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Abstract. Many automated manufacturing processes require parts to
be oriented prior to assembly. A part feeder takes in a stream of identical
parts in arbitrary orientations and outputs them in uniform orientation.
We consider part feeders that do not use sensing information to accom-
plish the task of orienting a part; these feeders include vibratory bowls,
parallel jaw grippers, and conveyor belts and tilted plates with so-called
fences. The input of the problem of sensorless manipulation is a descrip-
tion of the part shape and the output is a sequence of actions that moves
the part from its unknown initial pose into a unique �nal pose. For each
part feeder we consider, we determine classes of orientable parts, give al-
gorithms for synthesizing sequences of actions, and derive upper bounds
on the length of these sequences.

1 Introduction

Manipulation tasks such as part feeding generally take place in structured fac-
tory environments; parts typically arrive at a more-or-less regular rate along for
example a conveyer belt. The structure of the environment removes the need for
intricate sensing capabilities. In fact, Canny and Goldberg [22] advocate a RISC
(Reduced Intricacy in Sensing and Control) approach to designing manipulation
systems for factory environments. Inspired by Whitney's recommendation that
industrial robots have simple sensors and actuators [38], they argue that au-
tomated planning may be more practical for robot systems with fewer degrees
of freedom (parallel-jaw grippers instead of multi-�ngered hands) and simple,
fast sensors (light beams rather than cameras). To be cost-e�ective industrial
robots should emphasize eÆciency and reliability over the potential exibility
of anthropomorphic designs. In addition to these advantages of RISC hardware,
RISC systems also lead to positive e�ects in software: manipulation algorithms
that are eÆcient, robust, and subject to guarantees.



We consider part feeders in the line of thought of the RISC approach. More
speci�cally, we shall focus on the problem of sensorless orientation of parts in
which no sensory information at all is used to move the part from an unknown
initial pose into a unique|and known|�nal pose. In sensorless orientation or
part feeding parts are oriented using passive mechanical compliance. The input
of the problem of sensorless orientation is a description of the shape of the part
and the ouput is a sequence of open-loop actions that moves the part from an
unknown initial pose into a unique �nal pose. Among the sensorless part feeders
considered in the literature are the traditional bowl feeder [18, 19], the parallel-
jaw gripper [23, 26], the single pushing jaw [3, 29, 31, 34], the conveyor belt with a
sequence of fences rigidly attached to both its sides [20, 35, 39], the conveyor belt
with a single rotational fence [2], the tilting tray [25, 33], and vibratory plates
and programmable vector �elds [16, 17].

Traditionally, sensorless part feeding is accomplished by the vibratory bowl

feeder, which is a bowl that is surrounded by a helical metal track and �lled
with parts [18, 19], see Figure 1. The bowl and track undergo an asymmetric

Fig. 1. A bowl feeder [19].

helical vibration that causes parts to move up the track, where they encounter
a sequence of mechanical devices such as wiper blades, grooves and traps. The
majority of these mechanical devices act as �lters that serve to reject (force back
to the bottom of the bowl) parts in all orientations except for the desired one.
Eventually, a stream of parts in a uniform orientation emerges at the top after
successfully running the gauntlet. The design of bowl feeders is, in practice, a
task of trial and error. It typically takes one month to design a bowl feeder for a
speci�c part [30]. We will see in Section 5 that it is possible to compute whether
a given part in a given orientation will safely move across a given trap. More
importantly, we will see that it is possible to use the knowledge of the shape of
the part to synthesize traps that allow the part to pass in only one orientation
[9, 12, 13].

The �rst feeders to which thorough theoretical studies have been devoted
were the parallel-jaw gripper and pushing jaw. Goldberg [26] showed that these



devices can be used for sensorless part feeding or orienting of two-dimensional
parts. He gave an algorithm for �nding the shortest sequence of pushing or
squeezing actions that will move the part from an unkown initial orientation
to a known �nal orientation. Chen and Ierardi [23] showed that the length of
this sequence is O(n) for polygonal parts with n vertices. In Section 2 we shall
provide theoretical foundation to the fact that the sequence length often stays
well below this bound [37]. As the act of pushing is common to most feeders that
we consider in this paper we will �rst study the pushing of parts in some detail.

The next feeder we consider consists of a sequence of fences which are mounted
across a conveyor belt [20, 35, 39]. The fences brush the part as it travels down
the belt thus reorienting it (see Figure 2). The motion of the belt e�ectively

Fig. 2. Rigid fences over a conveyor.

turns the slide along a fence into a push action by the fence. It has long been
open whether a sequence of fences can be designed for any given part such that
this sequence will move that part from any initial pose into a known �nal pose.
We report an aÆrmative answer in Section 3. In addition we give an O(n3) al-
gorithm (improving an earlier exponential algorithm by Wiegley et al. [39]) for
computing the shortest sequence of fences for a given part along with several
extensions [8, 10, 11].

A drawback of most of the achievements in the �eld of sensorless orientation
of parts is that they only apply to planar parts, or to parts that are known to
rest on a certain face. In Section 4 we present a generalization of conveyor belts
and fences that attempts to bridge the gap to truly three-dimensional parts [15].
The feeder consists of a sequence tilted plates with curved tips; each of the plates
contains a sequence of fences (see Figure 3). The feeder essentially tries to orient
the part by a sequence of push actions by two orthogonal planes. We analyze
these actions and use the results to show that it is possible to compute a set-up
of plates and fences for any given asymmetric polyhedral part such that the part
gets oriented on its descent along plates and fences.

