Skip to main content

Genetic, Iterated and Multistart Local Search for the Maximum Clique Problem

  • Conference paper
  • First Online:
Applications of Evolutionary Computing (EvoWorkshops 2002)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2279))

Included in the following conference series:

Abstract

This paper compares experimentally three heuristic algorithms for the maximum clique problem obtained as instances of an evolutionary algorithm scheme. The algorithms use three popular heuristic methods for combinatorial optimization problems, known as genetic, iterated and multistart local search, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. I.M. Bomze, M. Budinich, P.M. Pardalos, and M. Pelillo. The maximum clique problem. Handbook of Combinatorial Optimization, 4, 1999.

    Google Scholar 

  2. R.M. Karp. Reducibility among combinatorial problems. In Complexity of Computer Computations, pages 85–103. Plenum Press, NY, 1972.

    Google Scholar 

  3. U. Feige, S. Goldwasser, S. Safra, L. Lovász, and M. Szegedy. Approximating clique is almost NP-complete. In Proc. 32nd Annual IEEE Symposium on the Foundations of Computer Science (FOCS), pages 2–12, 1991.

    Google Scholar 

  4. J. Hastad. Clique is hard to approximate within n1-ε. In Proc. 37th Annual IEEE Symposium on the Foundations of Computer Science (FOCS), pages 627–636, 1996.

    Google Scholar 

  5. R. Battiti and M. Protasi. Reactive local searchfor the maximum clique problem. Algorithmica, 29(4):610–637, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  6. D. Johnson and M. Trick (Eds.). Cliques, Coloring, and Satisfiability. AMS, DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol 26, 1996.

    Google Scholar 

  7. B. Carter and K. Park. How good are genetic algorithms at finding large cliques: an experimental study. Technical report, Boston University, Computer Science Department, MA, October 1993.

    Google Scholar 

  8. K. Park and B. Carter. On the effectiveness of genetic search in combinatorial optimization. In Proceedings of the 10th ACM Symposium on Applied Computing. ACM Press, 1995.

    Google Scholar 

  9. T. Haynes. Clique detection as a royal road function. In Genetic Programming, 1998.

    Google Scholar 

  10. T. Soule and J.A. Foster. Genetic algorithm hardness measures applied to the maximum clique problem. In T. Bäck, editor, Seventh International Conference on Genetic Algorithms, pages 81–88. Morgan Kaufmann, 1997.

    Google Scholar 

  11. Y. Davidor. Epistasis variance: a viewpoint on GA-hardness. In G.J.E. Rawlins, editor, Foundations of Genetic Algorithms, pages 23–35. Morgan Kaufmann, 1991.

    Google Scholar 

  12. T.N. Bui and P.H. Eppley. A hybrid genetic algorithm for the maximum clique problem. In L.J. Eshelman, editor, Proceedings of the 6th International Conference on Genetic Algorithms (ICGA), pages 478–484. Morgan Kaufmann, 1995.

    Google Scholar 

  13. C. Fleurent and J.A. Ferland. Object-Oriented imlementation of heuristic search methods for graph coloring, maximum clique, and satisfiability. In D. Johnson and M. Trick, editors, Cliques, Coloring and Satisfiability. AMS, DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol 26, 1996.

    Google Scholar 

  14. J.A. Foster and T. Soule. Using genetic algorithms to find maximum cliques. Technical report, Dept. of Computer Science, Univ. Idaho, 12 1995.

    Google Scholar 

  15. A.S. Murthy, G. Parthasarathy, and V.U.K. Sastry. Clique finding-a genetic approach. In Proceedings of the 1st IEEE Conference on Evolutionary Computation, pages 18–21. IEEE Press, 1994.

    Google Scholar 

  16. A. Sakamoto, X. Liu, and T. Shimamoto. A genetic approach for maximum independent set problems. IEICE Trans. Fundamentals, E80-A(3):551–556, 1997.

    Google Scholar 

  17. E. Marchiori. A simple heuristic based genetic algorithm for the maximum clique problem. In J. Carroll et al., editor, ACM Symposium on Applied Computing, pages 366–373. ACM Press, 1998.

    Google Scholar 

  18. P. Merz and B. Freisleben. Genetic local searchfor the TSP: New results. In IEEE International Conference on Evolutionary Computation, pages 159–164. IEEE Press, 1997.

    Google Scholar 

  19. D. Thierens and D. Goldberg. Elitist recombination: an integrated selection recombination GA. In Proceedings of the 1st IEEE Conference on Evolutionary Computation, pages 508–518. IEEE Press, 1994.

    Google Scholar 

  20. Z. Michalewicz. Genetic Algorithms + Data Structures = Evolution Programs. Springer-Verlag, Berlin, 1994.

    MATH  Google Scholar 

  21. K.A. De Jong. An analysis of the behaviour of a class of genetic adaptive systems. Doctoral Dissertation, University of Michigan, Dissertation Abstract International 36(10), 5140B, 1975.

    Google Scholar 

  22. G. Syswerda. Uniform crossover in genetic algorithms. In J. Schaffer, editor, Third International Conference on Genetic Algorithms, pages 2–9. Morgan Kaufmann, 1989.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Marchiori, E. (2002). Genetic, Iterated and Multistart Local Search for the Maximum Clique Problem. In: Cagnoni, S., Gottlieb, J., Hart, E., Middendorf, M., Raidl, G.R. (eds) Applications of Evolutionary Computing. EvoWorkshops 2002. Lecture Notes in Computer Science, vol 2279. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-46004-7_12

Download citation

  • DOI: https://doi.org/10.1007/3-540-46004-7_12

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43432-0

  • Online ISBN: 978-3-540-46004-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics