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Abstract

We present a method for training Support Vector Machines (SVM)
classifiers with very large datasets. We present a clustering algorithm
that can be used to preprocess standard training data and show how
SVM can be simply extended to deal with clustered data, that is ef-
fectively a set of weighted examples. The algorithm computes large
clusters for points which are far from the decision boundary and small
cluster size for points near the boundary. This implies that when
SVMs are trained on the preprocessed cluster data set nearly the same
decision boundary is found but the computational time decreases sig-
nificantly. When the input dimensionality of the data is not large, for
example of the order of ten, the clustering algorithm can significantly
decrease the effective number of training examples, which is a useful
feature for training SVM on large data sets. Preliminary experimental
results indicate the benefit of our approach.



1 Introduction

The recent development of a new family of learning machines, namely Sup-
port Vector Machines (SVM) [2, 3, 13|, whose training can be formulated
as optimizing a quadratic programming (QP) problem with box constraints,
has lead to a series of fast optimization methods for this type of QP problems
[7, 6, 10]. Formulating the training of a learning machine as a standard opti-
mization theory problem is a direction for developing fast training methods.
A lot of work has been done to speed up the Support Vector Machines. A
chunking algorithm is proposed by Vapnik [3]. This is an iterative method
that at each iteration solves a small subproblem. The chunking algorithm
uses the support vectors found in previous batches for use in next batches
[3]. Advanced working set algorithms use only a subset of the variables as
a working set and optimize the problem with respect to them while freezing
the others [6]. The extreme case of the advance working set is to use only
two variables in the working set as in Sequential Minimum optimization [7].
In a recent paper, the problem is formulated by using a random rectangular
kernel sub-matrix instead of using a full square one [4]. Column generation
techniques and Bender’s Decomposition can be also applied to this problem
1, 11].

A lot of work has been done in the direction of speeding up (scaling
up) data mining methods. Provost and Kolluri [9] give a recent review of
various approaches, mostly focusing on learning methods for finding rules and
for training decision trees. The paper categorizes the approaches into three
groups: designing fast algorithms, partitioning the data, and using relational
representations.

In this paper we describe a new approach to training SVM with very large
datasets which is different from the three main approaches discussed in [9)].
The approach is based on the characteristic of SVM that only training data
near the separating boundary (for classification) are important. We therefore
present a clustering method that yields only a few clusters away from the
separating boundary, and many clusters near the boundary. The approach is
similar to that proposed by [5]. This way the important information from the
training data - namely that of the training data near the separating boundary
- is preserved while at the same time the size of the training set is effectively
decreased. Once clusters have been found, they are represented has a set of
weighted examples which and the SVM can be simply extended to deal with



such a kind of data.

The paper is organized as follows: in section 2 we first define the notation
and present the setup of the problem. Section 3 discusses the proposed
method. In section 4 we present experiments comparing the proposed method
to that of standard SVM training using all the initial training data. Finally
section 5 is summary and conclusions.

An earlier version of this paper appeared in [8].

2 Background and Notation

We are given a training set S = {(x1,41), ..., (Xn, yn)}, where each point x;
belong to IR™ and y; € {—1,1} is a label that identifies the class of point x;.
Our goal is to determine a function

f(x) =w-¢(x;) +0, (1)

where ¢(x) = (¢1(x),...,¢m(x)) is a vector field from IR" into the feature
space IR™.

Statistical Learning Theory [13] establishes that in order to obtain a func-
tion with controllable generalization capability we need minimize the Struc-
tural Risk. By so doing we control the VC-dimension and hopefully produce
a function with good generalization error. SVMs are a practical implemen-
tation of this idea. They are based on the following Quadratic Programming
Problem [3]:

Problem P1

Minimize %w wH+CY &

subject to yi(w-o(x)+b)>1-¢ i=1,2,....N
£>0.

The solution w of this problem is given by equation:

N
W=D ailip(x), (2)
with @ = (@4, ..., @y) the solution of the Dual Problem:



Problem P2

Maximize —%aTDa + > oy
subject to S yia; =0
0<a; <C, i=1,2...,N
where both sums are for i = 1,2,..., N, and D is a N x N matrix such that
Dij = yiy;d(x:) - d(x;)- (3)

Combining Equations (1) and (2), the solution of Problem P1 is given by:

zN: Yy h(xi) - p(x) + .

The points for which &; > 0 are called Support Vectors (SVs). In many
application they form a small subset of training points.

For certain choices of the mapping ¢(x) we can sum the dot product in
feature space so that:

P(x:) - 9(x;) = K (i, %;). (4)

Observe that the spatial complexity of Problem P2 is N2, independent from
the dimensionality of the feature space. This observation allow us to extend
the method in feature spaces of infinite dimension. In practice, because of
the memory requirement, Problem P2 presents severe limitation on the size
of the training set.

The approach that we suggest is based on clustering. The idea consists
of substituting the training set with a smaller set of new weighted points:

{(tlaybnl)a ey (tgaygang)}v

so that each point t; represents a cluster of n; points in the training set, ¢
is the number of clusters and >-Y_; n;, = N. Problem P1 can be adjusted to
separate the clustering set as:

Problem P3

Minimize %W w4 C'Yngé;

subject to yi(w-o(t;)+b)>1-¢& i=12,... K
£>0.



where we have modified the second term in the objective function with a
weighed sum to take in account the number of points represented by each
cluster. The Dual Problem becomes:

Problem P4
Maximize —%aTDa + > oy
subject to Y yia; =0
0<a; <nC. 1=1,2,...,N

where now sums are for : = 1,2,...,¢, and D is a g X g matrix such that
Dij = yiy; K (i, t5). (5)

We note that the only difference with respect Problem P2 is given by the
new upper bound n;C' for the variable «;.

3 The Clustering Algorithm

In this section we introduce a clustering algorithm that can be used as a
preprocessing step to train SVM on large databases.

The algorithm computes the clusters of the set of points in each class.
We illustrate it in the case of class 1. First we initialize the set A; of clusters
of class 1: A; = {(x;,1) | (x;,4:) € S, vi = 1}.

1. Set £ =0.
2. For each point (xj,ny) € A:

(a) Compute the the nearest point! in A; \ {(zx, nx)} to (xx,ng). Let
(x;,n;) be this point and d their distance, d = ||z — z;]|.
(b) Compute the center of mass of the two previous points, v =

NEXk +Tl]'Xj
ngk —‘rTLj

(c) Compute the distance D between v and the nearest training point
in class -1.

(d) If £ <~ delete the two previous points from A;, add (v, ny, + n;)
to Ay, and set £ =0+ 1.

'We use the Euclidean distance.



3. If £ > 0 goto step 1, otherwise stop.

After the algorithm has stop, A; is the set of clusters of class 1. The same
procedure is then repeated to compute the set of clusters of class 2, A,.

Notice that the algorithm tends to produce large clusters of points which
are far away from the boundary between the two classes and small clusters of
points near the boundary. Thus, we expect that the points candidate to be
support vectors are not strongly affected by the clustering procedure, while
the others are heavily reduced. The parameter ~ controls the meaning of
“near”. If the dimensionality of the input space is not too big (say n ~ 10),
we expect that the algorithm can considerably improve the training time of
the SVM.

4 Experimental results

In this section we compare the performance of standard SVM with that of the
SVM trained on the weighted examples computed by the cluster algorithm
discussed above. We performed three set experiments in IR? with linear
and non-linear kernels and one experiment in IR® with non-linear kernels.
The experiments were performed on a DEC alpha 430MHz. The SVM is
computed by solving the primal Problem P1 (P3 for clustered data). We
used a software [12] based on Interior Point Methods [14].

Linear kernel: In the first example we randomly generated two sets of
points inside two circles of same radius r and Bayes region of about .037r2.
We then trained a linear SVM with and without the clustering preprocessing
step. Table 1 shows the number of clusters and the performance of the
algorithm reported in previous section on training sets of increasing size.
The parameter v was set to 2.5.

Table 2 is a comparison between the SVM obtained by training on the full
set of 5000 points and the SVM trained on the clusters.

Non-linear kernel: In the second example the points x = (z1,x2) are
randomly generated in a circle of radius r and the boundary between the two
classes is given by xz, = rsin(7r%). We now work with polynomial kernel of
third degree. Table 3 and 4 show the results of clustering and recognition.



N K Time
5000 | 470 | 8.5 sec
10000 | 849 | 39.7 sec
20000 | 1537 | 137.4 sec

Table 1: Experiment 1 - Size of the clustering set and user time of the
clustering algorithm for training sets of increasing size.

C Full Set Cluster Set

3 23.3 sec | 2.8% | .73 sec | 2.8%
10 | 22.2 sec | 2.8% | .80 sec | 2.7%
100 | 25.0 sec | 2.8% | .89 sec | 2.7%

Table 2: Experiment 1 - User time and error rate for the full training set
(5000 points) and the cluster set for different values of the regularization
parameter. The error rate is obtained on a test set of 5000 points.

The setting of the third experiment is as in experiment 2 with the addition
that now we assign point x to the first class if x5 > rsin(m%) + €, where € is
a random number € (—%r, 1—107“). We again work with polynomial kernel of
third degree.

The results are shown in Table 6. Table 5 is as Table 2 and 4, while
Table 7 shows that for this particular example the choice of the parameter
does not modify appreciably the true OSH.

To better understand how the dependence on the reduction rate with
respect the parameter v, we run the clustering algorithm for different values
of .

5 Conclusions
We have presented a direction of developing methods for fast training us-

ing hierarchical type training. Experimental results indicate that this is a
promising direction for research. A number of questions remains open. From



N K | Time
5000 | 397 | 9.4 sec
10000 | 745 | 41.8 sec
20000 | 911 | 145 sec

Table 3: Experiment 2 - Size of the clustering set and user time of the
clustering algorithm for training sets of increasing size.

C Full Set Cluster Set

3 286 sec | 0.48% | 1.54sec | 0.44%
10 | 316 sec | 0.32% | 1.54sec | 0.30%
100 | 364 sec | 0.14% | 1.82 sec | 0.16%

Table 4: Experiment 2 - User time and error rate of the SVM trained on the
full training set (20000 points) and on the cluster set for different values of
the regularization parameter C'. The error rate was computed on a test set
of 5000 points.

the theoretical point of view, it is an open question how close the solution
found from each of the proposed methods is to the global optimal one that
a single SVM using all the training data would have found. Appropriate
measures of distance between the solutions need to be defined: for example
one can probably use the margin and the number of training errors, or the
value of the cost function of the QP, or the set of support vectors, as such
measures. From the practical point of view, two important questions is first
how to adapt the proposed methods to other learning techniques, and second
how to design new hierarchical methods that are more efficient without loss
in predictive performance. Finally, a theoretical framework for designing and
studying this type of hierarchical training methods can be valuable towards
the direction of developing new methods.



C Full Set Cluster Set

3 327 sec | 3.16% | 4.51 sec | 3.16%
10 | 385 sec | 3.15% | 4.95 sec | 3.15%
100 | 356 sec | 3.15% | 4.82 sec | 3.15%

Table 5: Experiment 3 - User time and error rate for the full training set
of 20000 points and for the cluster set obtained with different values of the
regularization parameter. The error rate is computed on a test set of 5000
points.

v K Reduc. Rate
2.5 | 2518 | 874 %
1.5 | 1818 [ 90.9 %
1.25 | 1582 | 92.1 %
1 1326 | 93.4 %

Table 6: Experiment 3 - Size of the clustering set and corresponding per-
centage of reduction for different values of the parameter v, obtained from
the original training set of 20000 points.
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