Skip to main content

Tracking Multiple Moving Objects in Populated, Public Environments

  • Conference paper
  • First Online:
Sensor Based Intelligent Robots

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2238))

Abstract

The ability to cope with rapidly changing, dynamic environments is an important requirement for autonomous robots to become valuable assistants in everyday life. In this paper we focus on the task of tracking moving objects in such environments. Objects are extracted from laser range finder images and correspondence between successive scan images is established using network flow algorithms. This approach is implemented on a robotic wheelchair and allows it to follow a guiding person and to perform some simplistic reasoning about deliberate obstructions of it, these two applications requiring robust tracking of humans in the robot’s vicinity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. K. Ahuja, T. L. Magnati, and J. B. Orlin. Network Flows: Theory, Algorithms, and Applications. Prentice Hall, 1993.

    Google Scholar 

  2. R. K. Ahuja, J. B. Orlin, C. Stein, and R. E. Tarjan. Improved algorithms for bipartite network flow. SIAM Journal on Computing, 23(5):906–933, Oct. 1994.

    Article  MATH  MathSciNet  Google Scholar 

  3. P. Fiorini and Z. Shiller. Motion planning in dynamic environments using velocity obstacles. International Journal of Robotics Research, 17(7):760–772, July 1998.

    Article  Google Scholar 

  4. E. L. Lawler. Combinatorial optimization: networks and matroids. Rinehart and Winston, New York, 1976.

    MATH  Google Scholar 

  5. K. Mehlhorn and S. Näher. LEDA—A Platform for Combinatorial and Geometric Computing. Cambridge University Press, 1999.

    Google Scholar 

  6. E. B. Meier and F. Ade. Object detection and tracking in range image sequences by separation of image features. In IEEE International Conference on Intelligent Vehicles, pages 280–284, 1998.

    Google Scholar 

  7. T. B. Moeslund. Computer vision-based human motion capture-a survey. Technical Report LIA 99-02, University of Aalborg, Mar. 1999.

    Google Scholar 

  8. H. Noltemeier. Graphentheorie: mit Algorithmen und Anwendungen. de Gruyter, 1976.

    Google Scholar 

  9. E. Prassler, D. Bank, B. Kluge, and M. Strobel. Coordinating the motion of a human and a mobile robot in a populated, public environment. In Proc. of Int. Conf. on Field and Service Robotics (FSR), Helsinki, Finland, June 2001.

    Google Scholar 

  10. E. Prassler, J. Scholz, M. Schuster, and D. Schwammkrug. Tracking a large number of moving objects in a crowded environment. In IEEE Workshop on Perception for Mobile Agents, Santa Barbara, June 1998.

    Google Scholar 

  11. E. Prassler, J. Scholz, and M. Strobel. Maid: Mobility assistance for elderly and disabled people. In Proc. of the 24th Int. Conf. of the IEEE Industrial Electronics Soc. IECON’98, Aachen, Germany, 1998.

    Google Scholar 

  12. F. P. Preparata and M. I. Shamos. Computational geometry: an introduction. Springer Verlag, 1988.

    Google Scholar 

  13. S. Roy and I. J. Cox. A maximum-flow formulation of the n-camera stereo correspondence problem. In Proceedings of the International Conference on Computer Vision, Bombai, Jan. 1998.

    Google Scholar 

  14. K. Sobottka and H. Bunke. Vision-based driver assistance using range imagery. In IEEE International Conference on Intelligent Vehicles, pages 280–284, 1998.

    Google Scholar 

  15. P. M. Vaidya. Geometry helps in matching. SIAM Journal on Computing, 18(6): 1201–1225, Dec. 1989.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kluge, B. (2002). Tracking Multiple Moving Objects in Populated, Public Environments. In: Hager, G.D., Christensen, H.I., Bunke, H., Klein, R. (eds) Sensor Based Intelligent Robots. Lecture Notes in Computer Science, vol 2238. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45993-6_2

Download citation

  • DOI: https://doi.org/10.1007/3-540-45993-6_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43399-6

  • Online ISBN: 978-3-540-45993-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics