Skip to main content

Coordination through Channel Composition

  • Conference paper
  • First Online:
Coordination Models and Languages (COORDINATION 2002)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2315))

Included in the following conference series:

Abstract

Ρεω is a channel-based exogenous coordination model wherein complex coordinators, called connectors are compositionally built out of simpler ones. The simplest connectors in Ρεω are a set of channels with well-defined behavior supplied by users. Ρεω can be used as a language for coordination of concurrent processes, or as a “glue language” for compositional construction of connectors that orchestrate component instances in a component-based system. The emphasis in Ρεω is on connectors and their composition only, not on the entities that connect to, communicate, and cooperate through these connectors. Each connector in Ρεω imposes a specific coordination pattern on the entities (e.g., components) that perform I/O operations through that connector, without the knowledge of those entities.

Channel composition in Ρ εω is a very powerful mechanism for construction of connectors. In this paper, we demonstrate the expressive power of connector composition in Ρ εω through a number of examples. We show that exogenous coordination patterns that can be expressed as (metalevel) regular expressions over I/O operations can be composed in Ρ εω out of a small set of only five primitive channel types.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. F. Arbab. The IWIM model for coordination of concurrent activities. In Paolo Ciancarini and Chris Hankin, editors, Coordination Languages and Models, volume 1061 of Lecture Notes in Computer Science, pages 34–56. Springer-Verlag, April 1996.

    Google Scholar 

  2. F. Arbab. Manifold version 2: Language reference manual. Technical report, Centrum voor Wiskunde en Informatica, Kruislaan 413, 1098 SJ Amsterdam, The Netherlands, 1996. Available online http://www.cwi.nl/ftp/manifold/refman.ps.Z.

    Google Scholar 

  3. F. Arbab. A channel-based coordination model for component composition. Technical Report SEN-R0203, Centrum voor Wiskunde en Informatica, Kruislaan 413, 1098 SJ Amsterdam, The Netherlands, 2001.

    Google Scholar 

  4. F. Arbab, F.S. de Boer, and M.M. Bonsangue. A coordination language for mobile components. In Proc. ACM SAC’00, 2000.

    Google Scholar 

  5. Farhad Arbab. Coordination of mobile components. In Ugo Montanari and Vladimiro Sassone, editors, Electronic Notes in Theoretical Computer Science, volume 54. Elsevier Science Publishers, 2001.

    Google Scholar 

  6. Farhad Arbab, F. S. de Boer, and M. M. Bonsangue. A logical interface description language for components. In Antonio Porto and Gruia-Catalin Roman, editors, Coordination Languages and Models:Proc. Coordination 2000, volume 1906 of Lecture Notes in Computer Science, pages 249–266. Springer-Verlag, September 2000.

    Chapter  Google Scholar 

  7. M.M. Bonsangue, F. Arbab, J.W. de Bakker, J.J.M.M. Rutten, A. Scutellá, and G. Zavattaro. A transition system semantics for the control-driven coordination language manifold. Theoretical Computer Science, 240:3–47, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  8. M. Broy. Equations for describing dynamic nets of communicating systems. In Proc. 5th COMPASS workshop, volume 906 of Lecture Notes in Computer Science, pages 170–187. Springer-Verlag, 1995.

    Google Scholar 

  9. F. S. de Boer and M. M. Bonsangue. A compositional model for confluent dynamic data-flow networks. In M. Nielsen and B. Rovan, editors, Proc. International Symposium of the Mathematical Foundations of Computer Science (MFCS), volume 1893 of Lecture Notes in Computer Science, pages 212–221. Springer-Verlag, August-September 2000.

    Google Scholar 

  10. R. Grosu and K. Stoelen. A model for mobile point-to-point data-flow networks without channel sharing. Lecture Notes in Computer Science, 1101:504-??, 1996.

    Google Scholar 

  11. G. Kahn. The semantics of a simple language for parallel programming. In J. L. Rosenfeld, editor, Information Processing’ 74:P roceedings of the IFIP Congress, pages 471–475. North-Holland, New York, NY, 1974.

    Google Scholar 

  12. Juan Guillen Scholten. Mocha: A model for distributed Mobile Channels. Master’s thesis, Leiden University, May 2001.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Arbab, F., Mavaddat, F. (2002). Coordination through Channel Composition. In: Arbab, F., Talcott, C. (eds) Coordination Models and Languages. COORDINATION 2002. Lecture Notes in Computer Science, vol 2315. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-46000-4_6

Download citation

  • DOI: https://doi.org/10.1007/3-540-46000-4_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43410-8

  • Online ISBN: 978-3-540-46000-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics