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Abstract. One method of verifying that a given parallel thinning
algorithm “preserves topology” is to show that no iteration ever deletes
a minimal non-simple (“MNS”) set of 1’s. The practicality of this
method depends on the fact that few types of set can be MNS without
being a component. The problem of finding all such types of set has
been solved (by Ronse, Hall, Ma, and the authors) for 2D and 3D
Cartesian grids, and for 2D hexagonal and 3D face-centered cubic grids.
Here we solve this problem for a 4D Cartesian grid, in the case where
80-adjacency is used on 1’s and 8-adjacency on 0’s.

Keywords. 4D xel, attachment, minimal non-simple, MNS, parallel
thinning.

1 Introduction

Loosely speaking, a set of 1’s in a binary image is said to be simple if parallel
deletion of those 1’s “preserves topology”. A non-simple set of 1’s must contain
a minimal non-simple (MNS) set. So one way to prove that a given parallel
thinning algorithm always “preserves topology” is to show that no iteration of
that algorithm can ever delete an MNS set of 1’s.

The practicality of this method depends on the fact that there are few types
of possible MNS sets, and even fewer types of sets that can be MNS without
being components of the 1’s. (Here we consider two sets of grid points to be of
the same type if one set is a translate of the other.)

The problem of identifying all such types of sets has been solved for 2D
and 3D Cartesian grids, and for 2D hexagonal and 3D face-centered cubic grids.
Ronse [1] introduced the concept of an MNS set (called an MND set in [1]), and
solved the problem for a 2D Cartesian grid with (8,4) or (4,8) connectedness.
Hall [2] solved the problem for a 2D hexagonal grid with (6,6) connectedness.
Ma [3] solved the problem for a 3D Cartesian grid with (26,6), (6,26), (18,6), or
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(6,18) connectedness. The authors [4] solved the problem for a 3D face-centered
cubic grid with (18,12), (12,12), or (12,18) connectedness.

In this paper we solve the problem for a 4D Cartesian grid with (80,8) con-
nectedness: We determine which sets of grid points can be MNS, and also de-
termine which of those sets can be MNS without being a component of the 1’s.
This gives a method of verifying that a given 4D parallel thinning algorithm
always “preserves topology”. Such algorithms might be of use in temporal image
analysis, in which a time sequence of 3D images is represented as a 4D image.

As in [4] and [5], we do not work directly with grid points, but prefer to think
in terms of their Voronoi neighborhoods. For a 4D Cartesian grid the Voronoi
neighborhoods of grid points are “upright” 4-dimensional hypercubes. We will
call such a hypercube a 4-xel. Assuming without loss of generality that the grid
points have coordinates of the form (i1+0.5, i2+0.5, i3+0.5, i4+0.5) where the
i’s are integers, the vertices of a 4-xel have integer coordinates and the edges of
a 4-xel have length 1.

We identify each binary image on a 4D Cartesian grid with the set of all
4-xels that are centered at the grid points which have value 1 in the image. This
allows us to define a binary image simply as a finite set of 4-xels. The concepts
of a simple 1 and a simple set of 1’s will be made precise by the concepts of a
simple 4-xel and a simple set of 4-xels (in a binary image).

We will use the same general approach to MNS sets as was used in [4] and
[5]. Our work will be based on a characterization of simple 4-xels in terms of
their attachment sets that was given in [6]. The attachment set of a 4-xel in a
binary image is the subset of the boundary of the 4-xel that is shared with other
4-xels in the image.

2 n-Xels, 4D Binary Images, Xel-Complexes

An elementary 0-cell is a singleton set {i}, where i is an integer. An elementary
1-cell is a closed unit interval [i, i+1] of the real line, where i is an integer. A 4-
xel is a Cartesian product of 4 elementary 1-cells. More generally, for 0 ≤ n ≤ 4
an n-xel is a Cartesian product of n elementary 1-cells and 4 − n elementary
0-cells, in some order. If q is an n-xel for some n, then we say q is a xel. A 0-xel
will also be called a vertex and a 1-xel will also be called an edge. A 4D binary
image is a finite set of 4-xels.

An n-xel is the trajectory of an (n−1)-xel as it moves one unit in the positive
or negative direction of the coordinate axis that is perpendicular to the (n− 1)-
xel. This is illustrated in Figure 1. The reader may sometimes find it helpful to
think of 4-xels as trajectories of 3-xels that move through a unit of time.

If a xel y is a proper subset of a xel x, then we say y is a proper face of x, and
write y < x. A xel x is a Cartesian product of elementary 1-cells and elementary
0-cells, and each proper face of x can be obtained from the product by replacing
one or more of its elementary 1-cells [i, i+1] with {i} or {i+1}. A set K of xels
is called a xel-complex if K is finite and, for every xel x ∈ K, every proper face
of x is also in K. If y < x is a k-xel then we say y is a k-face of x.
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Fig. 1. An n-xel can be viewed as the trajectory of a moving (n− 1)-xel.

Each 4-xel intersects just 80 other 4-xels, and shares a 3-face with just 8 other
4-xels. Accordingly, two 4-xels are said to be 80-adjacent if they are distinct but
intersect, and are said to be 8-adjacent if their intersection is a 3-xel.

For any set S of 4-xels, and κ = 80 or 8, two 4-xels q1, q2 ∈ S are said to be
κ-connected in S if they are related by the reflexive transitive closure of the κ-
adjacency relation on S. This is an equivalence relation on S, and its equivalence
classes are called the κ-components of S.

3 Simple 4-Xels and Attachment Sets of 4-Xels

A 4-xel in a 4D binary image I is said to be simple in I if (loosely speaking) its
deletion “preserves topology”. More precisely, if I is a 4D binary image we say
that a 4-xel q ∈ I is simple if the polyhedron

⋃
(I \ {q}) is a strong deformation

retract of the polyhedron
⋃
I. In other words, q is simple if and only if the union

of the 4-xels in I can be continuously deformed over itself onto the union of the
4-xels in I \ {q}, in such a way that all points in

⋃
(I \ {q}) at the start remain

fixed throughout the deformation process.
This definition of simpleness in terms of the polyhedra

⋃
I and

⋃
(I \ {q}) is

consistent with the use of 80-connectedness as the definition of connectedness on
the 4-xels in I and the use of 8-connectedness as the definition of connectedness
on the 4-xels in the complement of I. Indeed, two 4-xels belong to the same
80-component of I if and only if they lie in the same connected component of⋃
I, and they belong to the same 8-component of the 4-xels in the complement

of I if and only if their interiors lie in the same connected component of R4 \⋃ I.
Our definition of simpleness has the advantage of being independent of di-

mensionality and of the shapes of xels. (For example, the same definition of
simpleness could be used in 3D binary images on a face-centered cubic grid,
except that instead of 4-xels we would have dodecahedral rhomboids belonging
to a tessellation of 3-space by congruent dodecahedral rhomboids. In fact our
definition of simpleness would be appropriate even in 5- and higher-dimensional
binary images.) The definition involves continuous deformation, but Theorems 1
and 2 below give essentially discrete sets of necessary and sufficient conditions
for q to be simple in I.
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These two theorems depend on the concept of the attachment complex of a
4-xel q in I, which is denoted by Attach(q, I) and is defined by

Attach(q, I) = {f | f < q and f < y for some y ∈ I − {q}}

The closed polyhedral set
⋃
Attach(q, I) is called the attachment set of q in I.

This set is also given by
⋃
Attach(q, I) = q ∩⋃(I \ {q}). The boundary complex

of a 4-xel q, denoted by Boundary(q), is the set of all the proper faces of q.
Evidently, Attach(q, I) ⊆ Boundary(q).

For any xel-complex K, the Euler characteristic of K is the integer χ(K)
defined by χ(K) = c0(K)− c1(K) + c2(K)− c3(K) + c4(K), where cn(K) is the
number of n-xels in K. If P is the union of the xels of a xel-complex K, then we
define χ(P) to be χ(K). It can be shown that if x is any xel then χ(x) = 1.

We are now ready to state the above-mentioned essentially discrete sets of
necessary and sufficient conditions for a 4-xel q to be simple.

Theorem 1. Let q be a 4-xel in a 4D binary image I. Then q is simple in I if
and only if the following all hold:

1.
⋃
Attach(q, I) is connected and nonempty.

2.
⋃
Boundary(q)−⋃Attach(q, I) is connected and nonempty.

3.
⋃
Attach(q, I) is simply connected.

Theorem 2. Let q be a 4-xel in a 4D binary image I. Then q is simple in I if
and only if the following all hold:

1.
⋃
Attach(q, I) is connected.

2.
⋃
Boundary(q)−⋃Attach(q, I) is connected.

3. χ(Attach(q, I)) = 1.

Theorems 1 and 2 are Theorems 7 and 9 in [6], except that the definition
of a simple 4-xel used in that paper might seem to be more stringent than the
definition given above: In [6], a 4-xel q is said to be simple in a 4D binary image
I if

⋃
Attach(q, I) is a strong deformation retract of q.

As is explained in [6], it follows from the main result of [7] that the three
conditions of Theorem 1 are equivalent to the three conditions of Theorem 2. So
the two theorems are equivalent.

An elementary proof of the “if” parts of these theorems is given in [6]. A
shorter proof can be given using results of algebraic topology—notably Fact 3.4
in [8] (which follows from Corollaries 3.2.5, 1.3.11, and 1.4.10, and Theorem
1.4.11, in [9]) and Corollary 8.3.11 in [10].

Although the “only if” parts of Theorems 1 and 2 are easy to prove if simple
4-xels are defined as in [6], we have to work a little harder to give a proof for
the definition of simpleness used in this paper. However, standard techniques
of algebraic topology suffice. Indeed, assuming q is simple in I one can use the
exact homology sequences of the pairs (q,

⋃
Attach(q, I)) and (

⋃
I,
⋃
(I \ {q}))

together with the excision theorem to deduce that the reduced homology groups
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of
⋃
Attach(q, I) are all trivial. The three conditions of Theorem 2 follow from

this and the Alexander duality theorem.
The definition of simpleness used in [6] is in fact equivalent to the definition

used in this paper, because both definitions are equivalent to the three conditions
of Theorem 1 or 2. An advantage of the definition we are now using is that it
involves only 4-xels (and does not involve their attachment sets).

It may be worth mentioning here that, while Theorem 2 provides an easy
way of determining whether or not a 4-xel in a 4D binary image is simple,
there seems to be no analog of Theorem 2 for 5- and higher-dimensional images.
Indeed, for n ≥ 5 the authors do not currently have an easy way to determine
if the attachment set of an n-xel in an n-dimensional binary image is simply
connected.

4 MNS Sets and the Main Theorem

A set D of 4-xels in a 4D binary image I is said to be simple in I if the elements
of D can be arranged in a sequence in which each element is simple after all of its
predecessors in the sequence have been removed from the image. In particular,
the empty set is simple in I, and a singleton set {q} is simple in I if and only if
q is a simple 4-xel of I.

Since the deletion of a single simple 4-xel “preserves topology”, so does the
parallel deletion of a simple set of 4-xels. More precisely, if D is a simple set
of 4-xels of a 4D binary image I, then it follows from the definition of a simple
4-xel (and the transitivity of the relation “is a strong deformation retract of”)
that

⋃
(I \D) is a strong deformation retract of

⋃
I.

We are interested in ways of proving that the set of 4-xels deleted at each
iteration of a given parallel thinning algorithm for 4D binary images is always
a simple set. (This would imply that the algorithm “preserves topology”.) Since
a non-simple set must evidently contain a minimal non-simple (MNS) set, one
method of proof would be to show that at each iteration no set of 4-xels that all
satisfy the algorithm’s deletion condition can be an MNS set of the image. (A
set D of 4-xels of I is an MNS set of I if and only if D is a non-simple set of I
but every proper subset of D is a simple set of I.) In fact, this would show that
the set of 4-xels deleted at each iteration is not only simple but also hereditarily
simple—i.e., all of its subsets are simple sets of the image. One example of an
MNS set in a 4D binary image is shown in Figure 2.

The next four theorems state fundamental properties of MNS sets. These
results were established for 3D binary images in [5]—see Propositions 4.3, 4.5,
4.6, and 4.7 in that paper—and can be proved for 4D images in the same way.

Theorem 3. Let D be a nonempty set of 4-xels in a 4D binary image I. Then
D is MNS in I if and only if the following conditions both hold:

1. Each element q ∈ D is non-simple in I \ (D \ {q}).
2. Each element q ∈ D is simple in I \D′ whenever D′ � D \ {q}.
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We say that a set D of 4-xels can be MNS if there is some 4D binary image
I such that D is an MNS set of I. We say that a set D of 4-xels can be MNS
without being a component if there is some 4D binary image I such that D is an
MNS set of I and D is not an 80-component of I.

