
Control Localization in Domain Specific Translation

Ted J. Biggerstaff

tbiggerstaff@austin.rr.com

Abstract. Domain specific languages (DSLs) excel at programming productiv-
ity because they provide large-grain composite data structures (e.g., a graphics
image) and large-grain operators for composition (e.g., image addition or con-
volution). As a result, extensive computations can be written as APL-like one-
liners that are equivalent to tens or hundreds of lines of code (LOC) when
written in a conventional language like Java. The problem with DSL specifica-
tions is that they de-localize the control components making un-optimized ma-
chine translations significantly slower than for the human optimized equiva-
lent. Specifically, operations on DSL composites imply multiple control struc-
tures (e.g., loops) that process the individual elements of large-grain compos-
ites and those multiple, implicit control structures are distributed (i.e., de-
localized) across the expression of operators and operands. Human program-
mers recognize the relation among these distributed control structures and
merge them to minimize the redundancy of control. For example, merged con-
trol structures may perform several operations on several large-grain data
structures in a single pass. This merging is the process of control localization.
This paper discusses strategies for automating localization without large
search spaces and outlines a domain specific example of transformation rules
for localizing control. The example is based on the localization method in the
Anticipatory Optimization Generator (AOG) system [3-8].

1 Introduction

1.1 The General Problem

DSLs significantly improve program productivity because they deal with large-grain
data structures and large-grain operators and thereby allow a programmer to say a lot
(i.e., express a lengthy computation) with a few symbols. Large-grain data structures
(e.g., images, matrices, arrays, structs, strings, sets, etc.) can be decomposed into
finer and finer grain data structures until one reaches data structures that are atomic
(e.g., field, integer, real, character, etc.) with respect to some conventional pro-
gramming language. Thus, operators on such large-grain data structures imply some
kind of extended control structure such as a loop, a sequence of statements, a recur-
sive function, or other. As one composes large-grain operators and operands together
into longer expressions, each subexpression implies not only some atomic computa-

tions (e.g., pixel addition) that will eventually be expressed in terms of atomic opera-
tors (e.g., +) and data (e.g., integers), but it also implies some control structure to
sequence through those atomic computations. Those implied control structures are
typically distributed (i.e., de-localized) across the whole expression.

For example, if one defines an addition operator1 for images in some graphics
domain and if A and B are defined to be graphic images, the expression (A + B)
will perform a pixel-by-pixel addition of the images. To keep the example simple,
suppose that the pixels are integers (i.e., A and B are grayscale images). Then the
expression (A + B) implies a two dimensional (2D) loop over A and B. Subsequent
squaring of each pixel in (A + B) implies a second 2D loop. Human programmers
easily identify this case and merge the two loops into a single 2D loop.

This kind of transformation seems simple enough but the real world is much more
complex and when all of the cases and combinations are dealt with, it may require
design tricks to avoid the generator’s search space from becoming intractably large.
More complex operators hint at some of this complexity. For example, consider a
convolution operator2 ⊕, which performs a sum of products of pixels and weights.
The pixels come from image neighborhoods, each of which is centered on one of the
image’s pixels, and the weights come from the neighborhood definition, which asso-
ciates a weight value with each relative pixel position in the neighborhood. The
weights are defined separately from ⊕. Suppose the weights are defined in a domain
object S, which is called a neighborhood of a pixel, where the actual pixel position
defining the center of the neighborhood will be a parameter of S. Then (A ⊕ S)
would define a sum of products operation for each neighborhood around each pixel
in A where the details of the neighborhood would come from S. Thus, S will provide,
among other data, the neighborhood size and the definition of the method for com-
puting the weights. The ⊕ operator definition will contribute the control loop and the
specification of the centering pixel that is to be the parameter of S. The translation
rules not only have to introduce and merge the control structures, they have to weave
together, in a consistent manner, the implied connections among the loop control,
the definition of ⊕ and the definition of S.

Thus, localization can be fairly complex because it is coordinating the multi-way
integration of specific information from several large-grain components. The greater
the factorization of the operators and operands (i.e., the separation of parts that must
be integrated), the more numerous and complex are the rules required to perform
localization. In fact, localization is a subproblem of the more general problem of
constraint propagation in domain specific translation, which is NP Complete [15]. As
a consequence, localization has the potential to explode the solution search space. To
thwart this explosion, AOG groups localization rules in special ways and makes use
of domain specific knowledge to limit the explosion of choices during the localiza-
tion process. Both of these strategies reduce the search space dramatically. The

1 The meta-language definitions used are: 1) courier for code, 2) courier
italics for meta-code, and 3) courier italics underlined for
comments.

2 A more formal definition of the convolution operator is given in the next section.

downside of using domain specific knowledge in localization is that localization in
different domains may have different rules. But that is a small price to pay because
the strategy transforms a general problem that has the potential of an exploding
solution space into a specialized problem that does not.

While this paper will focus on the Image Algebra (IA) domain [22], the localiza-
tion problem is universal over most complex domains. Localization is required when
the domain’s language separates and compartmentalizes partial definitions of large-
grain operators and data structures and then allows compositional expressions over
those same operators and data structures. Other domains that exhibit DSL-induced
de-localization are: 1) the user interface domain, 2) the network protocol domain, 3)
various middleware domains (e.g., transaction monitors), 4) data aggregations (e.g.,
fields aggregated into records) and others. AOG implements localization rules for
two control domains: 1) loops over images and similar large grain data structures
and 2) iterations induced by fields within records.

2 The Technology

2.1 An Example Mini-Domain

To provide a concrete context for discussing the issues of localization, this section
will define a subset of the Image Algebra [22] as a mini-DSL for writing program
specifications.

Domain Entity3 Description Definition Comments

Image A composite data
structure in the
form of a matrix
with pixels as
elements

A = {a i , j : a i , j is a
pixel}

where A is a matrix
of size [(imax – imin
+1) by (jmax – jmin
+1)] s.t. imin ≤ i ≤
imax and jmin ≤ j ≤
jmax

Subclasses include
images with gray-
scale or color pixels.
To simplify the dis-
cussion, assume all
images have the
same size.

Neighborhood A matrix overlay-
ing a region of an
image centered on

W(S) = { wp , q : wp , q
is a numerical
weight}

Neighborhoods are
objects with meth-
ods. The methods

3 See 22 for a more complete and more formal definition of this domain.

an image pixel
such that the
matrix associates
a numerical
weight with each
overlay position

weight}

where S is a
neighborhood of size
[(pmax – pmin + 1)
by (qmax – qmin +
1)] s.t. pmin ≤ p ≤
pmax and qmin ≤ q ≤
qmax

define the weights
computation,
neighborhood size,
special case behav-
iors, and methods to
compute a neighbor-
hood position in
terms of image coor-
dinates.

Convolution The convolution
(A ⊕ S) applies
the neighborhood
S to each pixel in
A to produce a
new image B = (A
⊕ s)

(A ⊕ S) = {∀i,j (bi,j :
bi,j = (∑p,q (wp , q *
a i+p , j+q)) }

where w p , q ∈ W(S),
p and q range over the
neighborhood S; i and
j range over the im-
ages A and B

Variants of the con-
volution operator are
produced by replac-
ing the ∑ p, q opera-
tion with Π p, q,
Min p,q, Max p, q, &
others and the *
operation with +,
max, min & others.

Matrix Opera-
tors

(A+B), (A-B),
(k*A), An, √A
where A & B are
images, k & n are
numbers

These operations on
matrices have the
conventional defini-
tions, e.g., (A+B) =
{∀i,j (ai,j + bi,j)}

Define the weights for concrete neighborhoods S and SP to be 0 if the neighbor-
hood is hanging off the edge of the image, or to be

48476 Q

101

121

121

1

0

1

P)(

−

 −−−

−
= φφφsw

48476 Q

101

11

22

11

1

0

1

P)(

−

−
−
−

−
=

φ
φ
φ

spw

if it is not. Given these definitions, one can write an expression for the Sobel edge
detection method [22] that has the following form:

B = [(A ⊕ S)2 + (A ⊕ SP)2]1/2

This expression de-localizes loop controls and spreads them over the expression in
the sense that each individual operator introduces a loop over some image(s), e.g.,
over the image A or the intermediate image (A ⊕ S). What technology will be

employed to specify localization? AOG uses a pattern-directed transformation re-
gime.

2.2 Pattern-Directed Control Regimes

In the simplest form, generic pattern-directed transformation systems store knowl-
edge as a single global soup of transformations rules4 represented as rewrite rules of
the form

Pattern ⇒ RewrittenExpression

The left hand side of the rule (Pattern) matches a subtree of the Abstract Syn-
tax Tree (AST) specification of the target program and binds matching elements to
transformation variables (e.g., ?operator) in Pattern. If that is successful, then
the right hand side of the rule (RewrittenExpression) is instantiated with the
variable bindings and replaces the matched portion of the AST. Operationally, rules
are chosen (i.e., triggered) based largely on the syntactic pattern of the left hand side
thereby motivating the moniker “Pattern-Directed” for such systems. Beyond syntac-
tic forms, Pattern-s may also include 1) semantic constraints (e.g., type restric-
tions), and 2) other constraints (often called enabling conditions) that must be true
before the rule can be fully executed. In addition, algorithmic checks on enabling
conditions and bookkeeping chores (e.g., inventing translator variables and objects)
are often handled by a separate procedure associated with the rule.

One of the key questions with transformation systems is what is the control re-
gime underlying the system. That is, what is the storage organization of rules and
how are the transformations chosen or triggered? We will consider the question of
storage organization in a minute but first we will look at triggering strategies. In
general, control regimes are some mixture of two kinds of triggering strategies: pat-
tern-directed (PD) triggering and metaprogram controlled triggering. PD triggering
produces a control regime that looks like a search process directed mostly by syntac-
tic or semantic information local to AST subtrees. PD searches are bias toward pro-
gramming syntax and semantics mainly because the tools used are biased toward
such information.

The problem with pure PD control strategies is that rule choice is largely local to
an AST subtree and therefore, often leads to a strategically blind search in a huge
search space. In contrast, the triggering choices may be made by a goal-driven
metaprogram. Metaprograms are algorithms that operate on programs and therefore,
save state information, which allows them to make design choices based on earlier
successes or failures. This purposefulness and use of state information tends to re-
duce the search space over that of PD control. However, case combinations can still

4 Most non-toy transformation systems use various control machinery to attempt to overcome

the inefficiencies of the “global soup” model of transformations while retaining the conven-
ience of viewing the set of transformations more or less as a set of separate transformations.

explode the search space. This paper will look at the techniques that are used to
overcome these problems.

3 Localization Technology

3.1 Defusing Search Space Explosions

Since program generation is NP Complete, it will often produce large and intractable
search spaces. How does AOG overcome this? AOG uses several techniques, one of
which is localization. More narrowly, AOG localization reduces the search space by:
1) defining localization as a specialized optimization process with a narrow specific
goal, 2) grouping the localization rules in ways that make irrelevant rules invisible,
and 3) using domain knowledge (e.g., knowledge about the general design of the
code to be generated) to further prune the search space.

One way to reduce the search space is by grouping transformations so that at each

decision point only a small number of relevant transformations need to be tried.
AOG implements this idea by grouping the rules in two dimensions: 1) first under a
relevant object (e.g., a type object) and 2) then under a phase name. The meta-
program goal being pursued at a given moment determines which objects and which
phases are in scope at that moment. The phase name captures the strategic goal or
job that those rules as a group are intended to accomplish (e.g., the LoopLocalize
phase is the localization phase for the IA domain). In addition, the object under
which the rules are stored provides some key domain knowledge that further prunes
the search space. For example, in order for loop localization to move loops around, it
needs to know the data flow design for the various operators. The general design of
the operator’s data flow is deducible from the resulting type of the expression plus
the details of the expression. In AOG, an expression type combined with the result of
a specific rule’s pattern match provides the needed data flow knowledge. Thus, the
localization process for a specific expression of type X is a matter of trying all rules
in the LoopLocalize group of the type X object and of types that X inherits from.
AOG rules provide this organizational information by the following rule format:

(⇒ XformName PhaseName ObjName
 Pattern RewrittenExpression Pre Post)

The transform’s name is XformName and it is stored as part of the ObjName ob-

ject structure, which in the case of localization will be a “type” object, e.g., the im-
age type. XformName is enabled only during the PhaseName phase (e.g., Loop-
Localize). Pattern is used to match an AST subtree and upon success, the
subtree is replaced by RewrittenExpression instantiated with the bindings
returned by the pattern match. Pre is the name of a routine that checks enabling

conditions and performs bookkeeping chores (e.g., creating translator variables and
computing equivalence classes for localization). Post performs various computa-
tional chores after the rewrite. Pre and Post are optional.

For example, a trivial but concrete example of a PD rule would be

(⇒ FoldZeroXform SomePhaseName dsnumber `(+ ?x 0) `?x)

This rule is named FoldZeroXform, is stored in the dsnumber type structure,
is enabled only in phase SomePhaseName, and rewrites an expression like (+ 27
0) to 27. In the pattern, the pattern variable ?x will match anything in the first
position of expressions of the form (+ ___ 0). Now, let’s examine an example
localization rule.

3.2 RefineComposite Rule

The IA mini-DSL will need a refinement rule (RefineComposite) to refine a
composite image like a to a unique black and white pixel object, say bwp27, and
simultaneously, introduce the elements of a loop control structure to iteratively gen-
erate all values of bwp27. These will include some target program loop index vari-
ables (e.g., idx28 and idx29), some shorthand for the putative target program
loop control to be generated (e.g., an expression (forall (idx28 idx29)
...)), a record of the correspondence relationship between the large-grain compos-
ite a and the component bwp27 (e.g., the expression (mappings (bwp27)
(a)), and the details of the refinement relationship (e.g., some rule bwp27 =>
a[idx28, idx29]). How would one formulate RefineComposite in AOG?

Given a routine (e.g., gensym) to generate symbols (e.g., bwp27), an overly sim-
ple form of this rule might look like:

(=> RefineComposite LoopLocalize Image `?op
 (gensym ‘bwp))

where ?op matches any expression of type Image and rewrites it as some gensym-
ed black and white pixel bwp27. But this form of the rule does not do quite enough.
An image instance may be represented in the AST in an alternative form – e.g.,
(leaf a ...). The leaf structure provides a place to hang an AST node property
list, which in AOG is called a tags list. Thus, the rule will have to deal with a struc-
ture like (leaf a (tags Prop1 Prop2 ...)). To accommodate this case,
the rule pattern will have to be extended using AOG’s “or” pattern operator, $(por
pat1 pat2 ...), which allows alternative sub-patterns (e.g., pat1 pat2…)
to be matched.

(=> RefineComposite LoopLocalize Image
 `$(por (leaf ?op) ?op) (gensym ‘bwp))

Now, (leaf a ...) will get translated to some pixel symbol bwp27 with ?op
bound5 to a (i.e., {{a/?op}}). However, the rule does not record the relationship
among the image a, the pixel bwp27, and some yet-to-be-generated index variables
(e.g., idx28 and idx29) that will be needed to loop over a to compute the various
values of bwp27. So, the next iteration of the rule adds the name of a pre-routine
(say RCChores) that will do the translator chores of gensym-ing the pixel object
(bwp27), binding it to a new pattern variable (say ?bwp), and while it is at it, gen-
sym-ing a couple of index objects and binding them to ?idx1 and ?idx2. The next
iteration of the rule looks like:

(=> RefineComposite LoopLocalize Image
 `$(por (leaf ?op) ?op) `(leaf ?bwp) `RCChores)

Executing this rule on the AST structure (leaf a ...) will create the binding
list {{a/?op} {bwp27/?bwp} {idx28/?idx1} {idx29/?idx2}} and
rewrite (leaf a ...) to (leaf bwp27). However, it does not yet record the
relationship among a, bwp27, idx28, and idx29. Other instances of images in
the expressions will create analogous sets of image, pixel, and index objects, some of
which will end up being redundant. In particular, new loop index variables will get
generated at each image reference in the AST. Most of these will be redundant.
Other rules will be added that merge away these redundancies by discarding redun-
dant pixels and indexes. To supply the data for these merging rules, the next version
of the rule will need to create a shorthand form expressing the relationship among
these items and add it to the tags list. The shorthand will have the form

(_forall (idx28 idx29)
 (_suchthat
 (_member idx28 (_range minrow maxrow))
 (_member idx29 (_range mincol maxcol))
 (mappings (bwp27) (a))))

The idx variable names will become loop control variables that will be used to

iterate over the image a, generating pixels like bwp27. bwp27 will eventually be
refined into some array reference such as (aref6 a idx28 idx29). The
_member clauses define the ranges of these control variables. The lists in the map-
pings clause establish the correspondences between elements (e.g., bwp27,
bwp41, etc.) and the composites from which they are derived (e.g., a, b, etc.)
thereby enabling the finding and elimination of redundant elements and loop in-
dexes.

5 A binding list is defined as a set of {value/variable} pairs and is written as

{(val1/vbl1) (val2/vbl2) …}. Instantiation of an expression with a binding list
rewrites the expression substituting each valn for the corresponding vbln in the expres-
sion.

6 (aref a idx28 idx29) is the AST representation of the code a[idx28,idx29].

The final form of the RefineComposite rule (annotated with explanatory
comments) is:

(=> RefineComposite LoopLocalize Image
 `$(por (leaf ?op) Pattern to match an image leaf
 ?op) or image atom. Bind image to ?op.

 `(leaf ?bwp Rewrite image as ?bwp pixel.
 (tags Add a property list to pixel.

 (_forall Loop shorthand introducing
 (?idx1 ?idx2) loop indexes and
 (_suchthat loop ranges & relations.
 (_member ?idx1 (_range minrow maxrow))
 (_member ?idx2 (_range mincol maxcol))

 (mappings (?bwp) (?op))))

 (itype bwpixel))) Add new type expression.

 `RCChores) Name the pre-routine that
 creates pixel & indexes.

3.3 Combining Loop Shorthands

After RefineComposite has executed, the loop shorthand information will be
residing on the tags list of the bwp27 leaf in the AST. But this loop shorthand is
only one of a set of incipient loops that are dispersed over the expression. These
incipient loops must be moved up the expression tree and combined in order to re-
duce redundant looping. AOG will require a set of rules to do this job. For example,
one rule (ConvolutionOnLeaves7) will move the loop shorthand up to the con-
volution operator and another (FunctionalOpsOnComposites8) will move it
up to the mathematical square function. These two rules rewrite the AST subtree9
from

(** (⊕ (leaf bwp27
 (tags (forall (idx28 idx29) ...)...)) s)
 2)

to

(** (⊕ (leaf bwp27 ...) s

7 Definition not shown due to space limitations.
8 Definition not shown.
9 These examples omit much of the actual complexity and enabling condition checking but

capture the essence of the rewrites.

 (tags (forall (idx28 idx29) ...))) 2)

and then to

(** (⊕ (leaf bwp27 ...) s) 2
 (tags (forall (idx28 idx29) ...)...)).

Eventually, the process will get to a level in the expression tree where two of these

incipient loops will have to be combined to share some portions of the loop. In this
case, it will share the index variables, preserving one set and throwing the other set
away. For example, the rule FunctionalOpsOnParallelComposites will
perform such a combination by rewriting10 the AST subtree

(+ (**(⊕ bwp27 s) 2
 (tags (forall (idx28 idx29) ...)...))
 (**(⊕ bwp31 s) 2
 (tags (forall (idx32 idx33) ...)...)))

to

(+ (** (⊕ bwp27 s) 2)
 (** (⊕ bwp31 s) 2)
 (tags (forall (idx32 idx33) ...)...)))

throwing away idx28 and idx29 and retaining idx32 and idx33.
This movement and combination process continues until the dispersed, incipient

loop structures are localized to minimize the number of passes over images. Follow-
on phases (CodeGen and SpecRefine respectively) will cast the resulting short-
hand(s) into more conventional loop forms and refine intermediate symbols like
bwp27 and bwp31 into a computation expressed in terms of the source data, e.g.,
a[idx32,idx33]. But this refinement presents a coordination problem to be
solved. How will SpecRefine know to refine bwp27 into a[idx32,idx33]
instead of its original refinement into a[idx27,idx28]? Just replacing bwp27
with bwp31 in the AST during the combination rule (FunctionalOpsOnPar-
allelComposites) does not work because bwp27 may occur in multiple places
in the expression due to previously executed rules. Worst yet, there may be instances
of bwp27 that are yet to appear in the expression due to deferred rules that are pend-
ing. Other complexities arise when only the indexes are shared (e.g., for different
images such as a and b). Finally, since the replacement of bwp27 is, in theory,
recursive to an indefinite depth, there may be several related abstractions undergoing
localization combination and coordination. For example, an RGB color pixel abstrac-
tion, say cp27, may represent a call to the red method of the pixel class – say (red
pixel26) – and the pixel26 abstraction may represent an access to the image –

10 These examples omit details (e.g., leaf structures) when they are not essential to under-

standing the example.

say a[idx64, idx65]. Each of these abstractions can potentially change
through combination during the localization process. So, how does AOG assure that
all of these generated symbols get mapped into a set of correctly coordinated target
code symbols?

3.4 Speculative Refinements

Speculative refinement is a process of dynamically generating and modifying rules to
create the correct final mapping. When executed in a follow-on phase called Spe-
cRefine, these generated rules map away discarded symbols and map the surviving
symbols to the properly coordinated target code symbols (e.g., array names and loop
indexes).

As an example, consider the RefineComposite rule shown earlier. Its pre-
routine, RCChores, will create several speculative refinement rules at various times
while processing various sub-expressions. Among them are:

(=> SpecRule89 SpecRefine bwp2711 `bwp27
 `(aref a idx27 idx28))
(=> SpecRule90 SpecRefine bwp31 `bwp31
 `(aref a idx32 idx33))

Later, the pre-routine of the FunctionalOpsOnParallelComposites rule

chose bwp31 to replace the equivalent bwp27. It recorded this decision by replac-
ing the right hand side of rule SpecRule89 with bwp31. SpecRule89 will now
map all bwp27 references to bwp31 which SpecRule90 will then map to (aref
a idx32 idx33).

Thus, at the end of the loop localization phase all speculative refinement rules are
coordinated to reflect the current state of localization combinations. The follow-on
speculative refinement phase recursively applies any rules (e.g., SpecRule89) that
are attached to AST abstractions (e.g., bwp27). The result is a consistent and coor-
dinated expression of references to common indexes, images, field names (e.g.,
red), etc.

4 Other Explosion Control Strategies

AOG uses other control regimes and strategies that are beyond the scope of this pa-
per. These include an event driven triggering of transformations called Tag-Directed
(TD) transformation control12 that allows cross-component and cross-domain optimi-
zations (code reweavings) to occur in the programming language domain while re-

11 Notice that these rules are stored on the gensym-ed objects.
12 Patent number 6,314,562.

taining and using domain specific knowledge to reduce the search space. TD rules
perform architectural reshaping of the code to accommodate external, global con-
straints such as interaction protocols or parallel CPU architectures. See 3 and 5-9.

