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Abstract. McMillan’s unfolding approach to the reachability problem
in 1-safe Petri nets and its later improvements by Esparza-Römer-Vogler
have proven in practice as a very effective method to avoid state-
explosion. This method computes a complete finite prefix of the infi-
nite branching process of a net. On the other hand, the Local First
Search approach (LFS) was recently introduced as a new partial order
reduction technique which characterizes a restricted subset of configura-
tions that need to be explored to check local properties. In this paper we
amalgamate the two approaches: We combine the reduction criterion of
LFS with the notions of an adequate order and cutoff events essential
to the unfolding approach. As a result, our new LFS method computes
a reduced transition system without the problem of state duplication
(present in the original LFS). Since it works for any transition system
with an independence relation, this black box partial unfolding remains
more general than the unfolding of Petri nets. Experiments show that the
combination gives improved reductions compared to the original LFS.

1 Introduction

Model checking as an automatic method for proving simple system properties
or finding witness executions of faulty systems suffers from the well known state
explosion problem: Typically, the number of states explored by naive algorithms
is exponential in the size of the system description, so that often this automatic
approach is limited to very small systems. However, the explosion of the number
of states is typically due to redundancies in the exploration of the whole global
state space and in the interleaving semantics of parallel systems. Both can be
circumvented in certain cases, in particular by means of partial order methods.
There are two prominent approaches:

– Partial order reduction techniques (see e.g. [God96,Pel93,Val89]), which
try to exploit “diamond” properties to make savings in verification. They
are based on a notion of equivalent executions, called Mazurkiewicz traces
[DR95], and aim to cut redundant branches (and whole sub state spaces).
Partial order reduction techniques have been applied with success notably to
deadlock detection and model checking of certain (equivalence robust) linear
time temporal properties [Pel93].
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– Unfolding based methods (see e.g. [McM92,ERV96,ER99]): Rather than par-
tially exploring an interleaving transition system, these methods directly
construct partial order representations of executions by means of event struc-
tures [NPW81] or, equivalently, occurrence nets [Eng91]. Instead of comput-
ing successor states, the unfolding approach is based on computing possible
event extensions. Using an adequate order among events, a complete finite
prefix of the set of all events is defined and can be computed.

Recently, a new partial order reduction technique has been introduced specif-
ically for the verification of local properties. Such properties depend on a single
component of the system so that one should be able to identify equivalent classes
of global states and tackle the state explosion while checking their possible reach-
ability. The Local First Search approach [NHZL01] gives a combinatorial crite-
rion that shows how to explore a reduced and yet locally complete subset of
states in an efficient way. Based on observations linked to the Strahler number
of trees [Str52], this new technique characterizes concurrent executions which
may be cut off from the exploration while checking any local property.

While the first practical experiments indicate a very strong reduction poten-
tial for Local First Search in the detection of counter-examples (finding paths
leading to local states), the approach of the method to take a part of the past
into account when comparing states leads to a costly need to explore certain
states more than once (state duplication problem). In practice, this means that
the original LFS cannot be used to prove the absence of a state, because state
copying blows up the explored state space more than the reduction criterion
reduces it.

In this paper, we solve the state duplication problem that appears in the
original LFS method. Motivated by a strong relationship between Mazurkiewicz
traces and event structures [Bed87,NW95], we apply the technique of adequate
orders from event structures to trace systems in order to define and construct a
locally complete finite unfolding.

An essential technical difference between our approach and the classical com-
putation of the complete finite prefix is that the latter uses an event structure
as essential data structure whereas the LFS based approach computes on con-
figurations (traces). More precisely, we define a subset of configurations that
respect the LFS criterion (which contains all prime configurations). The use of
an adequate order [ERV96] gives us an additional cutoff criterion that allows us
to avoid multiple explorations of the same state.

Moreover, the complicated computation of possible extensions for the con-
struction of the complete finite prefix (see [KK01] for an extended discussion) is
fully avoided by our approach, at the price of a bigger result (but, as explained
in [NHZL01], not necessarily higher computational cost). In addition, it relies
solely on abstract characteristics of concurrency within the system, not on a
particular representation like Petri nets. In short, it allows black box unfolding.

