
Applicability of Fair Simulation

Doron Bustan and Orna Grumberg

Computer Science Department
Technion, Haifa 32000, Israel

{orna,doron2}@cs.technion.ac.il

Abstract. In this paper we compare among four notions of fair sim-
ulation: direct [6], delay [7], game [10], and exists [9]. Our comparison
refers to three main aspects: The time complexity of constructing the fair
simulation, the ability to use it for minimization, and the relationship
between the fair simulations and universal branching-time logics.
Based on our comparison we derive several practical implications: We
develop an efficient approximated minimization algorithm for the di-
rect/delay simulations. In addition, we suggest a new implementation
for the assume-guarantee modular framework presented in [9]. The new
implementation, significantly improves the complexity of the framework.

1 Introduction

Temporal logic model checking is a method for verifying finite-state systems with
respect to propositional temporal logic specifications. The method is fully auto-
matic and quite efficient in time, but is limited by its high space requirements.
Many approaches for overcoming the state explosion problem of model checking
have been suggested [4]. They are often based on the idea that the model of the
verified system can be replaced by a more abstract model, which is smaller in
size. The abstract and concrete models are sufficiently similar, so that properties
that are verified on the abstract model can be concluded as true for the con-
crete one. This idea is often formalized by relating models with the simulation
preorder [14] in which the greater, more abstract model has “more behaviors”,
and the verified properties are written in a universal branching time logic such
as ACTL or ACTL∗ [9].
In order to avoid unrealistic behaviors introduced to the model by abstrac-

tion, it is common to add fairness constraint that distinguish between wanted
(fair) and unwanted (unfair) behaviors and to exclude unfair behaviors from
consideration. The simulation preorder does not distinguish between fair and
unfair behaviors. It is therefore desirable to find an alternative definition that
relates only fair behaviors of the two models. This task, however, is not uniquely
defined. Indeed, several distinct notions of fair simulation have been suggested
in the literature [6,7,10,9].
A question that naturally arises is, which notion of fair simulation is prefer-

able. In [10] some of these notions are compared with respect to the complexity
of checking for fair simulation. In [7] a different set of notions is compared with
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respect to two criteria: The complexity of constructing the preorder, and the
ability to minimize a fair model by constructing a quotient model that is lan-
guage equivalent to the original one.
In this paper we give a wider comparison among four notions of fair simula-

tion: direct [6], delay [7], game [10], and exists [9]. We refer to several criteria,
which emphasize the advantages of each of the notions. The results of the com-
parison are summarized in a table in Figure 1.
Based on our comparison we derive several practical implications. We develop

an efficient approximated minimization algorithm for the delay, game and exists
simulations. For these preorders, a unique equivalent smallest model does not
exist. Therefore, an approximation is appropriate. In addition, we suggest a new
implementation for the assume-guarantee [8,11,15,16] modular framework, pre-
sented in [9]. The new implementation, based on the game simulation rather than
the exists simulation, significantly improves the complexity of the framework.
Our comparison refers to three main aspects of fair simulation. The first is

the time complexity of constructing the preorder. There, we mainly summarize
results of other works (see Figure 1). We see that constructing the direct, delay
and game simulations is polynomial in the number of states n and the number
of transitions m [7]. In contrast, constructing the exists simulation is PSPACE-
complete [12] .
The second aspect that we consider is the ability to use the preorder for

minimization. We say that two models are equivalent with respect to a preorder
if each is smaller by the preorder than the other. The goal of minimization is to
find the smallest in size model which is equivalent with respect to the preorder
to the original one1.
We examine for each of the fair simulation preorders the following three

issues. Given a model M , 1. Is there a unique smallest in size model that is
simulation equivalent toM . 2. Is the quotient model ofM , simulation equivalent
to M . 3. Is the result of disconnecting little brothers (to be explain in Sect. 3)
in M , simulation equivalent to M .
Our examination (see Figure 1) leads to a new minimization algorithm that

uses the direct and delay simulations as approximations for the game and exists
simulations. The new algorithm obtains a better reduction than the algorithm
suggested in [7].
The third aspect is the relationship between the simulation preorders and

universal branching-time logics. A basic requirement is that the preorder pre-
serves the specification logic, I.e. if M1 ≤ M2 then, for every formula φ in the
logic, M2 |= φ implies M1 |= φ. Indeed all four notions of fair simulation satisfy
this requirement. A stronger requirement is that the preorder has a logical char-
acterization by some logic. This means that M1 ≤M2 iff for every formula φ in
the logic, M2 |= φ implies M1 |= φ.
Logical characterization is useful in determining if modelM2 is an abstraction

of modelM1, when the logic L should be preserved. If the preorder ≤ is logically
1 Note that this is a stronger criterion than the one used in [7], where only language
equivalence is required.
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characterized by L then checkingM1 ≤M2 is a necessary and sufficient condition
and will never give false negative result.
Another important relationship between a logic and a preorder is the exis-

tence of a maximal model Tφ for a formula φ such that for every model M ′,
M ′ ≤ Tφ if and only if M ′ |= φ. Maximal models are used as tableaux in the
framework described in [9] for the assume-guarantee paradigm.
In this work we show that there is a maximal model for ACTL formulas also

with respect to the game simulation. In addition, we show that other conditions
required for a sound implementation of the assume-guarantee paradigm hold for
the game simulation.
The results of our comparison are presented in the table in Figure 1. The

proofs of the claims that are not cited appear in the next sections. Due to lack
of space some proofs are omitted. The rest of the paper is organized as follows:

minimization relation to logic
simulation time complexity unique quotient little has maximal
notion of constructing smallest model brothers logical model

the preorder model characterization
Direct O(m · n) [7] true true true false false
Delay O(m · n3) [7] false true 2 false false false
Game O(m · n3) [7] false false [7] false ∀AFMC [10] true
Exists PSPACE false false false ACTL∗ true

complete [12] [9]

Fig. 1. The properties of the different notions of fair simulation

In Section 2 we define the simulation preorder and the different notions of fair
simulation. Section 3 investigates simulation minimization. Section 4 investigates
the relationships of fair simulation with logic. In Section 5 we prove that the
game simulation can replace the exists simulation in the implementation of the
assume-guarantee paradigm. Finally, in Section 6 we discuss some conclusions.

2 Preliminaries

Let AP be a set of atomic propositions. We model systems by a fair Kripke
structure M over AP , M = (S,R, S0, L, F ), where S is a finite set of states,
S0 ⊆ S is a set of initial states, R ⊆ S × S is the transition relation, which
must be total. That is, for every state s ∈ S there is a state s′ ∈ S such that
(s, s′) ∈ R (states which do not satisfy this condition are deleted). L : S → 2AP
is a function that labels each state with the set of atomic propositions true in
that state, and F ⊆ S is a set of fair states.
2 In [7] it is shown that the quotient model is language equivalent to the original
model. Here, we show that they are delay equivalent.



404 D. Bustan and O. Grumberg

Let s be a state in a Kripke structure M . A trace in M starting from s is an
infinite sequence of states ρ = s0s1s2 . . . such that s0 = s, and for every i ≥ 0,
(si, si+1) ∈ R. The i-th state of trace ρ is denoted ρi. In order to capture the
infinite behavior of ρ, we define
inf(ρ) = { s | s = ρi for infinitely many i }.
We say that a trace ρ is fair according to the fair set F iff inf(ρ) ∩ F 
= ∅.
In this work we refer to two branching-time logics ACTL∗ and ACTL [9].

ACTL∗ is the universal fragment of the powerful branching-time logic, CTL∗.
ACTL∗ consists of the temporal operators X (next-time), U (until) and R (re-
lease), as well as the universal path quantifier A (for all paths). ACTL is a
restricted sublogic of ACTL∗ in which every temporal operator is immediately
preceded by a path quantifier. Due to lack of space we define precisely only
ACTL. We define ACTL formulas in negation normal form, namely, negation
is applied only to atomic propositions. ACTL is the set of formulas defined as
follows:

– if p ∈ AP then p and ¬p are formulas.
– If φ and ψ are formulas, then φ ∧ ψ and φ ∨ ψ are formulas.
– If φ and ψ are formulas, then AXφ, A[φU ψ] and A[φR ψ] are formulas.

An ACTL formula φ is interpreted in a state s, with respect to the fair traces
which start at s. The formal definition of the semantics for ACTL can be found
in [4]. We say that M |= φ iff for every initial state s0 ∈ S0, M, s0 |= φ.

2.1 Simulation and Fair Simulation

We start by defining simulation relation over Kripke structures with F = S
(Kripke structures with trivial fairness constraints).

Definition 1. Given two structures M1 and M2 over AP , a relation H ⊆ S1 ×
S2 is a simulation relation [14] over M1 ×M2 iff the following conditions hold:

1. For every s01 ∈ S01 there exists s02 ∈ S02 such that (s01, s02) ∈ H.
2. For all (s1, s2) ∈ H,

a) L1(s1) = L2(s2) and
b) ∀s′1[(s1, s′1) ∈ R1 → ∃s′2[(s2, s′2) ∈ R2 ∧ (s′1, s′2) ∈ H]].

M2 simulates M1 (denoted by M1 ≤M2) if there exists a simulation relation H
over M1 ×M2. We say that M1 and M2 are simulation equivalent if M1 ≤ M2
and M2 ≤ M1. Similarly (s1, s2) ∈ H is denoted s1 ≤ s2 and s1 and s2 are
equivalent if s1 ≤ s2 and s2 ≤ s1 and denoted s1 ≡ s2.
The relation≤ is a preorder on the set of structures. That is,≤ is reflexive and

transitive. In [9,2] it is shown thatM1 ≤M2 iff, for every ACTL∗ formula ψ (with
atomic propositions in AP ), M2 |= ψ implies M1 |= ψ. Thus, simulation relation
has logical characterization over structures with trivial fairness constraints.
Next, we define the different notions of fair simulation.
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Definition 2. H ⊆ S1×S2 is a direct simulation relation [6] (≤di) overM1×M2
iff it satisfies the conditions of Def. 1 except that 2a is replaced by:
2(a′) L1(s1) = L2(s2) and s1 ∈ F1 implies s2 ∈ F2.

Definition 3. [9] H ⊆ S1 × S2 is an exists simulation (≤∃) over M1 ×M2 iff
it satisfies the conditions of Def. 1 except that 2b is replaced by:
2(b′) for every fair trace ρ1 from s1 in M1 there exists a fair trace ρ2 from s2 in
M2 such that for all i ∈ IN , (ρi1, ρ

i
2) ∈ H.3

The next definitions are based on games. We start with a game that characterizes
the simulation over structures with trivial fairness constraints. Given two Kripke
structures M1,M2, we define a game of two players over M1,M2. The players
are called the adversary and the protagonist, where the adversary plays on M1
and the protagonist plays on M2.

Definition 4. Given two Kripke structures, M1 and M2, a simulation game
consists of a finite or infinite number of rounds. At the beginning, the adversary
selects an initial state s01 in M1 to start from, then the protagonist responds by
selecting an initial state s02 in M2 such that L1(s01) = L2(s02). In each round,
assume that the adversary is at s1 and the protagonist is at s2. The adversary
then moves to a successor s′1 of s1 on M1, after which the protagonist moves to
a successor s′2 of s2 on M2 such that L1(s′1) = L2(s′2).

If the protagonist does not have a matching state then the protagonist fails.
Otherwise, if the protagonist always has a matching successor to move to, then
the game proceeds ad infinitum for ω rounds and the protagonist wins. The
adversary wins iff the protagonist fails.

Definition 5. Given two Kripke structures M1 and M2, a strategy π of the
protagonist is a function π : (S1 × S2 → S2) ∪ (S01 × {⊥} → S02). The function
π should satisfy the following: If s′2 = π(s

′
1, s2) then (s2, s′2) ∈ R2.

The protagonist plays according to a strategy π if initially when the adversary
selects s01 ∈ S01 the protagonist selects s02 = π(s01 ,⊥) and, for every round
i, when the adversary moves to s′1 and the protagonist is in s2 then the pro-
tagonist moves to s′2 = π(s

′
1, s2). π is a winning strategy for the protagonist if

the protagonist wins whenever it plays according to π. We can now present an
alternative definition to the simulation preorder. This definition is equivalent to
Def. 1 [10].

Definition 6. Given two Kripke structures, M1 and M2, M2 simulates M1
(M1 ≤ M2) iff the protagonist has a winning strategy in a simulation game
over M1,M2.

In order to extend the simulation game to fair simulation, we add a winning
condition which refers to the infinite properties of the game. We then give two
additional definitions of fair simulation, the delay (≤de) and the game (≤g)
simulations.
3 In such a case we use the notation (ρ1, ρ2) ∈ H.
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Definition 7. [7] The protagonist delay wins a game over two fair Kripke struc-
tures M1 and M2 iff the game is played for infinitely many rounds. Moreover,
whenever the adversary reaches a fair state then the protagonist reaches a fair
state within a finite number of rounds.

Definition 8. [10] The protagonist game wins a game over two fair Kripke
structures M1 and M2, iff the game is played for infinitely many rounds. More-
over, if the adversary moves along a fair trace, then the protagonist moves along
a fair trace as well.

We say that π is a delay/game winning strategy for the protagonist if the pro-
tagonist delay/game wins whenever it plays according to π.

Definition 9. [10,7] Given two fair Kripke structures, M1 and M2, M2 de-
lay/game simulates M1 iff the protagonist has a delay/game winning strategy
over M1,M2.

Definitions 2,3,9 are extensions of Def.1 and its equivalent Def. 6. Consequently,
on structures with trivial fairness constraints (F = S), all four definitions are
equivalent. In [10,7] the following relationships over the fair simulation preorders
are shown,
M1 ≤di M2 ⇒ M1 ≤de M2 ⇒ M1 ≤g M2 ⇒ M1 ≤∃ M2
Note that the definitions of game/exists simulation are not limited to specific
types of fairness constraints. They hold even if M1 and M2 each has a different
type of fairness constraints. Finally we extend the delay/game simulations for
states.

Definition 10. For all states s1 and s2 in a structure M , s1 ≤de/g s2 if the
protagonist has a winning delay/game strategy in a game over M ×M where the
adversary starts at s1 and the protagonist starts at s2.

3 Simulation Minimization

For structures with trivial fairness constraints (F = S), two forms of redundancy
are considered [3]. These redundancies are handled in [3], by first constructing a
quotient structure which results in a structure without equivalent states and then
disconnecting little brothers eliminating the other redundancy. For structures
with trivial fairness constraints, the result of eliminating these redundancies is a
unique, smallest in size structure which is simulation equivalent to the original
structure [3].

Lemma 1. For every structure, there exists a unique, smallest in size structure,
which is direct simulation equivalent to it.

The proof of Lemma 1 and the construction of the smallest structure can be
obtained in the same manner as in [3]. Unfortunately, performing the same op-
erations for the other notions of fair simulations might result in an inequivalent
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structure. In this section we investigate minimization with respect to each no-
tion of fair simulation. We start by checking whether the quotient structure is
equivalent to the original one. Next we check whether it is safe to disconnect
little brothers. We then determine whether there exists a unique smallest in size
equivalent structure. Finally we use the results of this section to suggest a new
better minimizing algorithm.

Definition 11.

– The language of s1 is contained in the language of s2 (s1 ⊆ s2) if for every
fair trace ρ1 from s1 there is a fair trace ρ2 from s2 such that ∀i ≥ 0,
L(ρi1) = L(ρ

i
2).

– M1 ⊆M2 if for every fair trace starting at an initial state s01 ∈ S01 there is
a fair trace starting at an initial state s02 ∈ S02 such that ∀i ≥ 0, L1(ρi1) =
L2(ρi2).

– M1 is language equivalent to M2 if M1 ⊆M2 and M2 ⊆M1.

Clearly, all notions of fair simulation imply language containment.

Quotient Structure
In a quotient structure all equivalent states are unified into equivalence classes.
The equivalence classes are the states of the quotient structure. There is a tran-
sition from one equivalence class to another iff there exists a transition from
a state in the former to a state in the latter. An equivalence class is initial if
it contains an initial state and is fair if it contains a fair state. For the delay
simulation, we presents the following lemma.

Lemma 2. Let MQ be the quotient structure of a structure M . Then M ≡de
MQ.

In [7] it is shown that the quotient structure with respect to game simulation
is not equivalent to the original one. We show that for every preorder ≤♣ that
lies between game simulation and language containment, the quotient structure
with respect to this preorder may not be equivalent to the original structure.

Lemma 3. Let ≤♣ be any preorder such that for every M1, M2,
M1 ≤g M2 ⇒M1 ≤♣ M2 ⇒M1 ⊆M2.
Then there exists a structure M whose quotient structure with respect to ≤♣ is
not equivalent to M with respect to ≤♣.

Proof sketch. Consider the structure M1 in Figure 2. States s0 and s2 are
equivalent with respect to game simulation. To see that, consider a strategy
that instructs the protagonist to move to the same state the adversary moves
to. This strategy proves both directions of the game equivalence. Since M1 ≤g
M2 ⇒ M1 ≤♣ M2, s0 and s2 are also equivalent with respect to ≤♣. Since
M1 ≤♣ M2 ⇒ M1 ⊆ M2, it is sufficient to prove that the result of unifying
states s0 and s2 is not language equivalent to M1. To see that, note that the
language ofM1 consists of all words in which both a and b occur infinitely often.
However, any structure with two states that contains this language, must also
contain a word with a suffix of a’s only (or b’s only). ��



408 D. Bustan and O. Grumberg

Corollary 1. For exists/game simulation, the quotient structure is not neces-
sarily equivalent to the original structure.

b

1

a b

a

0

2 3

a b

a

0 1

2

b

b

a

0’ 1’

2’

M
M1 M2

Fig. 2. The structures M1 and M2 are equivalent to M with respect to game/exists
simulation, and they are both minimal. Note that states 0 and 2 (0′ and 2′) are equiv-
alent but cannot be unified. (double circles denote fair states)

Disconnecting Little Brothers
A state s2 is a little brother of another state s3 if both states are successors of the
same state s1, s2 ≤ s3 and s3 
≤ s2. Little brothers are disconnected by removing
the transition (s1, s2) from R.

Lemma 4. Let ≤♠ be a preorder such that
M1 ≤de M2 ⇒M1 ≤♠ M2 ⇒M1 ⊆M2.
The result of disconnecting little brothers with respect to ≤♠ in a structure M
might not be equivalent to M with respect to ≤♠.

Proof sketch. Consider the structureM1 in Figure 3. State s2 is a little brother
of state s1 with respect to ≤♠. To see that, note that s2 ≤de s1 and therefore,
s2 ≤♠ s1. Moreover, s1 
⊆ s2, and thus s1 
≤♠ s2.
Since M1 ≤♠ M2 ⇒ M1 ⊆ M2, it is sufficient to show that the result of

disconnecting s2 from s0 is not language equivalent to M1. But this is true since
disconnecting s2 results in a structure with no fair traces from s1. ��

Corollary 2. The result of disconnecting little brothers with respect to delay/
game/exists simulation might not be equivalent to the original structure with
respect to delay/game/exists simulation.

a

b

a

b

c
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1’ 2’

3’ 4’
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b
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b

c

0

1 2

3 4

a

b

a

b

c

0

1 2

3 4

M1M M2

Fig. 3. The structures M1 and M2 are equivalent with respect to delay/game/exists
simulation to M , and they are both minimal. Note that state 2 (4′) is a little brother
of 1 (0′) but cannot be disconnected.
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Unique Smallest in Size Structure

Lemma 5. Let ≤♠ be a preorder such that
M1 ≤de M2 ⇒M1 ≤♠ M2 ⇒M1 ⊆M2.
There is no unique smallest in size structure with respect to ≤♠.