This paper reports on parts of our research in the �eld of sensorless ma-
nipulation of the last few years. The emphasis will be on the transformation of
various sensorless part feeder problems into geometric problems, a sketch of the



Fig. 3. Feeding three-dimensional parts with a sequence of plates and fences.

algorithms that solve these problems, and on determining classes of orientable
parts. For proofs and detailed descriptions of the algorithms and their extensions
the reader is in general referred to other sources [8{15, 37].

2 Pushing planar parts

2.1 Push functions

Throughout the entire paper, we assume zero friction|unless stated otherwise|
between the part and the orienting device. Let c be the center-of-mass and P be
the convex hull of the planar part. As a pushing device always touches the part
at its convex hull, we can only orient a part up to rotational symmetries in its
convex hull. Without loss of generality, our problem is now to orient the convex
part P with given center-of-mass c.

We assume that a �xed coordinate frame is attached to P . Directions are ex-
pressed relative to this frame. The contact direction of a supporting line (or tan-
gent) l of a part P is uniquely de�ned as the direction of the vector perpendicular
to l and pointing into P (see Figure 4 for a supporting line with contact direction
�.). As in Mason [31], we de�ne the radius function � : [0; 2�)! fx 2 Rjx > 0g
of a part P with a center-of-mass c; � maps a direction � onto the distance
from the center-of-mass c to the supporting line of P with contact direction �.
Recall that the direction � is measured with respect to the frame attached to P .
The (continuous) radius functions determines the push function, which, in turn,
determines the �nal orientation of a part that is being pushed.

Throughout this paper, parts are assumed to be pushed in a direction per-
pendicular to the pushing device. The push direction of a single jaw is determined
by the direction of its motion. The push direction of a jaw pushing a part equals
the contact direction of the jaw. In most cases, parts will start to rotate when



pushed. If pushing in a certain direction does not cause the part to rotate, then
we refer to the corresponding direction as an equilibrium (push) direction or ori-
entation. These equilibrium orientations play a key role throughout this paper. If
pushing does change the orientation, then this rotation changes the orientation
of the pushing gripper relative to the part. We assume that pushing continues
until the part stops rotating and settles in a (stable) equilibrium pose.

The push function p : [0; 2�)! [0; 2�) links every orientation � to the orien-
tation p(�) in which the part P settles after being pushed by a jaw with push
direction � (relative to the frame attached to P ). The rotation of the part due to
pushing causes the contact direction of the jaw to change. The �nal orientation
p(�) of the part is the contact direction of the jaw after the part has settled.
The equilibrium push directions are the �xed points of the push function p.

The push function p consists of steps, which are intervals I � [0; 2�) for
which p(�) = v for all � 2 I and some constant v 2 I , and ramps, which are
intervals I � [0; 2�) for which p(�) = � for all � 2 I . Note that the ramps are
intervals of equilibrium orientations. The steps and ramps of the push function
are easily constructed [26, 36] from the radius function �, using its points of hor-
izontal tangency; these orientations of horizontal tangency are the equilibrium
push orientations. Angular intervals of constant radius turn up as ramps of the
push function. Notice that such intervals only exist if the boundary of the part
contains certain speci�c circular arcs. Thus, ramps cannot occur in the case of
polygonal parts. If the part is pushed in a direction corresponding to a point of
non-horizontal tangency of the radius function then the part will rotate in the
direction in which the radius decreases. The part �nally settles in an orientation
corresponding to a local minimum of the radius function. As a result, all points
in the open interval I bounded by two consecutive local maxima of the radius
function � map onto the orientation � 2 I corresponding to the unique local
minimum of � on I . (Note that � itself maps onto � because it is a point of
horizontal tangency.) This results in the steps of the push function. Note that
each half-step, i.e., a part of a step on a single side of the diagonal p(�) = �, is a
(maximal) angular interval without equilibrium push orientation. An equilibrium
orientation v is stable if it lies in the interior of an interval I for which p(�) = v
for all � 2 I . Besides the steps and ramps there are isolated points satisfying
p(�) = � in the push function, corresponding to local maxima of the radius
function. Figure 4 shows an example of a radius function and the corresponding
push function.

Similar to the push function we can de�ne a squeeze function that links every
orientation � to the orientation in which the part settles after being simultane-
ously pushed from the directions � and �+�. The steps and ramps of the squeeze
function can be computed from the part's width function (see [26, 36] for details).

Using the abbreviation p�(�) = p((�+ �)mod 2�), we de�ne a push plan to
be a sequence �1; : : : ; �k such that p�k Æ : : :Æp�1(�) = � for all � 2 [0; 2�) and a
�xed �. In words, a push plan is an alternating sequence of jaw reorienations|by
angles �i|and push actions that will move the part from any initial orientation
� into the unique �nal orientation �. Observe that a single push action puts
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Fig. 4. A polygonal part and its radius and push function. The minima of the radius
function correspond to normals to polygon edges that intersect the center-of-mass. The
maxima correspond to tangents to polygon vertices whose normals intersect the center-
of-mass. The horizontal steps of the push function are angular intervals between two
successive maxima of the radius function.

the part into one of a �nite number of stable orientations. Most algorithms for
computing push plans proceed by identifying reorientations that will cause a
next push to reduce the number of possible orientations of the part.