Theorem 4. A set of 4-xels can be MNS only if it is a subset of some 2×2×2×2
block of sixteen 4-xels.

Theorem 5. Let D be an MNS set of a 4D binary image I, and suppose D is
not an 80-component of I. Then every element of D is 80-adjacent to a 4-xel of
I that is not in D.

Theorem 6. If a set D of 4-xels can be MNS without being a component, then
every subset D′ of D can be MNS without being a component.

We now state our Main Theorem, which identifies all sets of 4-xels that can
be MNS, and all such sets that can be MNS without being a component:

Theorem 7 (Main Theorem). Let D be a set of 4-xels. Then:

1. D can be MNS if and only if D is contained in some 2× 2× 2× 2 block of
sixteen 4-xels.

2. D can be MNS without being a component if and only if D is a subset of
some 2× 2× 2 block of eight 4-xels.

Note that there are four types of 2 × 2 × 2 block: Such a block could be a
1× 2× 2× 2, a 2× 1× 2× 2, a 2× 2× 1× 2, or a 2× 2× 2× 1 block.

5 Proof of the Main Theorem

5.1 Useful Results

The purpose of this subsection is to present three results that will be used in
our proof of the Main Theorem.

The first result is the Inclusion-Exclusion Principle for Euler characteristics,
which is the following identity:

χ(
n⋃

i=1

Ki) =
∑

T⊆{1,2,...,n},T �=∅
(−1)|T |−1χ(

⋂

i∈T
Ki) (1)

This holds for arbitrary xel-complexes K1,K2, . . . ,Kn. The identity follows from
the Inclusion-Exclusion Principle for finite sets and the definition of χ(K).

The second result is the next proposition, which is related to the following
lemma:

Lemma 1. Let P be a union of xels and let x be an edge or a 2-xel such that
x 
⊆ P and χ(x ∩ P) = 1. Then one of the following is true:
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1. x ∩ P consists of a single vertex of x.
2. x is a 2-xel and x ∩ P is one of the four edges of x.
3. x is a 2-xel and x ∩ P is a union of two edges of x that share a vertex.
4. x is a 2-xel and x ∩ P is a union of three of the four edges of x.

This lemma is easily verified by considering all possible forms of x∩P. From
the lemma it is not hard to deduce Proposition 1 below, which will be used in
section 5.3. We omit the proof of the lemma, but expect most readers will find
it intuitively clear that all parts of the proposition are valid in each of the four
cases of the lemma.

Proposition 1. Let q be a 4-xel. Let P be a union of xels in Boundary(q) and
let x be an edge or a 2-xel in Boundary(q) such that χ(x ∩ P) = 1. Then:

1. P is connected if and only if P ∪ {x} is connected.
2.
⋃
Boundary(q) \ P is connected if and only if

⋃
Boundary(q) \ (P ∪ {x}) is

connected.
3. χ(P) = χ(P ∪ {x}).

The following proposition is the third result. This will save us a lot of case-
checking in section 5.2:

Proposition 2. Let q be a 4-xel, and let X be any nonempty set of xels in
Boundary(q) that satisfies one of the following two conditions:

A. There is some vertex that belongs to all of the xels in X.
B. X = Y ∪Z, where Y ∩Z 
= ∅, there is some vertex that belongs to all of the

xels in Y , there is some vertex that belongs to all of the xels in Z, and no
xel in Y \ Z intersects a xel in Z \ Y .

Then X satisfies the following conditions:

1.
⋃
X is connected.

2.
⋃
Boundary(q) \⋃X is connected.

3. χ(
⋃
X) = 1.

In fact condition A in this proposition is a special case of condition B (since
we may take Y = Z = X in B). The proposition follows from Theorem 4.1 in
[8]: Condition B implies that X is SN in the sense of [8], and so the theorem
implies

⋃
X is contractible. By standard results of algebraic topology (including

the Alexander duality theorem) [10], this implies
⋃
X satisfies conditions 1 – 3.

5.2 The “If” Parts of the Main Theorem

For any 4-xel q in a 4D binary image I, let A(q, I) = {q ∩ x | x ∈ I \ {q}} \ {∅}.
Note that

⋃
A(q, I) =

⋃
Attach(q, I).

To show that the “if” part of assertion 1 of the Main Theorem is valid, let D
be a subset of a 2×2×2×2 block of 4-xels such that D is an 80-component of a
4D binary image I. We claim D is MNS in I. Evidently, D satisfies condition 1
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Fig. 2. Let I be the 4D binary image consisting of ten 4-xels shown in this figure. Then
the 2×2×2 block of eight 4-xels in the center constitute an MNS set of I. (In the figure
a larger scale is used in the direction of the 4th coordinate axis than in the directions of
the other three, so the 4-xels appear to have been stretched in that direction.) Notice
that there is an edge, indicated by the thick gray line, which connects the two “end”
4-xels; this edge is shared by the eight central 4-xels. Let q be any one of those eight
4-xels. Then it is easy to deduce from Theorem 2 and Proposition 2 that q is simple
in the image that remains after any proper subset of the other seven central 4-xels is
deleted from I. But if we delete all seven of the other central 4-xels from I then q is
non-simple in the remaining image (which consists just of q and the two end 4-xels).
Hence, by Theorem 3, the central block of eight 4-xels is MNS in I as we claimed.

of Theorem 3. It remains to show that D also satisfies condition 2 of Theorem 3.
Let q ∈ D and let I ′ be obtained from I by deleting any proper subset of the
other elements of D. We need to show that q is simple in I ′. Let X = A(q, I ′).
As D is contained in a 2 × 2 × 2 × 2 block of 4-xels, the central vertex of that
block belongs to all the 4-xels in D and hence to all the xels in X. So, since⋃
X =

⋃
Attach(q, I ′), it follows from Proposition 2 that the three conditions

of Theorem 2 hold with I ′ in place of I. Thus q is simple in I ′, as required.
To show that the “if” part of assertion 2 is also valid, let I be a 2× 2× 2× 3

block of 4-xels and let D be its central 2× 2× 2× 1 block (which is clearly not
an 80-component of I). We claim D is MNS in I. If we can prove this then, by
Theorem 6, the “if” part of assertion 2 is valid. By symmetry we may assume
that I = {i1 × i2 × i3 × i4 | i1, i2, i3 ∈ {[0, 1], [1, 2]}, i4 ∈ {[0, 1], [1, 2], [2, 3]}} so
that D = {i1 × i2 × i3 × [1, 2] | i1, i2, i3 ∈ {[0, 1], [1, 2]}}. Then D clearly satisfies
condition 1 of Theorem 3. To show thatD also satisfies condition 2 of Theorem 3,
let q ∈ D and let I ′ be obtained from I by deleting any proper subset of the
other seven 4-xels in D. We need to show that q is simple in I ′.

Let D− = {i1 × i2 × i3 × [0, 1] | i1, i2, i3 ∈ {[0, 1], [1, 2]}} and let D+ =
{i1 × i2 × i3 × [2, 3] | i1, i2, i3 ∈ {[0, 1], [1, 2]}}.

Let X = A(q, I ′). Since I ′ ⊆ D− ∪ D ∪ D+, we have X = Y ∪ Z, where
Y = A(q, I ′ ∩ (D ∪ D−)) and Z = A(q, I ′ ∩ (D ∪ D+)). Since D ∪ D− =
{i1 × i2 × i3 × i4 | i1, i2, i3, i4 ∈ {[0, 1], [1, 2]}}, the vertex (1,1,1,1) belongs to all
the 4-xels in D∪D− and hence to all the xels in Y . Similarly, the vertex (1,1,1,2)
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belongs to all the xels in Z. Moreover, Y ∩Z = A(q, I ′∩D) 
= ∅ because at least
one element of D \ {q} is in I ′. Also, no xel in Y \ Z = A(q, I ′ ∩D−) intersects
a xel in Z \ Y = A(q, I ′ ∩ D+). Since

⋃
X =

⋃
Attach(q, I ′), it follows from

Proposition 2 that the three conditions of Theorem 2 hold with I ′ in place of I,
which implies q is simple in I ′, as required.

5.3 The “Only If” Parts of the Main Theorem

The “only if” part of assertion 1 is just Theorem 4. To prove the “only if” part
of assertion 2, let S be any MNS set of a 4D binary image I. By Theorem 4, S
is contained in some 2× 2× 2× 2 block.

A set T of 4-xels that is contained in some 2× 2× 2× 2 block will be called
a spanning set if there is no 2× 2× 2 block that contains T .

We now suppose that our MNS set S is a minimal spanning set—i.e., we
suppose S is a spanning set but no proper subset of S is a spanning set—and
deduce that S must be an 80-component of I. This will show that no minimal
spanning set can be MNS without being a component, which (by Theorem 6) is
enough to establish the “only if” part of assertion 2 of the Main Theorem, since
every spanning set contains a minimal spanning set.

For any two 4-xels p and q let p − q denote the vector from the centroid of
q to the centroid of p. We define the l1-diameter of S to be maxp,q∈S ‖p − q‖1,
where ‖v‖1 is the l1-norm of the vector v (i.e., the sum of the absolute values
of the four components of v). Since S is a spanning set, the l1-diameter of S is
at least 2, and is therefore equal to 2, 3, or 4.

Case 1: The l1-Diameter of S Is 4

In this case S = {q, a} for some 4-xels q and a such that ‖q−a‖1 = 4. Note that
q ∩ a consists of just one vertex, v say. Let P =

⋃
Attach(q, I \ {a}), so that⋃

Attach(q, I) = P ∪ {v}. Since S is MNS in I, it follows from Theorem 3 that
q is non-simple in I \ {a} but q is simple in I. The latter and Theorem 2 imply
P ∪{v} = ⋃Attach(q, I) is connected, and so either v ∈ P or P = ∅. But v ∈ P
would imply

⋃
Attach(q, I) = P ∪ {v} = P =

⋃
Attach(q, I \ {a}), which (by

Theorem 2) would make it impossible for q to be simple in I but non-simple in
I \ {a}. Hence P = ∅ and so, by Theorem 5, S is an 80-component of I.

Case 2: The l1-Diameter of S Is 3

In this case it is readily confirmed that S = {q, a, b} for some 4-xels q, a, and b
such that ‖q−a‖1 = ‖q−b‖1 = 3 and ‖a−b‖1 = 2. Let q∩a = ea and q∩b = eb.
Then ea and eb are edges and ea ∩ eb consists of just a vertex.

Let P =
⋃
Attach(q, I\{a, b}), so⋃Attach(q, I) = P∪ea∪eb,

⋃
Attach(q, I\

{a}) = P ∪ eb, and
⋃
Attach(q, I \ {b}) = P ∪ ea. Since S is MNS in I, it follows

from Theorem 3 that q is non-simple in I \ {a, b} but q is simple in I, in I \ {a},
and in I \ {b}. So it follows from Theorem 2 and Proposition 1 that neither
χ(P ∩ ea) nor χ(P ∩ eb) is equal to 1.
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As
⋃
Attach(q, I) = P∪ea∪eb,

⋃
Attach(q, I \{a}) = P∪eb,

⋃
Attach(q, I \

{b}) = P ∪ ea, and χ(ea) = χ(eb) = χ(ea ∩ eb) = 1, it follows from Theorem 2
and the Inclusion-Exclusion Principle for Euler characteristics that

1 = χ(P ∪ ea) = χ(P) + 1− χ(P ∩ ea)
1 = χ(P ∪ eb) = χ(P) + 1− χ(P ∩ eb)
1 = χ(P ∪ ea ∪ eb) = χ(P) + 1 + 1− χ(P ∩ ea)− χ(P ∩ eb)− 1 + χ(P ∩ ea ∩ eb)

and therefore χ(P) = χ(P ∩ ea) = χ(P ∩ eb) = χ(P ∩ ea ∩ eb).
So, since neither χ(P∩ea) nor χ(P∩eb) is equal to 1, χ(P∩ea∩eb) 
= 1. Thus

P ∩ ea ∩ eb = ∅ (since ea ∩ eb consists of just a vertex) and χ(P ∩ ea ∩ eb) = 0.
Therefore χ(P) = χ(P ∩ ea) = χ(P ∩ eb) = 0, so P ∩ ea = ∅. Now if P 
= ∅
then P ∪ ea is disconnected, which contradicts Theorem 2 because P ∪ ea =⋃
Attach(q, I \{b}) and q is simple in I \{b}. Hence P = ∅ and so, by Theorem 5,

S is an 80-component of I.

Case 3: The l1-Diameter of S Is 2

In this case it is quite easy to verify that S = {q, a, b, c}, where ‖x− y‖1 = 2 for
all distinct x and y in S. Let q ∩ a = fa, q ∩ b = fb, and q ∩ c = fc. Then fa, fb,
and fc are 2-xels, every pair of them share an edge, and fa ∩ fb ∩ fc consists of
just a vertex.

Let P =
⋃
Attach(q, I \ {a, b, c}), so that

⋃
Attach(q, I \ {a, b}) = P ∪ fc.

Since S is MNS in I, it follows from Theorem 3 that q is non-simple in I \{a, b, c}
but q is simple in I, I \{c}, I \{b, c}, and I \{a, b}. So it follows from Theorem 2
and Proposition 1 that χ(P ∩ fc) 
= 1.

Since
⋃
Attach(q, I \ {b, c}) = P ∪ fa, it follows from Theorem 2, the fact

that χ(x) = 1 for any xel x, and the Inclusion-Exclusion Principle for Euler
characteristics that 1 = χ(P∪fa) = χ(P)+1−χ(P∩fa). Hence χ(P) = χ(P∩fa).
By symmetrical arguments we must have

χ(P) = χ(P ∩ fa) = χ(P ∩ fb) = χ(P ∩ fc) (2)

Similarly, since
⋃
Attach(q, I \ {c}) = P ∪ fa ∪ fb, we have 1 = χ(P ∪ fa ∪ fb) =

χ(P) + 1+ 1−χ(P ∩ fa)−χ(P ∩ fb)− 1+χ(P ∩ fa ∩ fb) and so by eqn. (2) we
have χ(P) = χ(P ∩ fa ∩ fb). By symmetrical arguments we must have

χ(P) = χ(P ∩ fa ∩ fb) = χ(P ∩ fb ∩ fc) = χ(P ∩ fa ∩ fc) (3)

Again, since
⋃
Attach(q, I) = P ∪ fa ∪ fb ∪ fc, we have 1 = χ(P ∪ fa ∪ fb ∪ fc) =

χ(P) + 1 + 1 + 1− χ(P ∩ fa)− χ(P ∩ fb)− χ(P ∩ fc)− 1− 1− 1 + χ(P ∩ fa ∩
fb)+χ(P ∩ fb ∩ fc)+χ(P ∩ fa∩ fc)+1−χ(P ∩ fa∩ fb ∩ fc) and so by equations
(2) and (3) we have:

χ(P) = χ(P ∩ fa ∩ fb ∩ fc) (4)

Recalling that χ(P ∩ fc) 
= 1, we see that equations (2) and (4) imply χ(P ∩
fa ∩ fb ∩ fc) 
= 1. Thus P ∩ fa ∩ fb ∩ fc = ∅ (since fa ∩ fb ∩ fc consists of just
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a vertex) and χ(P ∩ fa ∩ fb ∩ fc) = 0. Therefore, by equations (2), (3), and
(4), the 2-xel fa satisfies χ(P ∩ fa) = χ(P ∩ fa ∩ fb) = 0. Since χ(P ∩ fa) = 0,
P ∩ fa either is empty or is the union of the four edges of fa. But the latter
is impossible because fa ∩ fb is an edge of fa that is not contained in P (since
χ(P ∩fa∩fb) = 0). Hence P ∩fa = ∅. Now if P 
= ∅ then P ∪fa is disconnected,
which contradicts Theorem 2 because P ∪ fa =

⋃
Attach(q, I \ {b, c}) and q is

simple in I \ {b, c}. So P = ∅ and, by Theorem 5, S is an 80-component of I.

6 Concluding Remarks

We have identified all types of sets of 4-xels that can be minimal non-simple
(MNS) in a 4D binary image, and all types that can be MNS without being an
80-component of the image, when 4D 80-connectedness is used on 4-xels in the
image and 4D 8-connectedness on 4-xels in its complement. This work is based
on a characterization of simple 4-xels that was given in [6], and the Inclusion-
Exclusion Principle for Euler characteristics.
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