Abstract
Many automated manufacturing processes require parts to be oriented prior to assembly. A part feeder takes in a stream of identical parts in arbitrary orientations and outputs them in uniform orientation. We consider part feeders that do not use sensing information to accomplish the task of orienting a part; these feeders include vibratory bowls, parallel jaw grippers, and conveyor belts and tilted plates with so-called fences. The input of the problem of sensorless manipulation is a description of the part shape and the output is a sequence of actions that moves the part from its unknown initial pose into a unique final pose. For each part feeder we consider, we determine classes of orientable parts, give algorithms for synthesizing sequences of actions, and derive upper bounds on the length of these sequences.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
P. K. Agarwal, A. D. Collins, and J. L. Harer. Minimal trap design. 2000.
S. Akella, W. Huang, K. M. Lynch, and M. T. Mason. Parts feeding on a conveyor with a one joint robot. Algorithmica, 26:313–344, 2000.
S. Akella and M. T. Mason. Posing polygonal objects in the plane by pushing. In IEEE International Conference on Robotics and Automation (ICRA), pages 2255–2262, 1992.
S. Basu. New results on quantifier elimination over real closed fields and applications to constraint databases. Journal of the ACM, 46(4):537–555, 1999.
S. Basu, R. Pollack, and M-F. Roy. On the combinatorial and algebraic complexity of quantifier elimination. Journal of the ACM, 43:1002–1045, 1996.
M. de Berg, M. van Kreveld, M. H. Overmars, and O. Schwarzkopf. Computational Geometry: Algorithms and Applications. Springer-Verlag, Berlin, 1997.
D. Berkowitz and J. Canny. Designing parts feeders using dynamic simulation. In IEEE International Conference on Robotics and Automation (ICRA), pages 1127–1132, 1996.
R-P. Berretty. Geometric design of part feeders. PhD thesis, Institute of Information and Computing Sciences, Utrecht University, 2000.
R-P. Berretty, K. Y. Goldberg, L. Cheung, M. H. Overmars, G. Smith, and A. F. van der Stappen. Trap design for vibratory bowl feeders. In IEEE International Conference on Robotics and Automation (ICRA), pages 2558–2563, 1999.
R-P. Berretty, K. Y. Goldberg, M. H. Overmars, and A. F. van der Stappen. Algorithms for fence design. In Robotics, the algorithmic perspective, pages 279–295. A. K. Peters, 1998.
R-P. Berretty, K. Y. Goldberg, M. H. Overmars, and A. F. van der Stappen. Computing fence designs for orienting parts. Computational Geometry: Theory and Applications, 10(4):249–262, 1998.
R-P. Berretty, K. Y. Goldberg, M. H. Overmars, and A. F. van der Stappen. Geometric techniques for trap design. In Annual ACM Symposium on Computational Geometry, pages 95–104, 1999.
R-P. Berretty, K. Y. Goldberg, M. H. Overmars, and A. F. van der Stappen. Geometric trap design for automatic part feeders. In International Symposium on Robotics Research (ISRR), pages 139–144, 1999.
R-P. Berretty, K. Y. Goldberg, M. H. Overmars, and A. F. van der Stappen. Orienting parts by inside-out pulling. In IEEE International Conference on Robotics and Automation (ICRA), 2001. To appear.
R-P. Berretty, K. Y. Goldberg, M. H. Overmars, and A. F. van der Stappen. Orienting polyhedral parts by pushing. Computational Geometry: Theory and Applications, 2001. To appear.
K-F. Böhringer, V. Bhatt, B. R. Donald, and K. Y. Goldberg. Algorithms for sensorless manipulation using a vibrating surface. Algorithmica, 26:389–429, 2000.
K-F. Böhringer, B. R. Donald, and N. C. MacDonald. Upper and lower bounds for programmable vector fields with applications to mems and vibratory plate part feeders. Algorithms for Robotic Motion and Manipulation, J.-P. Laumond and M. Overmars (Eds.), A. K. Peters, pages 255–276, 1996.
G. Boothroyd and P. Dewhurst. Design for Assembly-A Designers Handbook. Department of Mechanical Engineering, University of Massachusetts, Amherst, Mass., 1983.
G. Boothroyd, C. Poli, and L. Murch. Automatic Assembly. Marcel Dekker, Inc., New York, 1982.
M. Brokowski, M. A. Peshkin, and K. Y. Goldberg. Optimal curved fences for part alignment on a belt. ASME Transactions of Mechanical Design, 117, 1995.
M. E. Caine. The design of shape interaction using motion constraints. In IEEE International Conference on Robotics and Automation (ICRA), pages 366–371, 1994.
J. Canny and K. Y. Goldberg. Risc for industrial robotics: Recent results and open problems. In IEEE International Conference on Robotics and Automation (ICRA), pages 1951–1958, 1994.
Y-B. Chen and D. J. Ierardi. The complexity of oblivious plans for orienting and distinguishing polygonal parts. Algorithmica, 14:367–397, 1995.
A. Christiansen, A. Edwards, and C. Coello. Automated design of parts feeders using a genetic algorithm. In IEEE International Conference on Robotics and Automation (ICRA), pages 846–851, 1996.
M. A. Erdmann and M. T. Mason. An exploration of sensorless manipulation. IEEE Journal of Robotics and Automation, 4:367–379, 1988.
K. Y. Goldberg. Orienting polygonal parts without sensors. Algorithmica, 10(2):201–225, 1993.
M. Jakiela and J. Krishnasamy. Computer simulation of vibratory parts feeding and assembly. In International Conference on Discrete Element Methods, pages 403–411, 1993.
L. Lim, B. Ngoi, S. Lee, S. Lye, and P. Tan. A computer-aided framework for the selection and sequencing of orientating devices for the vibratory bowl feeder. International Journal of Production Research, 32(11):2513–2524, 1994.
K. M. Lynch and M. T. Mason. Stable pushing: Mechanics, controllability, and planning. International Journal of Robotics Research, 15(6):533–556, 1996.
M. T. Mason. Mechanics of robotic manipulation. Unpublished book.
M. T. Mason. Manipulator grasping and pushing operations. PhD thesis, MIT, 1982. published in Robot Hands and the Mechanics of Manipulation, MIT Press, Cambridge, 1985.
G. Maul and M. Thomas. A systems model and simulation of the vibratory bowl feeder. Journal of Manufacturing Systems, 16(5):309–314, 1997.
B. K. Natarajan. Some paradigms for the automated design of parts feeders. International Journal of Robotics Research, 8(6):89–109, 1989.
M. A. Peshkin and A. C. Sanderson. The motion of a pushed sliding workpiece. IEEE Journal of Robotics and Automation, 4(6):569–598, 1988.
M. A. Peshkin and A. C. Sanderson. Planning robotic manipulation strategies for workpieces that slide. IEEE Journal of Robotics and Automation, pages 696–701, 1988.
A. Rao and K. Y. Goldberg. Manipulating algebraic parts in the plane. IEEE Transactions on Robotics and Automation, 11:589–602, 1995.
A. F. van der Stappen, K. Y. Goldberg, and M. H. Overmars. Geometric eccentricity and the complexity of manipulation plans. Algorithmica, 26:494–514, 2000.
D. E. Whitney. Real robots don’t need jigs. In IEEE International Conference on Robotics and Automation (ICRA), volume 1, pages 746–752, 1986.
J. A. Wiegley, K. Y. Goldberg, M. Peshkin, and M. Brokowski. A complete algorithm for designing passive fences to orient parts. Assembly Automation, 17(2):129–136, 1997.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2002 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
van der Stappen, A.F., Berretty, RP., Goldberg, K., Overmars, M.H. (2002). Geometry and Part Feeding. In: Hager, G.D., Christensen, H.I., Bunke, H., Klein, R. (eds) Sensor Based Intelligent Robots. Lecture Notes in Computer Science, vol 2238. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45993-6_15
Download citation
DOI: https://doi.org/10.1007/3-540-45993-6_15
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-43399-6
Online ISBN: 978-3-540-45993-4
eBook Packages: Springer Book Archive