2.2 Push plan length

Goldberg [26] considered the problem of orienting (feeding) polygonal parts using
a parallel-jaw gripper. A parallel-jaw gripper consists of a pair of at parallel
jaws that can close in the direction orthogonal to the jaws, which can push and
squeeze the part. When the initial orientation of the part is unknown, a sequence
of gripper operations can be used to orient the part|relative to the gripper|
without sensing. Let N be the number of gripper operations in the shortest
sequence that will orient the part up to symmetry. Goldberg showed that N is
O(n2) for polygonal parts with n vertices and gave an algorithm for �nding the
shortest squeeze plan. He also conjectured that N is O(n).

Chen and Ierardi [23] proved Goldberg's conjecture by constructing simple
push and squeeze plans of length O(n). They also presented pathological poly-
gons where N is �(n), showing that the O(n) bound is tight in the worst case.



Such pathological polygons are `fat' (approximately circular), while N is almost
always small for `thin' parts. Consider the two parts shown in Figure 5. Imagine

A B
A

Fig. 5. Both polygonal parts have n = 11 vertices, but part A is thin, while B is fat.
Part A is intuitively easier to orient than part B.

grasping part A. Regardless of the orientation of the gripper, we expect the part
to be squeezed into an orientation in which its longest edge is aligned with a jaw
of the gripper. Hence, the number of possible orientations of the part (relative
to the gripper) after a single application of the gripper is very small. Part B can
end up with any of its n edges against a gripper jaw; the number of possible ori-
entations (again relative to the gripper) after a single application of the gripper
is considerably higher than in the case of the thin part. In general, we observe
that thin parts are easier to orient than fat ones.

A theoretical analysis con�rms this intuition. To formalize our intuition about
fatness, we de�ne the geometric eccentricity of a planar part based on the length-
to-width ratio of a distinguished type of bounding box. We deduce an upper
bound on the number of actions required to orient a part that depends only on
the eccentricity of the part. The bound shows that a constant number of actions
suÆces to orient a large class of parts. The analysis also applies to curved parts
and provides the �rst complexity bound for non-polygonal parts.

The inspiration for our thinness measure comes from ellipses. The eccentricity
of an ellipse equals

p
1� (b=a)2, where a and b are the lengths of the major

and minor axes respectively. Our (similar) de�nition of eccentricity for a convex
object relies on the maximum of all aspect ratios of bounding boxes of the object.

De�nition 1 The eccentricity � of a convex object P � R
2 is de�ned by � =

r � 1, where r equals the maximum of all aspect ratios of bounding boxes of P .

Note that the minimum eccentricity of 0 is in both our de�nition and in the
de�nition for ellipses obtained for circles.

Chen and Ierardi [23] proposed a class of plans for orienting polygonal parts
based on repeating a unique push-and-reorient operation. The length of the
longest angular interval without equilibrium orientation, or, in other words, of
the longest half-step of the push function, determines the angle of reorientation.
Assume that this half-step is uniquely de�ned and has length �. A reorientation
by ��� for some very small positive � in the proper direction followed by a push
action will cause the part to rotate to the next equlibrium orientation unless it



is in the orientation � corresponding to the height|in the push function|of
the longest half-step. Since the number of steps is bounded by n, it will take
at most n of these combined actions to make the part end up in orientation �.
The case where the longest half-step is not uniquely de�ned requires additional
techniques but again a plan of linear length can be obtained.

We use ideas similar to those of Chen and Ierardi to establish a relation
between the length of the longest half-step and the number of push actions
required to orient the part. The bound applies to arbitrary parts and is given in
the following lemma.

Lemma 1. A part can be oriented by N = 2d2�=�e + 1 applications of the

gripper, where � is the longest-half-step of the push function.

Eccentricity imposes a lower bound on the length of the longest half-step. In-
tuitively it is clear that a part can only be eccentric when its radius is allowed
to increase over a relatively long angular interval (about its center-of-mass). A
thorough analysis [37] con�rms this intuition. The result of the analyis is given
below.

Lemma 2. The eccentricity � of a part with a push function with a longest half-

step of length � is bounded by

� 6
cosk�1 � � sin (k + 1)�

cosk 2�
� 1;

where k = d�=(2�)e.

Lemmas 1 and 2 yield the following theorem.

Theorem 1. Let P be a part with eccentricity

� >
cosk�1 � � sin (k + 1)�

cosk 2�
� 1

(k = d�=(2�)e), for some � 2 (0; �=4). Then, P can be oriented by a push plan

of length

N 6 2d
2�

�
e+ 1:

Theorem 1 shows that the number of push actions needed to orient a part is a
function of its eccentricity. It provides the �rst upper bound on the length of a
push plan for non-polygonal parts. Sample values show that the upper bound
provided by Theorem 1 is relatively low even for smaller values of �; N � 75 for
� = 0:5, N is below 50 for � = 1 and below 30 for � = 2:5. Similar bounds can
be obtained for squeeze plans [37].

2.3 Pulling parts

We have recently studied sensorless orientation of planar parts with elevated
edges by inside-out pull actions [14]. In a pull action a �nger is moved (from the



inside of the part) towards the boundary. As it reaches the boundary it continues
to pull in the same direction until the part is certain to have stopped rotating.
Subsequently, the direction of motion of the �nger is altered and the action is
repeated. The problem os sensorless orientation by a pulling �nger is to �nd a
sequence of motion directions that will cause the �nger to move the part from
any initial pose into a unique �nal pose.

Although intuitively similar to pushing it turns out that sensorless orienting
by pull actions is considerably harder than pushing [14]. As the �nger touches
the part from the inside it does no longer make sense to assume that the part
is convex. In fact, it can be shown that certain non-convex parts cannot be
oriented by a sequence of pull actions. Most convex parts are orientable by O(n)
pull actions, and the shortest pull plan is computable in O(n3) time.