Consider the structures in Figure 3. Structures M1 and M2 are equivalent with
respect to ≤♠ but are not isomorphic. Furthermore, there is no smaller structure
that is equivalent to M1 and M2.

Corollary 3. There is no unique smallest in size structure with respect to de-
lay/game/exists simulation.

An approximate minimization algorithm for delay/game/exists simu-
lation. In [3] two efficient procedures for minimizing with respect to ordinary
simulation are presented. In previous sections we have shown that when we con-
sider game/exists simulation these procedures cannot be used. Furthermore, we
have shown that there is no equivalent unique smallest in size structure with
respect to these simulations. As a result we are suggesting an algorithm that
performs some minimization but does not necessarily construct a minimal struc-
ture. Our algorithm uses the direct/delay simulations as an approximation of the
game/exists simulation. The algorithm is presented in Figure 4. The first step

Given a structure M ,

1. Construct a quotient structure M ′ with respect to delay simulation.
2. Construct M ′′ by disconnecting little brothers in M ′ with respect to direct simu-

lation.

Fig. 4. Minimization algorithm for the delay/game/exists simulations.

results in M ′ ≡de M . The second step results in M ′′ ≡di M ′. Since direct sim-
ulation implies delay simulation, M ′′ ≡de M . M ′′ is equivalent to M also with
respect game/exists simulation. The complexity of the first step is O(m ·n3) [7],
and of the second step O(m · n) [3]. Thus the total complexity of the algorithm
is O(m · n3).

4 Relating the Simulation Notions with Logics

In this section we check for each simulation notion whether it has a logical
characterization. Then we check whether there exists a maximal structure for
ACTL with respect to this notion.

4.1 Logical Characterization

Definition 12. Logic L characterizes a preorder ≤ if for all structures M1 and
M2, M1 ≤M2 if and only if for every formula φ in L, M2 |= φ implies M1 |= φ.
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[9] shows that, if M1 ≤∃ M2 then the following property holds. ∀φ ∈
ACTL∗, M2 |= φ implies M1 |= φ. Since all other simulation notions imply
the exists simulation, this property holds for all of these notions.
We now investigate which of the fair simulations satisfy the other direction

of logical characterization. In [1] it is shown that CTL∗ characterizes the ex-
ists bisimulation. The proof that ACTL∗ characterizes the exists simulation is
similar.
Unlike ACTL∗, ACTL does not characterize the exists simulation. In [1] two

structures M1 and M2 are given. It is shown in [1] that for every φ in ACTL,
M2 |= φ implies M1 |= φ. However, there exists an ACTL∗ formula ϕ such
that M2 |= ϕ but M1 
|= ϕ. Since ACTL∗ characterizes the exists simulation,
M1 
≤∃ M2.
Unfortunately, the game, direct and delay simulations cannot be character-

ized by either ACTL∗ or ACTL. In [10] two structures M1 and M2 are given
such that M1 ≤∃ M2 but M1 
≤g M2. Since ACTL∗ characterizes the exists sim-
ulation, for every φ in ACTL∗ (and therefore ACTL), M2 |= φ implies M1 |= φ.
Therefore, ACTL∗ (ACTL) does not characterizes the game simulation. Since
the direct/delay simulation implies the game simulation, ACTL∗ (ACTL) does
not characterize them as well.
The question that arises is, can the direct/delay/game simulation be char-

acterized by any other logic. [10] shows that the game simulation can be char-
acterized by the Universal Alternating Free µ-Calculus (∀AFMC) logic when
interpreted over fair structures.
We show that no reasonable logic that describes the fair branching behavior

of a structure can characterize the direct/delay simulation. Consider structures
M1 andM2 in Figure 5.M1 andM2 cannot be distinguished by a temporal logic
formula. However, M1 
≤de M2 and M1 
≤di M2. Thus both simulation cannot
be characterized by any such logic.

Fig. 5. The direct/delay simulations can not be characterized by temporal logics.

4.2 Maximal Structure

Next, we check for the existence of a maximal structure for a formula with respect
to a preorder.

Definition 13. A structure Mφ is maximal for formula φ with respect to pre-
order ≤ if for every structure M , M |= φ⇔M ≤Mφ.



Applicability of Fair Simulation 411

[9] presents a maximal structure for ACTL formulas with respect to ≤∃. Here we
show that the same structure is maximal with respect to the game simulation.
On the other hand we show that the formula A[aU b] has no maximal structure
with respect to the direct and delay simulations. This formula is contained in
both ACTL and ACTL∗.

A maximal structure for ACTL with respect to game simulation. We
prove that for every ACTL formula, the tableau of the formula as defined in [9],
is the maximal structure for the formula with respect to the game simulation.
Before we prove that, we give the main details of the tableau construction. In [9]
a different type of fairness constraints called generalized Büchi acceptance condi-
tion is used. A generalized Büchi acceptance condition is a set F = {f1, f2, . . . fn}
of subsets of S. A trace ρ is fair according to F iff for every 1 ≤ i ≤ n,
inf(ρ) ∩ fi 
= ∅. Since the game simulation is not limited to a certain type
of fairness constraints, we do not have to change anything in its definition.
For the remainder of this section, fix an ACTL formula ψ. Let APψ be the

set of atomic propositions in ψ. The tableau associated with ψ is a structure
Tψ = (ST , RT , S0T , LT , FT ).
We first define the set of elementary formulas el(ψ) of ψ. This set consists of

the atomic propositions in ψ, subformulas of ψ of the formAXφ, andAXA[φ1U
φ2], AXA[φ1 R φ2], for every A[φ1 U φ2], A[φ1 R φ2] subformulas of ψ.
The set of tableau states is ST = P(el(ψ))4. The labeling function is LT (st) =

st∩APψ. In order to specify the set S0T of initial states and the transition relation
RT , we need an additional function sat that associates with each sub-formula φ
of ψ a set of states in ST . Intuitively, sat(φ) will be the set of states that satisfy
φ. The set of initial states of the tableau is S0T = sat(ψ). The transition relation
is defined so that if AXφ is included in some state then all its successors should
satisfy φ.

RT (s1, s2) =
∧

AXφ∈el(ψ)
(AXφ) ∈ s1 ⇒ s2 ∈ sat(φ).

The fairness constraint guarantees that eventuality properties are fulfilled.

FT =
{ (
(ST − sat(AXA[φU ϕ])) ∪ sat(ϕ)

) ∣∣ AXA[φU ϕ] ∈ el(ψ)}.

The tableau is the maximal structure for game simulation. We now
summarize the main steps in the proof that for every Kripke structureM ,M |= ψ
iff M ≤g Tψ. The steps included in Lemma 6 are proved in [9]. The other steps
are different from [9] due to the change in the preorder.

Lemma 6. [9]

– For all sub-formulas φ of ψ and t ∈ ST , if t ∈ sat(φ), then t |= φ.
– For every ACTL formula ψ, Tψ |= ψ.
– if M ≤g Tψ, then M |= ψ.

4 Some of the states are deleted in order to keep RT total
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Our next step is to prove thatM |= ψ impliesM ≤g Tψ. We show that ifM |= ψ
then the protagonist has a winning strategy function in a game over M × Tψ.
We define the strategy function π as follows: π(s0,⊥) = {φ | φ ∈ el(ψ), s0 |= φ }
and π(s′, t) = {φ | φ ∈ el(ψ), s′ |= φ }. Thus, whenever the adversary moves
to a state s′ the protagonist moves to t′ = π(s′, t), such that both s′, t′ satisfy
exactly the same set of elementary formulas of ψ. It can also be shown that s′
and t′ agree on every subformula of ψ.

Lemma 7. π is a winning strategy.

Corollary 4. For any structure M , M |= ψ iff M ≤g Tψ. Thus, Tψ is the
maximal structure for ψ with respect to game simulation.

A Maximal Structure for Direct/Delay Simulation
We now show that it is impossible to construct a maximal structure for the for-
mula φ = A[aU b] with respect to the direct/delay simulations. Thus, any logic
that contains this formula or an equivalent formula, in particular ACTL and
ACTL∗, does not have a maximal structure with respect to these simulations.
Since the direct simulation implies the delay simulation, it is sufficient to prove
this result for the delay simulation. Consider the structures M0,M1, . . . in Fig-
ure 6, each of which satisfies A[aU b]. The following lemma shows that no finite
structure can be greater by the delay simulation than all of these structures.

Fig. 6. There is no finite structure M ′ such that for every n in IN , M ′ is greater by
direct/delay simulation than Mn, and M ′ |= A[aU b]

Lemma 8. For every n > 0 and every structure M ′, if Mn ≤de M ′ and M ′ |=
A[aU b] then |M ′| ≥ n.
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5 A New Implementation for the Assume-Guarantee
Framework

This section shows that the game simulation can replace the exists simulation in
the implementation of the assume-guarantee paradigm [8,11,15,16] as suggested
in [9].
[9] suggests a framework that uses the assume-guarantee paradigm for semi-

automatic verification. It presents a general method that uses models as assump-
tions; the models are either generated from a formula as a tableau, or are abstract
models which are given by the user. The proof of ψMφ meaning that, if ψ is
true in the environment then M |= φ, is done automatically by verifying that
the composition of the tableau for ψ with M satisfies φ. The method requires a
preorder ≤, a composition operator || and a specification language L . In [9] an
implementation for this framework is presented. The implementation uses the
ACTL logic as the specification language, the exists simulation preorder and a
composition operator. The ability to replace the exists simulation by the game
simulation is implied by Lemma 9.

Lemma 9. 1. For every two structures M1,M2, if M1 ≤g M2 then for every
formula ψ in L, M2 |= ψ implies M1 |= ψ.

2. For every two structures M1,M2, M1‖M2 ≤g M1.
3. For every three structures M1,M2,M3, M1 ≤g M2 implies M1‖M3 ≤g
M2‖M3.

4. Let ψ be a formula in L and Tψ be a tableau for ψ, then Tψ is the maximal
structure with respect to the preorder ≤g.

Complexity. Verifying a formula of the form ψMϕ is PSPACE-complete in
the size of ψ [13]. However, the real bottleneck of this framework is checking for
fair simulation between models, which for the exists simulation is PSPACE com-
plete in the size of the models (typically models are much larger than formulas).
Thus replacing the exists simulation by the game simulation reduces this com-
plexity to polynomial and eliminates the bottleneck of the framework. However,
the algorithm for game simulation, presented in [7], refers to Kripke structures
with regular Büchi constraints, and the implementation presented in [9] refers to
Kripke structures with generalized Büchi constraints. In order to apply the algo-
rithm suggested in [7] in the assume-guarantee framework, we need a translation
between these types of fairness constraints.
[5] defines a transformation of a Büchi automaton with generalized fairness

constraints into a Büchi automaton with regular fairness constraints. The result
of the transformation is game equivalent to the original structure, thus can re-
place it. The translation effects the size of the structure and thus the complexity
of the construction of the preorder. The sizes of S and R are multiplied by |F |,
where |F | is the number of sets in F . Thus the complexity of constructing the
preorder is |F | · |R| · (|S| · |F |)3 = |R| · |S|3 · |F |4. Note that in the tableau for
a formula, |F | is bounded by the size of the formula and the size of the tableau
is exponential in the size of the formula, thus, the transformation of the tableau
to regular fairness constraints is logarithmic in its size.
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6 Conclusion

The main consequence of this work is that there is no notion of fair simulation
which has all the desired advantages. However, it is clear that the exists and
game simulations have advantages in the relationship with the logics over the
delay and direct simulations. On the other hand, the delay and direct simula-
tions are better for minimization. Thus, it is advantageous to refer to the delay
and direct simulations as approximations of the game/exists simulations. These
approximations enable some minimization with respect to the exists and game
simulations. Out of the four notions, we consider the game simulation the best
due to its complexity and its applicability for modular verification.
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