(σ, S) = 1 and T6(σ, cell3(R3)− S) = 2.
2. Every trace of S corresponds (up to rotations and symmetries) to an element

of the set A26.
3. σ is the only xel in S belonging to all of the traces of Tr(σ, S); that is,
σ = ∩{t; t ∈ Tr(σ, S)}.

4. For any two distinct traces t1, t2 ∈ Tr(σ, S), t1∩t2 has at most two elements.
5. The set of traces Tr(σ, S) constitutes a simple closed curve in the graph

GTr(O); that is, for each trace t ∈ Tr(σ,O) there exist exactly two other
traces t1, t2 ∈ Tr(σ,O) which are adjacent to t in the graph GTr(σ,O).
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a1 a2 a3 a4

a5 a6 a7 a8

Fig. 1. The eight patterns defining simplicity 26-surfaces.

3 Main Results

As was quoted above, our main goal in this paper is to state and prove a Jordan–
Brouwer Theorem and an Index Theorem for simplicity 26-surfaces. For this
purpose, we firstly find a digital space in which the continuous analogue of each
simplicity 26-surface is a combinatorial surface. This space is defined on the
device model R3, the standard cubical decomposition of the Euclidean 3-space
IR3, by the lighting function f ss, which is given by f ss(O,α) = 1 if and only
if: (a) dimα = 3 and α ∈ O; (b) dimα = 2 and α ∈ supp(O); (c) dimα = 0,
α ∈ supp(O) but st3(α;O) does not correspond to the pattern a7 in Fig. 1; and
(d) dimα = 1 and one of the two following conditions holds:

(d1) st3(α;R3) ⊆ O
(d2) st3(α;O) = {σ1, σ2}, with α = σ1 ∩ σ2, and the two vertices β1 and β2 of

α are both maximal with respect to O.

Next we give several immediate properties of the digital space (R3, f ss)
needed in the sequel.

Remark 3. 1) For any cell α ∈ R3, f ss(cell3(R3), α) = 1. So that, the continuous
analogue of the digital object cell3(R3) consisting of all the xels in (R3, f ss) is
|Acell3(R3) | = IR3 the Euclidean 3-space.

2) The digital space (R3, f ss) is solid; that is, f ss(O,α) = 1 for any cell
α ∈ R3 and any digital object O ⊆ cell3(R3) such that st3(α;R3) ⊆ O.

3) The digital space (R3, f ss) is strongly local at dimensions 0, 2 and 3; that
is, if dimα ∈ {0, 2, 3} then f ss(O,α) = f ss(st3(α;O), α) for any object O.

Now we are ready to state our basic result, whose long and quite technical
proof is outlined in Section 4.

Theorem 1. Every simplicity 26-surface is a digital surface in the digital space
(R3, f ss); that is, the continuous analogue |AS | of any simplicity 26-surface S
is a combinatorial surface.
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Fig. 2. A digital surface in (R3, f ss) which is not a simplicity 26-surface.

Remark 4. Simplicity 26-surfaces are not the only digital surfaces in the digital
space (R3, f ss). For example, it is easy to check that the digital object S depicted
in Fig. 2 is a digital surface. However, it is not a simplicity 26-surface since any
two traces in S corresponding to the pattern a7 meet in three xels.

Both the Jordan–Brouwer Theorem and the Index Theorem are related to the
connectivity of the complement of digital objects; so that, we need to determine
the connectivity associated to the digital space (R3, f ss). This is done in the next
result, whose proof is straightforward from the definition of the lighting function
f ss and the characterization of the connectivity of an object and its complement
given in [2, Theorem 4.2] (see also [1]).

Proposition 1. Let O be a digital object in (R3, f ss). Then

1. a susbset C ⊆ O is a 26-component of O if and only if C = {σ ∈ O; c(σ) ∈
X} for some component X of the continuous analogue |AO | of O; and

2. a susbset D ⊆ cell3(R3) − O is a 6-component of cell3(R3) − O if and only
if D = {σ ∈ O; c(σ) ∈ Y } for some component Y of the complement IR3 −
|AO | = |Acell3(R3) | − |AO | of the continuous analogue of O.

As quoted in Section 1, the Digital Jordan–Brouwer and Index Theorems were
originally proved in [2, Theorem 5.3] and [3, Theorem 3.16], respectively, for the
class of digital spaces satisfying the subspace condition. However, these proofs do
not make use of such condition. Thus, to reach our goal, it will suffice to check
that the hypotheses of these general separation theorems are satisfied in the dig-
ital space (R3, f ss), which is actually done in Remarks 3(1) and (2). In this way,
the Jordan–Brouwer Theorem for simplicity 26-surfaces follows from the next re-
sult, which is an immediate consequence of Proposition 1 and Theorem 5.3 in [2].

Theorem 2 (Jordan–Brouwer Theorem). Let S be a 26-connected digi-
tal surface in (R3, f ss). Then, its complement cell3(R3) − S consists of two 6-
components. Moreover, if S is finite then one of the 6-components of cell3(R3)−S
is also finite.
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To state the Index Theorem for simplicity 26-surfaces we need the following
additional notions (see [3] for details).

Let σ ∈ cell3(R3) be a xel with centroid c(σ) = (x1, x2, x3) ∈ ZZ3. We call the
object Hσ = {τ ∈ cell3(R3); c(τ) = (x1, x2, λ) ∈ ZZ3, λ ≥ x3} a digital half–line
starting at σ. Given a finite digital surface S in (R3, f ss) such that σ /∈ S, the
26-components of Hσ ∩ S turn out to be finite digital segments; and thus, we
can consider the predecessor πC and the successor σC of C in Hσ. Then, we say
that the half-line Hσ meets S transversally at C if πC and σC lie in the same
6-component of the object ∪σ∈CN26(σ)− S.

Now, Proposition 1 and Theorem 3.16 in [3] yield the following result.

Theorem 3 (Index Theorem). Let S be a finite digital surface in (R3, f ss).
A xel σ /∈ S belongs to the finite 6-component of the complement of S if and only
if the half-line Hσ meets S transversally an odd number of times.

4 An Outline of the Proof of Theorem 1

Our goal in this Section is to prove that, for any simplicity 26-surface S, the
continuous analogue |AS | in the digital space (R3, f ss) is a combinatorial surface.
For this we will find a suitable cellular decomposition of the polyhedron |AS |.

By a (principal) cellular decomposition of a polyhedron P we mean a triple
C = (F , E ,P) of families of faces (2-balls), edges (1-balls) and points (0-balls),
respectively, satisfying the following properties:
1. for any two distinct faces f1, f2 ∈ F , their intersection f1 ∩ f2 is a ball in
E ∪ P or it is the empty set;

2. for any two distinct edges e1, e2 ∈ E , the intersection e1 ∩ e2 is a point in P
or it is empty;

3. the polyhedron P is the union of all balls in F ∪ E ∪ P; and,
4. each point p ∈ P is contained in some edge e ∈ E ; and, similarly, each edge
e ∈ E is contained in some face f ∈ F .

A polyhedron P is said to be a combinatorial surface if it has a cellular decom-
position C = (F , E ,P) for which the two following additional conditions holds:

5. every edge e ∈ E is included in exactly two faces; and,
6. for every point p ∈ P, the union ∪{f ∈ F ; p ⊆ f} is a 2-ball.

We claim that, for any simplicity 26-surface, there exists a cellular decom-
position CS = (FS , ES ,PS) of its continuous analogue |AS | satisfying the five
properties above. The triple CS is defined as follows:
– the faces in FS are the polyhedra fα = |AS | ∩ |Ast3(α;R3) |, where α ranges
over the set of vertices of R3 which are maximal with respect to S;

– the edges in ES are the intersections eαβ = fα ∩ fβ , where fα, fβ are two
distinct faces in FS such that the traces st3(α;S) and st3(β;S) share exactly
two xels of S; and, finally,

– the family PS of points is the set of centroids c(σ) where σ ∈ S.
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f1 f2 f3 f4

f5 f6 f7 f8

Fig. 3. The eight faces of the cellular decomposition of |AS |. The bold segments are
the edges in ES contained in these faces.

In the rest of this Section we give an outline of the long and rather technical
proof of our claim. The first step is to determine the shape of the faces in the
set FS , which is done in the following result.

Proposition 2. Let S be a simplicity 26-surface in (R3, f ss) and α ∈ R3 a
maximal vertex with respect to S. If the trace st3(α;S) corresponds to the pattern
ai (1 ≤ i ≤ 8) in Fig. 1, then the face fα = |AS |∩|Ast3(α;R3) | is (up to rotations
and symmetries) the 2-ball fi depicted in Fig. 3.

The proof of Proposition 2 makes use of the fact that the simplicial analogues
AS and Ast3(α;R3) are both full subcomplexes of the first derived subdivision of
the device model R3, which is determined by the centroid–map c : R3 → |R3 |
that associates each cell γ ∈ R3 with its barycentre (see Remark 1). Moreover,
the vertices of Ast3(α;R3) are the centroids c(γ) of all cells γ ∈ R3 having α
as a face. Thus, the 2-ball fα is determined by the set of cells {γ ∈ R3;α ≤
γ and f ss(S, γ) = 1}. To characterize this set we distinguish two cases: dim γ ∈
{0, 2, 3} and dim γ = 1.

The following result, which is almost immediate from Remark 3(3), states
that, in the first case, the cell γ is lighted for the simplicity 26-surface S if and
only if it is lighted for the trace determined by α.

Proposition 3. Let S be a simplicity 26-surfaces and α ∈ R3 a maximal
vertex with respect to S. If α ≤ γ and dim γ ∈ {0, 2, 3}, then f ss(S, γ) =
f ss(st3(α;S), γ).

If dim γ = 1, it suffices, by the definition of the lighting function f ss, to
analyze the case st3(γ;S) = {τ1, τ2} with γ = τ1 ∩ τ2. For this, we use the
pattern corresponding to the trace st3(α;S) to consider two subcases, which are
summarized in the next result.
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Proposition 4. Let S be a simplicity 26-surfaces and α ∈ R3 a maximal vertex
with respect to S such that the trace st3(α;S) does not correspond to the pattern
a8 in Fig. 1. Then, f ss(S, γ) = 1 for any 1-cell α ≤ γ such that st3(γ;S) =
{τ1, τ2} with γ = σ∩τ . On the other hand, if the trace st3(α;S) = {σ, σ1, σ2, σ3}
corresponds to the pattern a8, then exactly one of the three 1-cells γσi = σ ∩ σi,
i = 1, 2, 3, is not lighted for S.

Now, it is not difficult to show Proposition 2 from Propositions 3 and 4.
Moreover, we derive from the definition of the family ES that the edges eαβ are
the bold segments in Fig. 3. Here, the only tricky point occurs when the trace
t = st3(α;S) corresponds to the pattern a7. But, in this case is possible to show
that t is the only trace of S containing the pair {σ, τ}, where the points c(σ) and
c(τ) are the extremities of the segment shared by the two squares in the 2-ball
f7; and, thus, such a segment is not an edge in ES by definition.

This shows that FS , ES and PS are families of 2-balls, 1-balls and 0-balls,
respectively. To prove that CS = (FS , ES ,PS) is a cellular decomposition we start
with Property (4). This property follows from the next technical result since a
xel σ ∈ cell3(R3) belongs to S if and only if σ ∈ supp(S).

Proposition 5. Let O be a digital object in the device model R3 and γ ∈ R3 a
cell in supp(O). Then, at least one of the vertices α ≤ γ is maximal with respect
to O.

By Property (4) it suffices to check that |AS | ⊆ ∪{fα; fα ∈ FS} to obtain
Property (3); and this can be also straightforwardly proved from Proposition 5.
For the proof of Property (1), let fα, fβ ∈ FS be two distinct faces such that
fα ∩ fβ �= ∅. By condition (4) in Definition 5 the traces st3(α;S) and st3(β;S)
share at most two xels of S; and, thus, Property (1) follows by the definition
of the family of edges ES . And, if eα1β1 = fα1 ∩ fβ1 and eα2β2 = fα2 ∩ fβ2 are
two distinct edges, the set {fα1 , fβ1 , fα2 , fβ2} contains at least three different
elements; and, then, condition (3) in Definition 5 yields Property (2).

Finally, from conditions (4) and (5) in Definition 5 is not difficult to show
that the cellular decomposition CS satisfy also Properties (5) and (6), and thus
|AS | is a combinatorial manifold.
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