3 Fence design

The problem of fence design is to determine a sequence of fence orientations,
such that fences with these orientations align a part as it moves down a conveyor
belt and slides along these fences [20, 35, 39]. Figure 6 shows a fence design that
orients the given part regardless of its initial orientation. We shall see below that
fence design can be regarded as �nding a constrained sequence of push directions.
The additional constraints make fence design considerably more diÆcult than
sensorless orientation by a pushing jaw.

Wiegley et al. [39] gave an exponential algorithm for computing the shortest
sequence of fences for a given part, if such a sequence exists. They conjectured
that a fence design exists for any polygonal part. We prove the conjecture that
a fence design exists for any polygonal part. In addition, we give an O(n3)
algorithm for computing a fence design of minimal length (in terms of the number
of fences used), and discuss extensions and possible improvements.

We address the problem of designing a shortest possible sequence of fences
f1; : : : ; fk that will orient P when it moves down a conveyor belt and slides along
these fences. Let us assume that the conveyor belt moves vertically from top to
bottom, as indicated in the overhead view in Figure 6. We distinguish between
left fences, which are placed along the left belt side, and right fences, which
are placed along the right side. The angle or orientation of a fence fi denotes
the angle between the upward pointing vector opposing the motion of the belt
and the normal to the fence with a positive component in upward direction.
The motion of the belt turns the sliding of the part along a fence into a push
by the fence. The direction of the push is|by the zero friction assumption|
orthogonal to the fence with a positive component in the direction opposing
the motion of the belt. Thus, the motion of the belt causes any push direction
to have a positive component in the direction opposing the belt motion. We
now transform this constraint on the push direction relative to the belt into a
constraint on successive push directions relative to the part.

Sliding along a fence fi causes one of P 's edges, say e, to align with the
fence. The carefully designed [20] curved tip of the fence guarantees that e is



Fig. 6. Three overhead views of the same conveyor belt and fence design. The traversals
for three di�erent initial orientations of the same part are displayed. The traversals
show that the part ends up in the same orientation in each of the three cases.

aligned with the belt sides as P leaves the fence. If fi is a left (right) fence
then e faces the left (right) belt side (see Figure 7). Assume fi is a left fence.
The reorientation of the push direction is the di�erence between the �nal contact
direction of fi and the initial contact direction of fi+1. At the moment of leaving
fi, the contact direction of fi is perpendicular to the belt direction and towards
the right belt side. So, the reorientation of the push direction is expressed relative
to this direction.

Figure 7(a) shows that the reorientation �i+1 is in the range (0; �=2) if we
choose fi+1 to be a left fence. If we take a right fence fi+1 then the reorientation
is in the range (�=2; �). A similar analysis can be done when P leaves a right
fence and e faces the left belt side. The results are given in Figure 7(b).

The table shows that the type ti of fence fi imposes a bound on the re-
orientation �i+1. Application of the same analysis to fences fi�1 and fi and
reorientation �i leads to the following de�nition of a valid fence design [39].

De�nition 2 [39] A fence design is a push plan �1; : : : ; �k satisfying for all

1 6 i < k:

�i 2 (0; �=2) [ (��;��=2)) �i+1 2 (0; �=2) [ (�=2; �)

^ �i 2 (��=2; 0) [ (�=2; �)) �i+1 2 (��=2; 0) [ (��;��=2):

De�nition 2 immediately shows that the linear-length push plans by Chen
and Ierardi are valid fence designs for parts with a push function with a uniquely
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ti �i+1 ti+1
left (0; �=2) left
left (�=2; �) right
right (��;��=2) left
right (��=2; 0) right

(a) (b)

Fig. 7. (a) For two successive left fences, the reorientation of the push direction lies in
the range (0; �=2). (b) The ranges op possible reorientations of the push direction for
all pairs of successive fence types.

de�ned longest half-step of length � < �=2. In other words, such parts can be
oriented by a sequence of equivalent fences along one side of the belt of length
O(n). It is much harder to prove that all other parts can also be oriented by a
sequence of fences [8].

Theorem 2. Any polygonal part with n vertices can be oriented up to symmetry

by a fence design.

The results from the preceding section indicate that eccentric parts can be ori-
ented by a constant number of fences.

3.1 A simple graph-based algorithm

We now turn our attention to the computation of the shortest fence design that
will orient a given part. We denote the sequence of stable equilibrium orientations
of P by �. As every fence puts the part in a stable equilibrium orientation, the
part is in one of these j�j = O(n) orientations as it travels from one fence
to another. Let us label these stable equilibria �1; : : : ; �j�j. The problem is to
reduce the set of possible orientations of P to one stable equilibrium �i 2 � by
a sequence of fences. We build a directed graph on all possible states of the part
as it travels from one fence to a next fence. A state consists of a set of possible
orientations of the part plus the type (left or right) of the last fence, as the
latter imposes a restriction on the reorientation of the push direction. Although
there are 2j�j subsets of �, it turns out that we can restrict ourselves to subsets
consisting of sequences of adjacent stable equilibria. Any such sequence can be
represented by a closed interval I of the form [�i; �j ] with �i; �j 2 �. The
resulting graph has j�j2 nodes.

Consider two graph nodes (I; t) and (I 0; t0), where I = [�i; �j ] and I 0 are
intervals of stable equilibria and t and t0 are fence types. Let At;t0 be the open
interval of reorientations admitted by the successive fences of types t and t0



according to Figure 7(b). There is a directed edge from (I; t) to (I 0; t0) if there is
an angle � 2 At;t0 such that a reorientation of the push direction by � followed
by a push moves any stable equilibrium in I into a stable orientation in I 0. To
check this condition, we determine the preimage (�;  ) � I 0 of I 0 under the push
function. Observe that if jI j = �j � �i <  � �, any reorientation in the open
interval (� � �i;  � �j) followed by a push will map I into I 0. We add an edge
from (I; t) to (I 0; t0) if (� � �i;  � �j) \ At;t0 6= ;, and label this edge with
this non-empty intersection. For convenience, we add a source and a sink to the
graph. We connect the source to every node (I = [�i; �i�1]; t), and we connect
every node (I = [�i; �i]; t) to the sink. The graph has O(n4) edges. Every path
from the source to the sink now represents a fence design. A fence design of
minimum length corresponds to a shortest such path.

An important observation is that some graph edges are redundant if we are
just interested in a fence design of minimum length. Consider a node (I; t) and
all its outgoing edges to nodes (I 0 = [�i; �j ]; t

0) for a �xed �I and t0. Lemma 3
[11] shows that only the edge to the node corresponding to the shortest such I 0

is required.

Lemma 3. Let (I; t), (I 0; t0), and (I 00; t0) be nodes such that I 0 and I 00 have a

common left endpoint, and I 0 � I 00. If there are edges from (I; t) to both (I 0; t0)
and (I 00; t0) then the edge from (I; t) to (I 00; t0) can be deleted without a�ecting

the length of the shortest path.

Informally, the lemma says that we can a�ord to be greedy in our wish to reduce
the length of the interval of possible orientations. It reduces the number of graph
edges to O(n3).

The computation of the reduced graph for fence design is easy. In the reduced
graph, each node with interval [�i; �j ], has just one outgoing edge to the set of
nodes with intervals with a common left endpoint �i0 and a common fence type
t0. The shortest interval with left endpoint �i0 is obtained by a push direction
which maps �i onto �i0 � `, where ` is the length of the half-step left of �i0 .
The construction of the graph follows directly from this observation. We align
the interval with the left environment of the reachable orientations for a valid
reorientation of the push direction, and compute the resulting interval after
application of the push function. If it is not possible to align �i with �i0�`, then
we take the reorientation of the jaw that gets us as close as possible to �i0 � `.

The computation of the outgoing edges for one node can be accomplished
in linear time, by shifting [�i; �j ] along the possible reorientations of the push
direction. As a result, the total time required to compute the graph edges is
O(n3). A breadth-�rst search on the graph takes O(n3) time, and results in the
shortest fence design.

Theorem 3. Let P be a polygonal part with n vertices. The shortest fence design

that orients p up to symmetry can be computed in O(n3) time. The resulting

design consists of O(n2) fences in the worst case.

Theorem 3 immediately provides an upper bound of O(n2) on the length of the
shortest fence design. We expect, however, that the true bound is O(n).



3.2 An output-sensitive algorithm

The running time of the preceding algorithm could be considered quite high when
realizing that fence designs will often (or maybe even always) have linear (in the
case of parts push functions with a unique longest half-step) or even constant
(in the case of eccentric parts) length. This suggests that an algorithm whose
running time is sensitive to the length of the fence design is to be preferred.

The main idea of the output-sensitive algorithm is to maintain the short-
est interval of possible orientations after k fences, instead of precomputing the
whole graph of all possible intervals of orientations. This is basically the same
technique as used by Goldberg's algorithm to compute push plans [26]. Goldberg
maintains the interval of possible orientations, and greedily shrinks this interval
per application of the pushing jaw. We, however, must take into account the
constraints of fence design. It is not suÆcient to maintain a single shortest inter-
val of possible orientations. Lemma 3 indicates that it is suÆcient to maintain
for each pair of a fence type and a stable orientation the shortest interval after
leaving a fence of the given type starting with the given stable orientation. The
algorithm should terminate as soon as one of the 2j�j intervals has shrunk to
a single orientation. Updating the candidate intervals can be accomplished in
(logn) time per interval using a range tree data structure (see [10] for details).

Theorem 4. Let P be a polygonal part with n vertices. A shortest fence design

that orients P up to symmetry can be computed in O(kn logn) time, where k is

the length of the resulting fence design.

The output-sensitive algorithm will in most cases be more eÆcient than the
simpler graph-based approach; in fact, the former will only have a chance to be
outperformed by the latter if parts exist that require a quadratic-length fence
design.

Both algorithms can be modi�ed to deal with situations in which there is
friction between the part and the fences. This modi�cation has no impact on
the running time. On the other hand we lose the guarantee that a fence design
always exists, so that the algorithm may have to report failure. The output-
sensitive algorithm will be able to do so in (n3 logn) time. See [10, 8] for other
extensions.

4 Pushing three-dimensional parts

A drawback of most achievements in the �eld of sensorless orientation of parts
is that they only apply to planar parts, or to parts that are known to rest on
a certain face. The generalization of conveyor belts and fences that we describe
here attempts to bridge the gap to truly three-dimensional parts. The device we
use is a cylinder with plates tilted toward the interior of the cylinder attached to
the side. Across the plates there are fences. The part cascades down from plate
to plate, and slides along the fences as it travels down a plate (see Figure 8(a)).
The plate on which the part slides discretizes the �rst two degrees of freedom of



rotation of the part. A part in alignment with a plate retains one undiscretized
rotational degree of freedom. The orientation of the part is determined up to
its roll, i.e. the rotation about the axis perpendicular to the plate. The fences,
which are mounted across the plates, push the part from the side, and discretize
the roll. We assume that P �rst settles on the plate before it reaches the fences
which are mounted across the plate. Moreover, we assume that the fences do not
topple the part but only cause it to rotate about the roll axis.