5 Related Research

Central sources for many of the topics in this paper are found in [4, 11, 21, 23, 26].
This work bears the strongest relation to Neighbor’s work [18-19]. The main dif-

ferences are: 1) the AOG PD rules are distributed over the two dimensional space of
objects and phases, 2) the use of the specialized control regimes (including TD con-
trol) for specialized program optimization strategies, and 3) the inclusion of cross-
domain optimization machinery.

The work bears a strong relationship to Kiczales' Aspect Oriented Programming
[12, 16] at least in terms of its objectives, but the optimization machinery appears to
be quite different.

This work is largely orthogonal but complementary to the work of Batory [1,4, 11]
with Batory focusing on generating class and method definitions and AOG focusing
on optimizing expressions of calls to such methods.

AOG and Doug Smith's work are similar in that they make heavy use of domain
specific information [24, 11]. However, Smith relies more on generalized inference
and AOG relies more on partial evaluation [11, 26].

The organization of the transformations into goal driven stages is similar to
Boyle’s TAMPR [9]. However, Boyle’s stages are implicit and they do not perform
localization in the AOG sense.

The pattern language [6] is most similar to the work of Wile [28,29], Visser [25]
and Crew [10]. Wile and Visser lean toward an architecture driven by compiling and
parsing notions, though Visser’s pattern matching notation parallels much of the
AOG pattern notation. Both Wile and Visser are influenced less by logic program-
ming than AOG. On the other hand, logic programming influences both ASTLOG
and the AOG pattern language. However, ASTLOG’s architecture is driven by pro-
gram analysis objectives and is not really designed for dynamic change and manipu-
lation of the AST. In addition, AOG’s pattern language is distinguished from both
ASTLOG and classic Prolog in that it does mostly local reasoning with a distributed
rule base.

There are a variety of other connections that are beyond the space limitations of
this paper. For example, there are relations to Intentional Programming [11], metap-
rogramming and reflection [11, 23], logic programming based generation, formal
synthesis systems (e.g., Specware) [11], deforestation [27], transformation replay [2],
other generator designs [13, 14] and procedural transformation systems [17]. The
differences are greater or lesser across this group and broad generalization is hard.
However, the most obvious general difference between AOG and most of these sys-
tems is AOG’s use of specialized control regimes to limit the search space.

References

1. Batory, Don, Singhal, Vivek, Sirkin, Marty, and Thomas, Jeff: Scalable Software Librar-
ies. Symposium on the Foundations of Software Engineering. Los Angeles, California
(1993)

2. Baxter, I. D.: Design Maintenance Systems. Communications of the ACM, Vol. 55, No. 4
(1992) 73-89

3. Biggerstaff, Ted J.: Anticipatory Optimization in Domain Specific Translation. Interna-
tional Conference on Software Reuse Victoria, B. C., Canada (1998a) 124-133

4. Biggerstaff, Ted J.: A Perspective of Generative Reuse. Annals of Software Engineering,
Baltzer Science Publishers, AE Bussum, The Netherlands (1998b)

5. Biggerstaff, Ted J.: Composite Folding in Anticipatory Optimization. Microsoft Research
Technical Report, MSR-TR-98-22 (1998c)

6. Biggerstaff, Ted J.: Pattern Matching for Program Generation: A User Manual. Microsoft
Research Technical Report MSR-TR-98-55 (1998d)

7. Biggerstaff, Ted J.: Fixing Some Transformation Problems. Automated Software Engi-
neering Conference, Cocoa Beach, Florida (1999)

8. Biggerstaff, Ted J.: A New Control Structure for Transformation-Based Generators. In:
Frakes, William B. (ed.): Software Reuse: Advances in Software Reusability, Vienna,
Austria, Springer (June, 2000)

9. Boyle, James M.: Abstract Programming and Program Transformation—An Approach to
Reusing Programs. In: Biggerstaff, Ted and Perlis, Alan (eds.): Software Reusability,
Addison-Wesley/ACM Press (1989) 361-413

10. Crew, R. F.: ASTLOG: A Language for Examining Abstract Syntax Trees. Proceedings
of the USENIX Conference on Domain-Specific Languages, Santa Barbara, California
(1997)

11. Czarnecki, Krzysztof and Eisenecker, Ulrich W.: Generative Programming: Methods,
Tools, and Applications. Addison-Wesley (2000)

12. Elrad, Tzilla, Filman, Robert E., Bader, Atef (Eds.): Special Issue on Aspect-Oriented
Programming. Communications of the ACM, Vol. 44, No. 10 (2001) 28-97

13. Fickas, Stephen F.: Automating the Transformational Development of Software. IEEE
Transactions on Software Engineering, SE-11 (11), (Nov. 1985) 1286-1277

14. Kant, Elaine: Synthesis of Mathematical Modeling Software. IEEE Software, (May,
1993)

15. Katz, M. D. and Volper, D.: Constraint Propagation in Software Libraries of Transforma-
tion Systems. International Journal of Software Engineering and Knowledge Engineering,
2, 3 (1992)

16. Kiczales, Gregor, Lamping, John, Mendhekar, Anurag, Maede, Chris, Lopes, Cristina,
Loingtier, Jean-Marc and Irwin, John: Aspect Oriented Programming. Tech. Report
SPL97-08 P9710042, Xerox PARC (1997)

17. Kotik, Gordon B., Rockmore, A. Joseph, and Smith, Douglas R.: Use of Refine for
Knowledge-Based Software Development. Western Conference on Knowledge-Based
Engineering and Expert Systems (1986)

18. Neighbors, James M.: Software Construction Using Components. PhD Thesis, University
of California at Irvine, (1980)

19. Neighbors, James M.: The Draco Approach to Constructing Software From Reusable
Components. IEEE Transactions on Software Engineering, SE-10 (5), (Sept. 1984) 564-
573

20. Neighbors, James M.: Draco: A Method for Engineering Reusable Software Systems. In:
Biggerstaff, Ted and Perlis, Alan (eds.): Software Reusability, Addison-Wesley/ACM
Press (1989) 295-319

21. Partsch, Helmut A.: Specification and Transformation of Programs. Springer-Verlag
(1990)

22. Ritter, Gerhard X. and Wilson, Joseph N.: Handbook of Computer Vision Algorithms in
the Image Algebra. CRC Press, (1996)

23. Sheard, Tim: Accomplishments and Research Challenges in Meta-Programming. SAIG
2001 Workshop, Florence, Italy (Sept., 2001)

24. Smith, Douglas R.: KIDS-A Knowledge-Based Software Development System. In:
Lowry, M. & McCartney, R., (eds.): Automating Software Design, AAAI/MIT Press
(1991) 483-514

25. Visser, Eclo: Strategic Pattern Matching. In: Rewriting Techniques and Applications
(RTA ’99), Trento, Italy. Springer-Verlag (July, 1999)

26. Visser, Eclo: A Survey of Strategies in Program Transformation Systems. In: Gramlich,
B. and Alba, S. L. (eds.): Workshop on Reduction Strategies in Rewriting and Program-
ming (WRS ’01), Utrecht, The Netherlands (May 2001)

27. Wadler, Philip: Deforestation: Transforming Programs to Eliminate Trees. Journal of
Theoretical Computer Science, Vol. 73 (1990) 231-248

28. Wile, David S.: Popart: Producer of Parsers and Related Tools. USC/Information Sci-
ences Institute Technical Report, Marina del Rey, California (1994) (http://
www.isi.edu/software-sciences/wile/Popart/ popart.html)

29. Wile, David S.: Toward a Calculus for Abstract Syntax Trees. In: Bird, R. and Meertens,
L. (eds.): Proceedings of a Workshop on Algorithmic Languages and Calculii. Alsac FR.
Chapman and Hill (1997) 324-352

