Skip to main content

Overview of Wave Probe-Based High-Resolution Subsurface Sensing, Imaging, and Vision

  • Conference paper
  • First Online:
Methods and Applications of Artificial Intelligence (SETN 2002)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2308))

Included in the following conference series:

  • 1130 Accesses

Abstract

We propose a general paradigm for image formation from data collected by wave-based sensory probes of subsurface structures. We discuss methodologies that are directly applicable in several robotic subsurface sensing, imaging, and vision technologies, including buried waste clean-up, excavation planning, de-mining, archaeological investigations, environmental pollution monitoring, water quality assessment, etc. The proposed methodologies are, therefore, crucial in the development of automated robotic vision systems. A large number of references to the relevant literature are included.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R G Newton, “Scattering Theory ofWaves and Particles,” Springer Verlag, Berlin, 1982

    Google Scholar 

  2. K Chadan, D Colton, L Paivarinta, and W Rundell, “An Introduction to Inverse Scattering and Inverse Spectral Problems,” SIAM Publications, Philadelphia, 1997

    MATH  Google Scholar 

  3. H Lipson and W Cochran, “The Determination of Crystal Structures,” Cornell University Press, Ithaca, 1966

    Google Scholar 

  4. G T Herman, “Image Reconstruction from Projections: The Fundamentals of Computerized Tomography,” Academic Press, NewY ork, 1980

    MATH  Google Scholar 

  5. A C Kak and M Slaney, “Principles of Computerized Tomographic Imaging,” IEEE Press, NewYork, 1988

    MATH  Google Scholar 

  6. J F Greenleaf and R C Bahn, “Computerized Tomography with Ultrasound,” Proc. IEEE, vol. 71, p. 330, 1983

    Google Scholar 

  7. D Colton and R Kress, “Inverse Acoustic and Electromagnetic Scattering,” Springer Verlag, Berlin, 1998

    MATH  Google Scholar 

  8. A Witten and E Long, “ShallowApplications of Geophysical Diffraction Tomography,” IEEE Trans. Geosc. Rem. Sens., vol. GE-24, p. 654, 1986

    Article  Google Scholar 

  9. A Witten, J Tuggle, and R C Waag “A Practical Approach to Ultrasonic Imaging Using Diffraction Tomography,” J. Acous. Soc. Amer., vol. 83, p. 1645, 1988

    Article  Google Scholar 

  10. A Witten and W C King, “Acoustical Imaging of Subsurface Features,” J. Envir. Eng., vol. 116, p. 166, 1990

    Article  Google Scholar 

  11. A Witten, “Sounding out Buried Waste,” Civil Engineering, vol. 60, p. 62, 1990

    Google Scholar 

  12. A Witten, D Gillette, W C King, and J Sypniewski, “Geophysical Diffraction Tomography at a Dinosaur Site,” Geophysics, vol. 57, p. 187, 1992

    Article  Google Scholar 

  13. T E Levy and A Witten, “Denizens of the Desert,” Archaeology Magazine, p. 36, 1996

    Google Scholar 

  14. M H Maleki, A J Devaney, and A Schatzberg, “Tomographic Reconstruction from Optical Scattered Intensities,” J. Opt. Soc. Am. A, vol. 9, p. 1356, 1992

    Google Scholar 

  15. A J Devaney, “ElasticWave Inverse Scattering,” in: S K Datta, J D Achenbach and Y S Rajapakse (eds.), “Elastic Waves and Ultrasonic Nondestructive Evaluation,” Elsevier Science Publishers, NewY ork, 1990

    Google Scholar 

  16. A J Devaney, “Non-uniqueness in Inverse Scattering Problems,” J. Math. Phys., vol. 19, p. 1526, 1978

    Article  Google Scholar 

  17. E Wolf, “Three-Dimensional Structure Determination of Semi-transparent Objects from Holographic Data,” Opt. Comm., vol. 1, p. 153, 1969

    Article  Google Scholar 

  18. A J Devaney, “A Filtered Backpropagation Algorithm for Diffraction Tomography,” Ultr. Imag., vol. 4, p. 336, 1982

    Article  Google Scholar 

  19. A J Devaney, “Reconstructive Tomography with Diffracting Wavefields,” Inv. Problems, vol. 2, p. 161, 1986

    Article  MATH  MathSciNet  Google Scholar 

  20. K Iwata and R Nagata, “Calculation of Refractive Index Distribution from Interferograms Using the Born and Rytov’s Approximation,” Japan. J. Appl. Phys., vo.l. 14, p. 379, 1974

    Google Scholar 

  21. R K Mueller, M Kaveh, and G Wade, “Reconstructive Tomography and Applications to Ultrasonics,” Proc. IEEE, vol. 67, p. 567, 1979

    Google Scholar 

  22. A J Devaney, “The Limited-ViewProblem in Diffraction Tomography,” Inv. Problems, vol. 5, p. 501, 1989

    Article  MATH  MathSciNet  Google Scholar 

  23. A J Devaney, “Geophysical Diffraction Tomography,” IEEE Trans. Geosc. Rem. Sens., vol. GE-22, p. 3, 1984

    Article  Google Scholar 

  24. R W Deming and A J Devaney, “Diffraction Tomography for Multi-Monostatic Ground Penetrating Radar Imaging,” Inv. Problems, vol. 13, p. 29, 1997

    Article  MATH  Google Scholar 

  25. T B Hansen and P M Johansen, “Inversion Scheme for Ground Penetrating Radar that Takes into Account the Air-Soil Interface,” IEEE Trans. Geosc. Rem. Sens., Jan. 2000

    Google Scholar 

  26. G A Tsihrintzis and A J Devaney, “Stochastic Difraction Tomography: Theory and Computer Simulation,” Sign. Proc., vol. 39, p. 49, 1993

    Google Scholar 

  27. G A Tsihrintzis and A J Devaney, “Stochastic Geophysical Diffraction Tomography,” Int. J. Imag. Syst. Techn., vol. 5, p. 239, 1994

    Article  Google Scholar 

  28. X Pan, “Unified Reconstruction Theory for Diffraction Tomography with Consideration of Noise Control,” J. Opt. Soc. Am. A, vol. 15, p. 2312, 1998

    Article  Google Scholar 

  29. K T Ladas and A J Devaney, “Iterative Methods in Geophysical Diffraction Tomography,” Inv. Problems, vol. 8, p. 119, 1992

    Article  MATH  Google Scholar 

  30. S Kawata, Y Touki, and S Minami, “Optical Microscopic Tomography,” in: A J Devaney and R H T Bates (eds.), Inverse Optics II, SPIE 558, 1985

    Google Scholar 

  31. A J Devaney, “Structure Determination from Intensity Measurements in Scattering Experiments,” Phys. Rev. Letts., vol. 62, p. 2385, 1989

    Article  Google Scholar 

  32. A J Devaney, “Diffraction Tomographic Reconstruction from Intensity Data,” IEEE Trans. Im. Proc., vol. IP-1, p. 221, 1992

    Google Scholar 

  33. G A Tsihrintzis and A J Devaney, “Estimation of Object Location from Diffraction Tomographic Intensity Data,” IEEE Trans. Sign. Proc., vol. SP-39, p. 2136, 1991

    Google Scholar 

  34. A J Devaney and X Zhang, “Geophysical Diffraction Tomography in a Layered Background,” Wave Motion, vol. 14, p. 243, 1991

    Article  MATH  Google Scholar 

  35. G A Tsihrintzis, P M Johansen, and A J Devaney, “Buried Object Detection and Location Estimation from Electromagnetic Field Measurements,” IEEE Trans. Ant. Prop., vol. AP-47, p. 1742, 1999

    Article  Google Scholar 

  36. G Beylkin and M L Oristaglio, “Distorted-Wave Born and Distored-Wave Rytov Approximation,” Opt. Comm., vol. 53, p. 213, 1985

    Article  Google Scholar 

  37. A J Devaney and M L Oristaglio, “Inversion Procedure for Inverse Scattering within the Distorted Wave Born Approximation,” Phys. Rev. Letts., vol. 51, p. 237, 1981

    Article  Google Scholar 

  38. N Sponheim, L-J Gelius, I Johansen, and J J Stamnes, “Quantitative Results in Ultrasonic Tomography of Large Objects Using Line Sources and Curved Detector Arrays,” IEEE Trans. Ultr. Ferr. Freq. Contr., vol. UFFC-38, p. 370, 1991