(a)(a) (b)

secondary

primary plane

plane

Fig. 8. (a) A part sliding down a plate with fences. (b) The same part on the jaw.

The objective of this section is to compute a set-up of plates and fences that
is guaranteed to move a given asymmetric polyhedral part towards a unique �nal
orientation. Such a set-up, or design, consists of a sequence of plate slopes, and
for each plate a sequence of fence orientations.

When a part moves along a fence on a plate, it is essentially pushed from
two orthogonal directions. This motivates us to �rst study the fundamental
(but arti�cial) problem of pushing in three-dimensional space. Here, the part
is assumed to oat in the air while we push it from two orthogonal directions.

We show that a three-dimensional polyhedral part P can be oriented up
to symmetry by a (particular) sequence of push actions, a push plan, of length
O(n2), where n is the number of vertices of P . Furthermore, we give anO(n3 logn)
time algorithm to compute such a push plan. We show how to transform this
three-dimensional push plan to a three-dimensional design for the plates and
fences. The resulting design consists of O(n3) plates and fences, and can be
computed in O(n4 logn) time.

A polyhedral part in three-dimensional space has three rotational degrees of
freedom. We assume that a �xed reference frame is attached to P and denote the
orientation of P relative to this reference frame by (�;  ; �), where (�;  ) denotes
a point on the sphere of directions, and � is the roll about the ray emanating
from the origin through (�;  ).



4.1 Push plan

We study the push actions of the plates and the fences in a more general setting
by replacing a plate and a fence by two orthogonal planes. We call the planes
the primary and secondary plane, respectively. A picture of the resulting jaw
is given in Figure 8(b). Since the planes can only touch P at its convex hull,
we assume without loss of generality that P is convex. We assume that the
center-of-mass of P , denoted by c, is in the interior of P . Analogously to the
cylindrical feeder, we assume that only after P has aligned with the primary
plane, we apply the secondary plane. As the part rests on the primary plane, the
secondary plane pushes P at its orthogonal projection onto the primary plane.
We assume that the feature on which P rests retains contact with the primary
plane as the secondary plane touches P . We assume that for any equilibrium
orientation, which is an orientation for which P rests on the jaw, the projection
of P onto the primary plane has no symmetry. We refer to a part with this
property as being asymmetric.

In order to be able to approach the part from any direction, we make the
(obviously unrealistic) assumption that the part oats in the air, and assume
that we can control some kind of gravitational �eld which attracts the part in a
direction towards the jaw. Also, we assume that the part quasi-statically aligns
with the jaw, meaning that we ignore inertia.

A basic action of the jaw consists of directing and applying the jaw. The
result of a basic action for a part in its reference orientation is given by the
push function. The push function p : [0; 2�)� [��=2; �=2]� [0; 2�) ! [0; 2�)�
[��=2; �=2] � [0; 2�) maps a push direction of the jaw relative to P in its ref-
erence orientation onto the orientation of P after alignment with the jaw. The
orientation of P after a basic action for a di�erent initial orientation than its
reference orientation is equal to the push function for the push direction plus
the o�set between the reference and the actual initial orientation of P .

In our approach to �nding a push plan we do not explicitly compute the push
function. Instead we occasionally query some data structure for the reorientation
of the part when being pushed from a certain direction. Without going into the
details, which are far from easy, we claim that this query takes O(n logn) time.
We now use this fact to show that any asymmetric polyhedral part P can be
oriented by a push plan of length O(n2). The part P has at most O(n) equilibria
with respect to the primary plane, and any projection of P onto the primary
plane has O(n) vertices. Hence, the total number of orientations of P compliant
to the jaw is O(n2), and this bound turns out to be tight.

Let us, for a moment, assume that the part lies in a stable orientation on
the primary plane. We can now reorient the jaw in such a way that the contact
direction of the primary plane remains unchanged while the direction of the
secondary plane is altered. A subsequent push by the jaw will cause the part
to rotate about the normal to the pimary plane|keeping the same face of P in
contact with the primary plane. The application of the jaw in this manner can
therefore be regarded as a push operation on the 2D orthogonal projection of
P . In Section 2 we have seen that an asymmetric 2D part with m vertices can



be oriented up by means of planar push plan of length O(m). Consequently, we
can orient P in stable contact with the primary plane by O(n) applications of
the secondary plane.

Lemma 4. Let P be an asymmetric polyhedral part with n vertices. There exists

a plan of length O(n) that puts P into a given orientation (�;  ; �) from any

initial orientation (�;  ; �0)

We call the operation that orients P for a single stable equilibrium contact
direction (�;  ) of the primary plane CollideRollsSequence(�;  ). It allows
us to eliminate the uncertainty in the roll for any stable contact direction of
the primary plane. In an initialization phase we reduce the number of possible
orientations of P to O(n) by executing CollideRollsSequence(�;  ) for all
equilibrium contact directions (�;  ) of the primary plane. We let � be the set
of the resulting possible orientations. Lemma 5 (see [15] for a proof) provides us
with push operations to further reduce the number of possible orientations.

Lemma 5. There exist two antipodal reorientations of the primary plane that

map any pair of orientations (�;  ; �), and (�0;  0; �0) of a polyhedral part onto

orientations (~�; ~ ; ~�) and ( ~�0; ~ 0; ~�0) that satisfy ~� = ~�0 and ~ = ~ 0.

We call the basic operation that collides two orientations onto the same equi-
librium for the primary plane CollidePrimaryAction. Combining Lemma 4
and 5 leads to a construction of a push plan for a polyhedral part. The following
algorithm orients a polyhedral part without symmetry in the planar projections
onto supporting planes of its stable faces.

OrientPolyhedron(P ):
. After initialization j�j = O(n)
1. while j�j > 1 do

2.1 pick (�;  ; �), (�0;  0; �0) 2 �
2.2 plan  CollidePrimaryAction((�;  ; �); (�0;  0; �0))

. Lemma 5;

. plan(�;  ; �) = (�00;  00; �00), and plan(�0;  0; �0) = (�00;  00; �000)

2.3 for all (~�; ~ ; ~�) 2 �

2.3.1 (~�; ~ ; ~�) plan(~�; ~ ; ~�).
2.4 plan  CollideRollsSequence(�00;  00)

. Lemma 4

2.5 for all (~�; ~ ; ~�) 2 �

2.5.1 (~�; ~ ; ~�) plan(~�; ~ ; ~�).

The algorithm repeatedly takes two of the remaining possible orientations
of the part and computes a reorientation that maps these two orientations onto
two di�erent orientations whose representations share the �rst two coordinates.
Step 2.3 maps all currently possible orientations onto the orientations result
from applying the appropriately reoriented jaw. We recall that this step takes
O(n log n) for each of the at most O(n) remaining orientations. At this stage,



the number of faces of P that can be aligned with the primary plane is reduced
by one. The remaining steps map the two orientations that share the �rst two
coordinates onto a single orientation|essentially by means of a planar push
plan of O(n) length for the projection of P . Since the number of iterations of
OrientPolyhedron(P ) is O(n) the algorithm runs in O(n3 logn) time and
results in a push plan of length O(n2).

Theorem 5. A push plan of length O(n2) for an asymmetric polyhedral part

with n vertices can be computed in O(n3 logn) time.

4.2 Plates and fences

We use the results from the preceding subsection to determine a design for the
feeder consisting of tilted plates with curved tips, each carrying a sequence of
fences. The motion of the part e�ectively turns the role of the plates into the
role of the primary pushing plane, and the role of the fences into the role of the
secondary pushing plane. We assume that the part quasi-statically aligns to the
next plate, similar to the alignment with the primary plane of the generic jaw.
Also, we assume that the contact direction of the plate does not change as the
fences brush the part, i.e. the part does not tumble over.

The fact that the direction of the push, i.e., the normal at the fence, must
have a non-zero component in the direction opposite to the motion of the part,
which slides downward under the inuence of gravity, imposes a restriction on
successive push directions of the secondary plane. The restriction is equivalent
to that in planar fence design. Theorem 3 shows that it is possible to orient a
planar polygonal part (hence a polyhedral part resting on a �xed face) using
O(n2) fences. The optimal fence design can be computed in O(n3) time.

As the part moves towards the end of a plate, the curved end of the plate
causes the feature on which the part rests to align with the vertical axis, while
retaining the roll of the part. When the part leaves the plate, the next plate can
only push the part from below. This draws restrictions on the possible reorien-
tations of the primary plane, in the model with the generic three-dimensional
jaw (see Figure 9). Careful analysis shows that the reorientation of the primary
plane is within (��; 0) � (0; �) when the last fence of the last plate was a left
fence. Similarly, for a last right fence, the reorientation of the primary plane is
within (0; �)� (0; �).

The gravitational force restricts our possible orientations of the primary plane
in the general framework. Fortunately, Lemma 5 gives us two antipodal possible
reorientations of the primary plane. It is not hard to see that one of these reori-
entations is in the reachable hemisphere of reorientations of the push direction
of the primary plane for two succesive plates. This implies we can still �nd a
set-up of plates and fences of O(n3) complexity.

Theorem 6. An asymmetric polyhedral part can be oriented using O(n3) fences
and plates. We can compute the design in O(n4 logn) time.



(0; �)

(��; 0)

Fig. 9. The next plate can only touch the lower half of the part.

5 Trap design

The oldest and still most common part feeder is the vibratory bowl feeder. It
consists of a bowl �lled with parts surrounded by a helical metal track [18, 19].
The bowl and track undergo an asymmetric helical vibration that causes parts
to move up the track, where they encounter a sequence of mechanical devices
such as wiper blades, grooves and traps. Most of these devices are �lters that
serve to reject (force back to the bottom of the bowl) parts in all orientations
except for the desired one. In this section, we consider the use of traps to �lter
polygonal parts on a track. A trap is a (partial) interruption of the track. We
focus on polygonal traps. Figure 10 shows a section of track with a rectangular
trap. Parts in undesired orientations fall back into the bowl, other orientations

�

A trap in the track

The railing

Direction of motion
Rejected part falls
back into the bowl

Fig. 10. Vibratory bowl feeder track [19].



remain supported.
Speci�c to vibratory bowls, researchers have used simulation [7, 27, 32], heuris-

tics [28], and genetic algorithms [24] to design traps. Perhaps closest in spirit to
our work is Caine's PhD thesis [21] which develops geometric analysis tools to
help designers by rendering the con�guration-space for a given combination of
part, trap, and obstacle. Caine also gives some heuristics to design feeder track
features.

This section reports on the analysis and design of traps that allow a part
to pass in only one orientation. To the extent of our knowledge, no research in
the systematic algorithmic design of vibratory bowl feeders has previously been
conducted. As the techniques and analyses used in trap design di�er largely
from those used for the feeders in the preceding sections|which are all based on
pushing|we do not provide extensive coverage of all our algorithms for traps.
Instead we con�ne ourselves to a brief characterization of when a part falls into
a trap and to reporting our algorithmic results for trap analysis and design. We
focus on two-dimensional parts, or, in other words on three-dimensional parts
that are known to rest on a certain stable face.

5.1 Modeling and analysis

The track in a bowl feeder is slightly tilted to keep the part in contact with
the railing of the track as it moves. Although the vibration of the bowl causes
the part to hop along the track we simplify our analysis by assuming that is
slides. The radius function of the part P determines the at most O(n) stable
orientations in which the part can move; these correspond to local minima of
the radius function.

Let T be a polygonal trap, and assume it has m vertices. In reality, the
part P (which is assumed to be in a �xed orientation) slides across the trap.
Since is it convenient to have a stationary center-of-mass c of the part in our
analysis, we choose to assume that the trap moves underneath the part (which
is clearly equivalent). We denote the trap in a con�guration q by T (q). Note
that a con�guration is|because of the simple sliding motion of the part in
reality|nothing more than a horizontal displacement, and as such representable
by a single value. The supported area S(q) of a part P with the trap placed
underneath in con�guration q is de�ned by S(q) = P � int(T (q)). We denote the
convex hull of a shape X by CH(X). Lemma 6 says when a part is safe when
placed over a trap, i.e., when it does not fall into the trap.

Lemma 6. The part P is safe above T in a con�guration q if and only if c 2
CH(S(q)), or, in other words, if and only if there is no line through c that has

CH(S(q)) entirely on one side.

It is clear that a part will safely move across a trap if P is safe in every con�g-
uration q in the motion of T .

The above characterization is the key to our algorithm for computing whether
a part P in a given orientation will safely move across a trap. The crucial convex
hull CH(S(q)) is determined by vertices of T and P , and by intersections of



edges of T and P . Our algorithm plots the directions of the rays emenating from
c towards each of the aforementioned vertices and intersections as a function of
q. A simple sweep (see e.g. [6]) suÆces to detect whether the interval of all these
directions remains longer than � at all q. A somewhat more eÆcient algorithm
exists for the case where both the trap and the part are convex.

Theorem 7. Let P be a polygonal part with n vertices and T be a polygonal

trap with m vertices. We can report whether P will move safely across T in

O(n2m logn) time, or in O((n+m) logn) time if both P and T are convex.

The result for a general part and trap has recently been improved by Agarwal
et al. [1].

5.2 Design of traps

In this subsection we report results on the design of traps that allow a given
part to pass in only one of its stable orientations. A trap with this property is
said to have the feeding property. We consider four di�erent speci�c rectangular
traps and arbitrary polygonal traps. Figure 11 shows the four rectilinear traps
along with the parameters that specify their measures.

railing

�



�

�



� �

(a) (b)

(c) (d)

Fig. 11. The four rectilinear traps of this section: (a) a balcony, (b) a gap, (c) a canyon,
and (d) a slot. The bold lines at the bottom of the pictures depict the railing. The line
at the top depicts the edge of the track at the inside of the bowl. The traps are dashed.

A balcony is a long interruption of the upper part of the supporting area of
the track. Let us consider the radii of the part P , or, in other words, the distances
of the center-of-mass c to the railing in all of its stable orientations. Assume that
there is a uniquely de�ned minimum, corresponding to an orientation �. If we



choose the height � of the balcony slightly larger than this minimum, then it is
immediately clear that P will only be able to pass T when in orientation �. As
the minimum radius is computable in O(n) time we obtain the following result.

Theorem 8. In O(n) time we can design a balcony with the feeding property

for a polygonal part with n vertices, or report that no such balcony exists.

Unfortunately, the design of the other feeders is considerably harder.
A gap is an interruption of the trach that spans the entire width of the track.

Its shape is determined by a single parameter, the gap length . Our algorithm
(see [9, 12, 13] for details) determines a choice for  that allows P to pass in only
one orientation.

Theorem 9. In O(n2 logn) time we can design a gap with the feeding property

for a polygonal part with n vertices, or report that no such gap exists. The bound

reduces to O(n2) if the part is convex.

A canyon is a long rectangular interruption of the supporting area of the
track. Its shape is de�ned by the distances � and � from the lower and upper
boundary to the railing. Our algorithm [9, 12, 13] determines a suitable choice
for � and �.

Theorem 10. In O(n2�(n) logn) time we can design a canyon with the feeding

property for a polygonal part with n vertices, or report that no such canyon exists;

�(n) is the extremely slowly growing inverse Ackermann function.

A slot is a true rectangular interruption of the supporting area of the track,
and as such speci�ed by three parameters �, �, and . Our algorithm [9, 12, 13]
�nds a slot with the feeding property if one exists.

Theorem 11. In O(n8) time we can design a slot with the feeding property for

a polygonal part with n vertices, or report that no such slot exists.

Finally, we consider arbitrary polygonal traps with k vertices. Such a trap can
be represented by 2k parameters. Our approach to computing a k-vertex trap
that allows a given part to pass in only one orientation uses high-dimensional
arrangements and quanti�er elimination. Using recent results by Basu et al. [4,
5], we obtain our �nal result [12], which is given below.

Theorem 12. In O((nk)O(k2)) time we can design a polygonal trap with k ver-

tices with the feeding property for a polygonal part with n vertices, or report that

no such trap exists.
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