The paper is structured as follows: In Section 2, we introduce the techni-
cal framework for the presentation, notably Mazurkiewicz traces, asynchronous
transition systems and an unfolding semantics of asynchronous transition sys-
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tems into trace systems. In Section 3, we formalize the notion of a local property
in the context of asynchronous transition systems. In Section 4, we rephrase the
main theorem of [NHZL01] in terms of traces and give a summary of its appli-
cation to the verification of local properties. The main contribution is in Section
5, the development of a locally complete finite subsystem and the proof of its
completeness for the local reachability problem. In Section 6, we give an actual
algorithm for the computation of the locally complete finite subsystem and dis-
cuss first experimental results. In Section 7, we conclude and give an outlook for
the continuation of this line of research.

2 Basics

In this section, we develop the formal framework for the description of our
method.

The description of parallelism in this work is based on Mazurkiewicz trace
theory [DR95], of which we recall the notions important to our work. The frame-
work is thus kept as a level of generality so as to apply to a wide variety of system
descriptions, not just Petri nets or products of automata. For further motivating
examples of this choice, see [NHZL01].

Traces and partial orders. In this paper, we fix a finite alphabet Σ together
with an independence relation ‖⊆ Σ × Σ which is symmetric and irreflexive.
Intuitively, this relation represents concurrency between actions occurring on
distinct processes in a distributed system. The trace equivalence associated to
the independence alphabet (Σ, ‖) is the least congruence ∼ over Σ� such that
ab ∼ ba for any pair of independent actions a ‖ b. A trace [u] is the equivalence
class of a word u ∈ Σ�. We denote by M(Σ, ‖) the set of all traces w.r.t. (Σ, ‖).
Traces are partially ordered according to the prefix relation defined as follows:
We put [u] � [v] whenever there exists a word z ∈ Σ� such that u.z ∼ v.

It is a basic observation of Mazurkiewicz trace theory that traces can be
viewed as partial orders of events labelled by actions in Σ. We shall here often
focus on the number of maximal events in a trace seen as a labelled partial order.
For simplification, we can formalize this as follows:

Definition 1. For a trace [w] ∈ M(Σ, ‖), the subset of last actions Last([w])
consists of all actions that can appear at the end of some sequential view of [w];
i.e. Last([w]) = {a ∈ Σ | ∃v ∈ Σ�, v.a ∈ [w]}. Further, the span #Last([w]) is
the number of last actions of [w]: #Last([w]) = |Last([w])|.
It is clear that Last([w]) consists of pairwise independent actions. Now a key
notion for our development concerns prime traces. The latter admit a single
maximal event.

Definition 2. A trace [w] with #Last([w]) = 1 is a prime trace.

In other words, a trace [w] is prime if, and only if, for all words v1, v2 and all
actions a1 and a2, v1.a1 ∼ w ∼ v2.a2 implies a1 = a2.
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Asynchronous transition systems. A transition system is a triple T = (S,→,
s0) with S a set of states, s0 ∈ S the initial state, and→⊆ S×Σ×S a transition
relation. In this paper, we require that transition systems are deterministic1,
i.e. → is a partial function from S × Σ to S. The language L(T) of execution
sequences of a transition system T is the set of words w = a1a2 . . . an of Σ�

such that there exist states si ∈ S, i = 0, . . . , n such that s0
a1→ s1

a1→ . . .
an→ sn.

Due to determinism, for any execution sequence w = a1a2 . . . an ∈ L(T ) there
exists a unique state s ∈ S such that s0

a1→ s1
a1→ . . .

an→ sn = s. We refer to this
state as σ(w). Of course, there may be several paths leading to the same state,
so σ(u) = σ(v) does not imply u = v.

When modelling concurrent machines by transition systems with indepen-
dence relations, some diamond properties frequently appear [Bed87,God96,
Shi85]:

Definition 3. A transition system T is called asynchronous2 w.r.t. the inde-
pendence alphabet (Σ, ‖) if for all pairs of independent actions a ‖ b,

ID: s
a→ s1

b→ s2 implies s
b→ s′1

a→ s2 for some state s′1 [Independent Diamond]

FD: s
a→ s1 and s

b→ s′1 implies s1
b→ s2 for some state s2 [Forward Diamond]

Axioms ID and FD formalise an intuitive notion of independence: If two
independent actions can occur one immediately after the other then they can
occur in the opposite order (ID); moreover if two independent actions can occur
in a common state, the occurrence of one of them cannot rule out the other
one (FD). We remark also that if u ∈ L(T ) and u ∼ u′ then u′ ∈ L(T ) and
σ(u) = σ(u′). Therefore we extend the map σ from words in L(T ) to the traces
in L(T )/∼ as follows: For all u ∈ L(T ), we denote by σ([u]) the state σ(u).

Many examples of independence relations in various modeling frameworks
exist: In process algebras, dependency results from communication over shared
channels; in Petri nets, transitions sharing places in the presets or postsets may
be dependent. In [Pel93], it is pointed out that independence (in use for partial
order reduction) need not have concurrency as only source. For instance, two
operations “X:=X+1” and “X:=X+2” do also satisfy the diamond properties
and can hence be considered independent, although they touch the same variable.
In contrast, “X:=X+1” and “X:=X*2” will not satisfy these properties.

Unfoldings. Typically, an asynchronous transition system T is an abstraction
for a 1-safe Petri net or a synchronized product of automata; it describes the
1 By introducing new action names, we can transform a non-deterministic system into

a deterministic one. Such a transformation doesn’t modify the properties (mainly
the reachability problem) we are interested in.

2 This naming in the literature is a potential source of confusion: Asynchronous here
refers to the independent progress of the components of a parallel system, not to the
communication discipline. In fact, our examples use synchronous communication.
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behaviour and the global states (or markings) reached by its components. Al-
though it has usually finitely many states, one aims at avoiding the exploration
of all these states or all its execution sequences. For this, we shall construct a
representative part of its unfolding — which is also called trace system.

Definition 4 (Trace system). Let T = (S,→, s0) be an asynchronous tran-
sition system w.r.t. (Σ, ‖). Then the trace system of T is the transition sys-
tem T S(T ) whose states are the traces associated to an execution sequence,
with the empty trace [ε] as initial state and such that the transition relation
is →= {([w], a, [w.a]) | w.a ∈ L(T )}.

Thus, we have [u] a→ [v] in T S(T ) iff u.a is an execution sequence of T and
u.a ∼ v. It follows that T S(T ) is an acyclic (deterministic) transition system
which is asynchronous w.r.t. (Σ, ‖). Furthermore L(T ) = L(T S(T )) and the
unfolding of T S(T ) is T S(T ) itself. We observe also that the map σ from the
traces in L(T )/∼ to the states S induces a homomorphism from T S(T ) to T ,
since [u] a→ [v] in T S(T ) implies σ(u) a→ σ(v) in T . This map is surjective if T
contains no unreachable states. The fact that the original transition system T is
a homomorphic image of its trace system justifies the use of the trace system as
a semantic model.

In [Bed87], the concurrent executions of an asynchronous transition system
are described by a prime event structure. Generalizing the unfolding of 1-safe
nets in occurrence nets [NPW81,Eng91], there is a one-to-one correspondence
between the set of traces L(T )/∼ and the finite configurations of the associated
prime event structure. In this view, T S(T ) appears as an abstract representation
of the configuration structure of T . A key observation in [Bed87, chap. 5] is that
one can identify the events of the underlying unfolding as the configurations
having a single predecessor, that is, the prime traces. For this reason, prime
traces are good candidates to check local properties, as explained in the next
section.

3 Local Properties

In this section, we consider an asynchronous transition system T = (S,→, s0)
w.r.t. the independence alphabet (Σ, ‖).
Definition 5. We say that (Σ, ‖) has parallel degree m if m is the maximal
number of pairwise independent actions in Σ, i.e.

m = max{|A| | A ⊆ Σ and a, b ∈ A, a 
= b =⇒ a ‖ b}.
For Petri nets, m corresponds to the maximal number of transitions that can

be fired concurrently. In a system of processes, m is an upper bound for the
number of sequential components that can work in parallel.

Definition 6 (Local properties). For a given set P ⊆ S (called property),
the set of visible actions VP ⊆ Σ is the set of all actions a ∈ Σ such that there
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exist s1, s2 ∈ S with (s1, a, s2) ∈→ and either s1 ∈ P and s2 /∈ P , or s2 ∈ P and
s1 /∈ P .

A property P has parallel degree m if the restricted independence alphabet
(VP , ‖ ∩ (VP × VP )) has parallel degree m. A property is called local if it has
parallel degree 1.

The idea of visible actions [Pel93] is that of actions that may affect a property
of interest. The naming of local properties is due to the typical case of proper-
ties of one process in a network: These are properties that depend only on the
local state of the process in question, and this state only changes by transitions
involving this process, thus mutually dependent transitions.

Proposition 1. A property P ⊆ S of parallel degree m is reachable (i.e. there
exists [u] such that σ([u]) ∈ P ) if, and only if, there exists an execution sequence
w = a1 . . . ak leading to a state σ(w) ∈ P with #Last([w]) � m, where all last
actions in the trace [w] are visible actions.

Proof. Consider an execution sequence w = a1 . . . an with s0
a1→ s1

a2→ . . .
an→ sn,

sn ∈ P and moreover |w| minimal, i.e. |w| � |w′| for any other sequence w′

leading to a state s′ ∈ P . Then each last action of [w] is a visible action. Since
these actions are pairwise independent, #Last([w]) is at most equal to the parallel
degree of P .

In the sequel, we aim at checking whether a given local property is reachable
in T . Then, Proposition 1 ensures that we need only to explore the prime traces
[w] of the unfolding T S(T ) and check whether σ([w]) ∈ P . Since there are in
general infinitely many prime traces, we will need a criterion to explore a finite
part of the unfolding, only. In the next section, we describe an efficient strategy
to construct prime traces.

4 Local First Search

Since traces are equivalence classes of sequential executions, there are generally
several ways to reach the state σ([w]) of a trace [w]. Among all the sequential
views v ∈ [w], the LFS approach tries to minimize the number of last actions
seen along v. More formally, the beam of a word v = a1 . . . ak ∈ Σ� is the
maximal span #Last([u]) among the traces [u] = [a1 . . . aj ] with j � k. Then
the LFS-number of a trace [w] is the minimal beam of v ∈ [w]. Equivalently, we
have:

Definition 7 (LFS-number). The LFS-number of a trace [w] is the least num-
ber l such that there exists a representative v = a1 . . . ak ∈ [w] such that for each
1 � j � k we have #Last([a1 . . . aj ]) � l.

As explained above, we aim at exploring prime traces. For this, the LFS
approach exhibits an upper bound for the LFS-numbers of prime traces. This is
based on a combinatorial aspect of the independence alphabet. For any action
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c ∈ Σ, Σc denotes the subset of actions b ∈ Σ which are dependent with c.
Then the communication degree of (Σ, ‖) is the maximal parallel degree of the
restricted independence alphabet (Σc, ‖ ∩(Σc×Σc)) when c ∈ Σ. In other words:

Definition 8. The communication degree of (Σ, ‖) is the maximal number n of
pairwise independent actions which all depend on a common action, i.e. n =
max{|B| | B ⊆ Σ,∃c ∈ Σ, (∀b ∈ B, c 
 ‖ b}) and (∀b, b′ ∈ B, b 
= b′ =⇒ b ‖ b′)}.

Obviously the communication degree n is smaller than the parallel degree m
of (Σ, ‖). Actually, in many formalisms for concurrent systems, we observe that
n tends to be small compared to m. For instance, many process algebras restrict
communication to pairs of send and receive actions, leading to a communication
degree 2. This bound holds for message sequence charts as well. The dependency
relations resulting from Petri-nets are bounded by the number of presets and
postsets of transitions, which are often very small compared to the size of the
entire net.

The main technical result of [NHZL01] can be summarized as follows:

Theorem 1 (LFS-bound). For all prime traces [w] ∈ M(Σ, ‖), the LFS-
number of [w] is at most �(n− 1) logn(m)�+ 1, where m and n are respectively
the parallel degree and the communication degree of (Σ, ‖).

We will refer to �(n− 1) logn(m)�+1 as the LFS-bound of (Σ, ‖). Note that
for the case of n = 2, the LFS-bound simplifies to �log2(m)�+1 which compares
favorably to the naive upper bound m.

Let us discuss the meaning of this theorem concerning the trace system of
an asynchronous transition system and how this was exploited in [NHZL01] for
the original version of local first search.

The LFS-number yields a partition of the states in the trace system, from 0
(for [ε]) potentially up to m. Then the theorem implies that the prime traces are
reachable from the initial state via paths avoiding traces with a span exceeding
the LFS-bound, and thus by traces with LFS-number smaller than this bound.
On the other hand, local properties can be analyzed with attention restricted to
prime traces.

The original LFS then exploited these facts via the construction of an ex-
tended transition system with states (s,M), where s is a state of the original
transition system and M ⊆ Σ is the subset of last actions of a trace [w] leading
to s. However, the original LFS may have to explore a single state s several
times (with different sets of last actions). While the experiments showed that
the strategy LFS gives good results if a state searched for exists with a low
LFS-number, the construction of the state space up to the LFS-bound typi-
cally produced state spaces exceeding the size of the original transition system,
i.e. with growing LFS-number the size of the class of states grows quickly and
the state doubling phenomenon produces more overhead than can be possibly
avoided by the reduction. The aim of this work is to combine notions from LFS
with notions known from McMillan unfoldings to overcome this state copying
problem.
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5 Locally Complete Finite Subsystem of a Trace System

Similar to the complete finite prefix of the maximal branching process of a Petri
net, we now want to define a subsystem of the trace system with the following
properties:

– It should be computable and be no bigger than the state space of the original
asynchronous transition system.

– It should be complete in the sense that it preserves reachability of local
properties with respect to the unreduced trace system.

– It should not contain traces with LFS-number exceeding the LFS-bound.

The construction is modular and relies on three steps:

– The first step is to define a reduced trace system according to some reduction
strategy, that preserves prime traces and thus reachability of local properties.
In the present work, we will use the LFS-bound for this purpose but other
reductions may work as well. The resulting reduced trace system is typically
still infinite.

– The definition of an adequate order on the states of the (reduced) trace
system that leads the construction of a finite prefix of the reduced trace
system (in this particular order).

– The definition of a cutoff criterion, which will eliminate states explored “be-
fore” according to the adequate order.

In the rest of this paper, we consider a finite asynchronous transition system
T = (S,→, s0).
Definition 9. A (reachable) subsystem of the trace system T S(T ) is a subset of
traces R ⊆ L(T )/∼ such that for every trace [w] ∈ R there exists a (predecessor)
trace [v] ∈ R with [w] = [v.a] for some a ∈ Σ.
In other words, the restriction of the trace system T S(T ) to a subsystem R
provides us with a new transition system whose states are reachable from the
initial empty trace. Since we want to avoid a complete construction of T S(T ) we
will actually build such a subsystem only. However, this subsystem must keep
enough information in order to check local properties.

Definition 10. A subsystem R is locally complete if for all local properties P
and for all traces [w] ∈ L(T )/∼ such that σ([w]) ∈ P there exists [w′] ∈ R such
that σ([w′]) ∈ P .

Thus, given a locally complete subsystem R, a local property P is reachable
in the asynchronous transition system T if, and only if, there is a trace [w] ∈ R
that satisfies P , i.e. σ([w]) ∈ P . Therefore, what we need essentially is to build
a finite and locally complete subsystem of the unfolding T S(T ).

A basic method to stop the construction of traces while exploring a trace
system is to fix a set F of “forbidden” traces. Clearly, for any subset F ⊆
M(Σ, ‖), there exists a largest subsystem RF that contains no trace of F , i.e.
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RF ∩ F = ∅. This subsystem is called the subsystem that forbids F . Note, that
conceptually forbidding traces can be done hierarchically, because forbidding
F ′ ⊆ RF in RF can be understood to yield the subsystem RF∪F ′ .

Definition 11. We call LFS-excessive any trace whose LFS-number is greater
than the LFS-bound of (Σ, ‖). The LFS-subsystem of T S(T ) is the subset of all
traces that are not LFS-excessive.

One can easily show that the subsystem RLFS that forbids the set LFS-
excessive traces is precisely the LFS-subsystem of T S(T ).

Due to Theorem 1, the LFS-subsystem of T S(T ) contains all prime traces. It
is therefore locally complete (Prop. 1). However it is in general still infinite. So
we need to forbid some more traces to get a finite subsystem. A key ingredient
we borrow from the theory of Petri nets unfoldings is that of an adequate order
[ERV96] on traces:

Definition 12 (Adequate order). A partial order � on the whole set of traces
M(Σ, ‖) is called adequate if

(Ad1) it is well-founded;
(Ad2) it refines the prefix order, i.e. [u] � [v] implies [u] � [v];
(Ad3) it is a right congruence, i.e. [u] � [v] implies [u.z] � [v.z] for any z ∈ Σ�.
Noteworthy, the last condition implies that if [u] � [v] then [u.z] � [v.z] for
any word z ∈ Σ�. We will use some adequate order to specify how traces are
explored and which additional traces should be forbidden. We will discuss some
examples of adequate orders in the next section.

Definition 13 (Cutoff trace with respect to a subsystem). Given an ad-
equate order � on traces and a subsystem R, we say that a trace [v] ∈ R is a
cutoff trace with respect to R if there exists a trace [u] ∈ R such that [u] � [v]
and σ(u) = σ(v).

Now we can state our main theorem.

Theorem 2. For all adequate orders, the subsystem R that forbids both the
LFS-excessive traces and the cutoff traces with respect to the LFS-subsystem, is
locally complete and finite.

Proof. We first show by contradiction that R is locally complete. Let P be a local
property of T . Let [w] ∈ L(T )/∼ be a trace such that σ([w]) ∈ P but for all
traces [w′] in the subsystem R it holds that σ([w′]) 
∈ P . Since � is well-founded
(Ad1), we can choose [w] to be �-minimal among the traces [v] with σ([v]) ∈ P .

We observe first that [w] is a prime trace. Otherwise we would have v1.a1 ∼
w ∼ v2.a2 with a1 ‖ a2. Since P is local, either a1 or a2 is invisible for P and
[v1] or [v2] satisfies P . Since � refines the prefix order of traces (Ad2), [w] would
not be �-minimal.

Consequently, [w] is a trace of the LFS-subsystem of T (Theorem 1). The
reason for it not to make part of the subsystem R must thus rely on an ancestor
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[v] of [w] in the LFS-subsystem that is a cutoff trace. So [w] = [v.v′]. The fact
that [v] is a cutoff trace implies the existence of some trace [u] � [v] in the
LFS-subsystem with σ(u) = σ(v). Consequently, [u.v′] ∈ L(T )/∼ and Ad3 yields
[u.v′] � [v.v′]. Since σ(u.v′) = σ(v.v′) = σ(w), [u.v′] satisfies P and [u.v′] � [w].
This contradicts the assumption that [w] is �-minimal.

We now prove that R is finite. Consider the subsystem R′ that consists of all
traces [u] with |u| � |S|. Clearly R′ is finite. We need just to check that R ⊆ R′,
by contradiction. Assume [u] ∈ R \ R′. For all linear extensions a1 . . . ak ∈ [u],
we have σ(a1 . . . ai) = σ(a1 . . . aj) for some 1 � i < j � k because k > |S|. Since
R forbids cutoff traces, [u] is not reachable in R.

Corollary 1. If the adequate order � is total then |R| � |S|.
Proof. By contradiction, assume |R| > |S|. Then there are two distinct traces
[u], [v] ∈ R such that σ(u) = σ(v). We may assume [u] � [v] because � is total.
Then [v] is a cutoff trace hence [v] 
∈ R.

6 Algorithmics

In this section, we show how to apply Theorem 2 to obtain a reachability algo-
rithm for local properties.

Theorem 2 relies on an adequate order under which it gives a definition of a
locally complete finite subsystem of the trace system, but it does not immediately
give an algorithm for computing this subsystem. The crucial step towards an
algorithm is the choice of an adequate order with good algorithmic properties.
Indeed, so far we did not even require the adequate order to be decidable.

The literature proposes a number of adequate orders that have been used in
implementations of McMillan’s unfolding method:

1. McMillan’s original order was induced by |w|, the “number of events” in a
trace [w]. Let us call this order of M(Σ, ‖) the length order. Its advantage
is its simplicity and low (logarithmic) complexity and that it corresponds
closely to breadth first search.

2. Of course, the prefix order itself also is adequate, as is mentioned in some
sources. It is however of no practical interest.

3. In [ERV96], an adequate order based on a lexicographic order on the se-
quences of sets of labels of the Foata normal form of traces was proposed.
An important aspect of this order is that it is total. The advantage of a total
order is that it results in a subsystem with at most one trace for each state of
the unreduced transition system (Corollary 1). This is in contrast to the sim-
pler order of McMillan, which can result in subsystems exponentially larger
than the transition system. The price to be paid is that the order based on
Foata normal form takes a worst case linear time effort to compute.

4. In [ER99], another total adequate order was proposed that – while also
having worst case linear complexity – has algorithmic advantages and seems
to be faster on average than the one based on the Foata normal form. Since
this is the order we currently use, we will introduce it below.



396 S. Bornot et al.

Apart of the complexity of decision and the discrimination (totality), there is
another important aspect for the choice of an adequate order: While Theorem 2
uses only the fact that the adequate is well-founded, an algorithm should intu-
itively construct the subsystem “in that order”, i.e. the adequate order should
permit to enumerate the traces, otherwise said be of ordinal type ω.

The total orders mentioned above have precisely this property, as they refine
the length order and for a given length there is only a finite number of traces.
Another interesting property of adequate orders that refine the length order is
that they are compatible with breadth first search.

A particular adequate order. In order to introduce the adequate order of
[ER99], we rely on a concrete representation of independence [Zie87]: Given a
finite set of locations Loc, a distributed alphabet is a family (Σl)l∈Loc of (finite)
local alphabets (which may overlap).

A distributed alphabet (Σl)l∈Loc induces an independence alphabet (Σ, ‖),
where Σ :=

⋃
l∈LocΣl and a ‖ b if there does not exist l ∈ Loc such that both

a ∈ Σl and b ∈ Σl. Conversely, it is easy to see that for any independence
alphabet (Σ, ‖) there exists a distributed alphabet (Σl)l∈Loc inducing it3.

From now on, let (Σl)l∈Loc be a fixed distributed alphabet and (Σ, ‖) the in-
duced independence alphabet. Moreover, let πl : Σ� → Σ�l denote the projecting
homomorphism with πl(a) = a for a ∈ Σl and πl(a) = ε for a /∈ Σl.

It is a well known fact that for u, v ∈ Σ� we have u ∼ v iff πl(u) = πl(v) for
all locations l ∈ Loc [DR95]. This allows us to call (πl(w))l∈Loc the distributed
representation of the trace [w]. This is a very useful data structure for the manip-
ulation of traces as it allows efficient tests for ∼, but also easy (componentwise)
concatenation.

Definition 14 (Esparza-Römer order).
Let � denote a total order on Σ and Loc = {1, . . . , h} be an enumeration

of the locations. Let �lex denote the induced (total) lexicographic order on Σ�

induced by (Σ,�).
For l ∈ Loc and u, v ∈ Σ�l , let u �l v iff |u| < |v|, or |u| = |v| and u <lex v.
The Esparza-Römer order �ER on traces is defined by [u] �ER [v] if either

|u| < |v|, or |u| = |v| and there exists l ∈ Loc such that πl(u) �l πl(v) and for
all l′ with 1 � l′ < l we have πl′(u) = πl′(v).

It is easy to verify that �ER is an adequate order and moreover total. By defi-
nition, it refines the length order. For an extended discussion of this order, see
[ER99].

An algorithm. Based on a total adequate order � that refines the length order
as parameter, we give an abstract algorithm for computing the associate locally
complete finite subsystem (c.f. Algorithm 1). It computes the non-cutoff traces
3 It is sufficient to take a collection of cliques (Σl, Σl × Σl) in the graph (Σ, � ‖) such

that they cover the graph.
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Algorithm 1 Computation of a finite locally complete subsystem
Require: |u| < |v| implies [u] � [v].

Table← {(s0, [ε])}
Previous Level← {(s0, [ε])}
while Previous Level �= ∅ do

Current Level← ∅
for all (s, [u]) ∈ Previous Level do

for all a ∈ Σ, s′ ∈ S such that s a→ s′ do
if #Last([u.a]) � LFS-bound then

if (s′, [v]) ∈ Table then
if [u.a] � [v] then {We have |u.a| = |v| and (s′, [v]) ∈ Current Level}

Table← (Table \ {(s′, [v])}) ∪ {(s′, [u.a])}
Current Level← (Current Level \ {(s′, [v])}) ∪ {(s′, [u.a])}

end if
else

Table← Table ∪ {(s′, [u.a])}
Current Level← Current Level ∪ {(s′, [u.a])}

end if
end if

end for
end for
Previous Level← Current Level

end while
Return Table

level by level (in terms of the number of events) and stores them together with
the corresponding state in a set (in practice, in a hash table). Once a level is
empty, we stop.

While many algorithmic improvements on the level of detail are possible,
we integrate one explicitly into the description of the algorithm: On a given
level, we do not explore the traces in the adequate order but in any order. As a
consequence, we may have to remove certain states on a given level if we find the
same state on the same level with a smaller trace. The advantage is that we only
have to test for the adequate order whenever we reach the same state several
times, but no (inefficient) enumeration of the traces of one level is required.

First experimental results. Currently, only an early prototype written in
Caml exists, which does neither allow insights on the runtime of the procedure,
nor the exploration of big examples. However, it allows to measure the size of
the state spaces explored and thus it gives hints on the potential of the unfolding
LFS method, also in comparison to the original LFS procedure [NHZL01].

We consider two well known series of examples, that are known to have
relative small Petri net unfoldings, the asynchronous n-token buffer and the
dining philosophers. We have not tried to verify any properties on these examples,
we only measure the number of states explored with different methods.
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Table 1. Experimental results: Number of states with different methods

The upper parts of the tables expose the number of buffer cells (philosophers
respectively), the size of the state space without reduction, then the sizes of
state spaces explored with the original LFS procedure of [NHZL01] and for the
unfolding LFS procedure of this work.

As explained in [NHZL01], the bound �log2m�+1 yields a blowup rather than
a reduction for the original LFS procedure, as the reduction gains are weaker
than the blowup induced by the need to separate states with different sets of
maximal events. However, the theoretical bound of �log2m� + 1 is a sufficient
upper bound for a worst case. For our examples, the actual LFS-number of
any prime trace is bounded by 2, so that LFS applied with bound 2 is already
exhaustive for local properties. Moreover, we have recently established dynamic
criteria allowing to determine the absence of any prime trace with an LFS-
number exceeding a certain level [LZ02]. For our examples, exploration up to
LFS-bound 3 is sufficient to check the absence of local traces with a higher
LFS-number.

Hence, we also show the numbers of states explored with bounds 2 and 3 in
the lower parts of the tables. With exploration up to these levels, original LFS
(with some heuristic improvements explained in [NHZL01]) already gives very
good reductions.

The results for unfolding LFS show additional reductions compared to orig-
inal LFS. As with original LFS, we observe a rapid explosion of the number
of states with rising LFS-number. For the examples considered, the theoretical
bound of �log2m�+ 1 does give a reduction, but initially not a strong one: Ap-
parently, for a small number of philosphers, a significant fraction of all states
have relatively low LFS-numbers.
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However, the reduction increases with a growing number of philosophers and
thus a growing difference4 between the LFS-bound and the degree of parallelism
(for 12 philosophers, the reduction is already at 75%). Although it is difficult
to predict reductions for a big number of philosophers, they can be expected to
be stronger and stronger. Indeed, LFS is designed to give reductions for a large
number of components.

On the other hand, the reduction using the dynamic LFS-bound (2 and 3,
see discussion above) is enormous on the whole. Even for the case 2 (sufficient
in this case for the detection of counter-examples) the reduction significantly
improves over the already impressing numbers for the original LFS.

Summarizing, we consider the additional reduction a sufficient justification
for further exploration of our approach. Of course, further experiments are nec-
essary for a full assessment of the method.

7 Conclusions

In this work, we have conceived a hybrid reduction method combining Local First
Search [NHZL01] with important notions from Petri net unfoldings [McM92,
ERV96]. This unfolding LFS eliminates an essential drawback of the original
LFS, the need to explore certain states several times. The result is a method for
searching and proving local properties with reductions significantly improving
over Local First Search. In contrast to the Petri net unfolding approach, LFS
only relies on the dependency relation and is thus black box, applicable to any
kind of transition system with diamond properties.

On the practical side, there is a lot of work to be done: Apart of improving the
complexity of our prototype implementation, heuristic improvements for further
cropping of the state space should result in a wider applicability.

An important question concerns potential combination with other partial or-
der reduction methods: Indeed, LFS (original or unfolding based) does eliminate
diamonds of big dimensions but not the diamonds of small dimensions (below
the LFS-bound), so the reduced systems still expose some potential for further
partial order reductions. First steps in this direction are explored in [LZ02].
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