    Article  Google Scholar 

  39. G A Tsihrintzis and A J Devaney, “Application of a Maximum Likelihood Estimator in an Experimental Study of Ultrasonic Diffraction Tomography,” IEEE Trans. Med. Imag., vol. MI-12, p. 545, 1993

    Article  Google Scholar 

  40. G A Tsihrintzis and A J Devaney, “Maximum Likelihood Estimation of Object Location in Diffraction Tomography,” IEEE Trans. Sign. Proc., vol. SP-39, p. 672, 1991

    Google Scholar 

  41. G A Tsihrintzis and A J Devaney, “Maximum Likelihood Estimation of Object Location in Diffraction Tomography, Part II: Strongly Scattering Objects,” IEEE Trans. Sign. Proc., vol. SP-39, p. 1466, 1991

    Google Scholar 

  42. G A Tsihrintzis and A J Devaney, “Maximum Likelihood Techniques in Ultrasonic Diffraction Tomography,” in: C T Leondes (ed.), “Medical Imaging Techniques and Applications, Vol. 6,” p. 43–126, Gordon and Breach Publ. Newark, 1998

    Google Scholar 

  43. G A Tsihrintzis, A J Devaney, and E Heyman, “Estimation of Object Location from Wideband Scattering Data,” IEEE Trans. Im. Proc., vol. IP-8, p. 996, 1999

    Google Scholar 

  44. M Slaney and A C Kak and L E Larsen, “Limitations of Imaging with First-Order Diffraction Tomography,” IEEE Trans. Microw. Th. Techn., vol. MTT-32, p. 360, 1984

    Google Scholar 

  45. A J Devaney and E Wolf, “A New Perturbation Expansion for Inverse Scattering from Three-Dimensional Finite-Range Potentials,” Phys. Letts., vol. 89A, p. 269, 1982

    Article  MathSciNet  Google Scholar 

  46. R Pierri and A Brancaccio, “Imaging of a Rotationally Symmetric Dielectric Cylinder by a Quadratic Approach,” J. Opt. Soc. Am. A, vol. 14, p. 2777, 1997

    Article  Google Scholar 

  47. A Brancaccio and R Pierri, Information Content of Born Scattered Fields: Results in the Circular Cylindrical Case,” J. Opt. Soc. Am. A, vol. 15, p. 1909, 1998

    Article  Google Scholar 

  48. G A Tsihrintzis and A J Devaney, “Higher-Order (Nonlinear) Diffraction Tomography: Reconstruction Algorithms and Computer Simulation,” IEEE Trans. Im. Proc., vol. IP-9, p. 1560, 2000

    Google Scholar 

  49. G A Tsihrintzis and A J Devaney, “Higher-Order (Nonlinear) Diffraction Tomography: Inversion of the Rytov Series, ” IEEE Trans. Inf. Th., Special Issue on Information-Theoretic Imaging, vol. IT-46, p. 1748, 2000

    MathSciNet  Google Scholar 

  50. G A Tsihrintzis and A J Devaney, “A Volterra Series Approach to Nonlinear Traveltime Tomography,” IEEE Trans. Geosc. Rem. Sens., Special Issue on Computational Wave Issues in Remote Sensing, Imaging and Target Identification, Propagation, and Inverse Scattering, vol. GRS-38, p. 1733, 2000

    Article  Google Scholar 

  51. G.A. Tsihrintzis, Polynomial Approximators to Plane Wave Scattering and Applications in Nonlinear Diffraction Tomographic Imaging, CISS’2001, Johns Hopkins University, Baltimore, MD, March 21–23, 2001.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tsihrintzis, G.A., Girtis, K.G. (2002). Overview of Wave Probe-Based High-Resolution Subsurface Sensing, Imaging, and Vision. In: Vlahavas, I.P., Spyropoulos, C.D. (eds) Methods and Applications of Artificial Intelligence. SETN 2002. Lecture Notes in Computer Science(), vol 2308. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-46014-4_34

Download citation

  • DOI: https://doi.org/10.1007/3-540-46014-4_34

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43472-6

  • Online ISBN: 978-3-540-46014-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics