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Abstract. Domain specific languages (DSLs) excel at programming productiv-
ity because they provide large-grain composite data structures (e.g., a graphics 
image) and large-grain operators for composition (e.g., image addition or con-
volution). As a result, extensive computations can be written as APL-like one-
liners that are equivalent to tens or hundreds of lines of code (LOC) when 
written in a conventional language like Java. The problem with DSL specifica-
tions is that they de-localize the control components making un-optimized ma-
chine translations significantly slower than for the human optimized equiva-
lent. Specifically, operations on DSL composites imply multiple control struc-
tures (e.g., loops) that process the individual elements of large-grain compos-
ites and those multiple, implicit control structures are distributed (i.e., de-
localized) across the expression of operators and operands. Human program-
mers recognize the relation among these distributed control structures and 
merge them to minimize the redundancy of control. For example, merged con-
trol structures may perform several operations on several large-grain data 
structures in a single pass. This merging is the process of control localization. 
This paper discusses strategies for automating localization without large 
search spaces and outlines a domain specific example of transformation rules 
for localizing control. The example is based on the localization method in the 
Anticipatory Optimization Generator (AOG) system [3-8]. 

1   Introduction 

1.1   The General Problem 

DSLs significantly improve program productivity because they deal with large-grain 
data structures and large-grain operators and thereby allow a programmer to say a lot 
(i.e., express a lengthy computation) with a few symbols. Large-grain data structures 
(e.g., images, matrices, arrays, structs, strings, sets, etc.) can be decomposed into 
finer and finer grain data structures until one reaches data structures that are atomic 
(e.g.,  field, integer,  real,  character, etc.)  with respect to some conventional pro-
gramming language. Thus, operators on such large-grain data structures imply some 
kind of extended control structure such as a loop, a sequence of statements, a recur-
sive function, or other. As one composes large-grain operators and operands together 
into longer expressions, each subexpression implies not only some atomic computa-



tions (e.g., pixel addition) that will eventually be expressed in terms of atomic opera-
tors (e.g., +) and data (e.g., integers), but it also implies some control structure to 
sequence through those atomic computations. Those implied control structures are 
typically distributed (i.e., de-localized) across the whole expression. 

For example, if one defines an addition operator1 for images in some graphics 
domain and if A and B are defined to be graphic images, the expression (A + B) 
will perform a pixel-by-pixel addition of the images. To keep the example simple, 
suppose that the pixels are integers (i.e., A and B are grayscale images). Then the 
expression (A + B) implies a two dimensional (2D) loop over A and B. Subsequent 
squaring of each pixel in (A + B) implies a second 2D loop. Human programmers 
easily identify this case and merge the two loops into a single 2D loop.  

This kind of transformation seems simple enough but the real world is much more 
complex and when all of the cases and combinations are dealt with, it may require 
design tricks to avoid the generator’s search space from becoming intractably large. 
More complex operators hint at some of this complexity. For example, consider a 
convolution operator2 ⊕, which performs a sum of products of pixels and weights.  
The pixels come from image neighborhoods, each of which is centered on one of the 
image’s pixels, and the weights come from the neighborhood definition, which asso-
ciates a weight value with each relative pixel position in the neighborhood. The 
weights are defined separately from ⊕. Suppose the weights are defined in a domain 
object S, which is called a neighborhood of a pixel, where the actual pixel position 
defining the center of the neighborhood will be a parameter of S. Then (A ⊕ S) 
would define a sum of products operation for each neighborhood around each pixel 
in A where the details of the neighborhood would come from S. Thus, S will provide, 
among other data, the neighborhood size and the definition of the method for com-
puting the weights. The ⊕ operator definition will contribute the control loop and the 
specification of the centering pixel that is to be the parameter of S. The translation 
rules not only have to introduce and merge the control structures, they have to weave 
together, in a consistent manner, the implied connections among the loop control, 
the definition of ⊕ and the definition of S.  

Thus, localization can be fairly complex because it is coordinating the multi-way 
integration of specific information from several large-grain components. The greater 
the factorization of the operators and operands (i.e., the separation of parts that must 
be integrated), the more numerous and complex are the rules required to perform 
localization. In fact, localization is a subproblem of the more general problem of 
constraint propagation in domain specific translation, which is NP Complete [15]. As 
a consequence, localization has the potential to explode the solution search space. To 
thwart this explosion, AOG groups localization rules in special ways and makes use 
of domain specific knowledge to limit the explosion of choices during the localiza-
tion process. Both of these strategies reduce the search space dramatically. The 

                                                        
1 The meta-language definitions used are: 1) courier for code, 2) courier 
italics for meta-code, and 3) courier italics underlined for 
comments. 

2 A  more formal definition of the convolution operator is given in the next section. 



downside of using domain specific knowledge in localization is that localization in 
different domains may have different rules. But that is a small price to pay because 
the strategy transforms a general problem that has the potential of an exploding 
solution space into a specialized problem that does not.  

While this paper will focus on the Image Algebra (IA) domain [22], the localiza-
tion problem is universal over most complex domains. Localization is required when 
the domain’s language separates and compartmentalizes partial definitions of large-
grain operators and data structures and then allows compositional expressions over 
those same operators and data structures. Other domains that exhibit DSL-induced 
de-localization are: 1) the user interface domain, 2) the network protocol domain, 3) 
various middleware domains (e.g., transaction monitors), 4) data aggregations (e.g., 
fields aggregated into records) and others. AOG implements localization rules for 
two control domains: 1) loops over images and similar large grain data structures 
and 2) iterations induced by fields within records. 

2   The Technology 

2.1   An Example Mini-Domain 

 
To provide a concrete context for discussing the issues of localization, this section 
will define a subset of the Image Algebra [22] as a mini-DSL for writing program 
specifications.  

 

Domain Entity3 Description Definition Comments 

Image A composite data 
structure in the 
form of a matrix 
with pixels as 
elements 

A = {a i , j : a i , j is a 
pixel}         

where A is a matrix 
of size [(imax – imin 
+1) by (jmax – jmin 
+1)] s.t.  imin ≤ i ≤ 
imax and jmin ≤ j ≤ 
jmax 

Subclasses include 
images with gray-
scale or color pixels. 
To simplify the dis-
cussion, assume all 
images have the 
same size. 

Neighborhood A matrix overlay-
ing a region of an 
image centered on 

W(S) = { wp , q : wp , q 
is a numerical 
weight} 

Neighborhoods are 
objects with meth-
ods. The methods 

                                                        
3 See 22  for a more complete and more formal definition of this domain. 



an image pixel 
such that the 
matrix associates 
a numerical 
weight with each 
overlay position 

weight} 

where S is a 
neighborhood of size 
[(pmax – pmin + 1) 
by (qmax – qmin + 
1)]  s.t. pmin ≤ p ≤ 
pmax and qmin ≤ q ≤ 
qmax 

define the weights 
computation, 
neighborhood size, 
special case behav-
iors, and methods to 
compute a neighbor-
hood position in 
terms of image coor-
dinates. 

Convolution The convolution  
(A ⊕ S) applies 
the neighborhood 
S to each pixel in 
A to produce a 
new image B = (A 
⊕ s) 

(A ⊕ S) = {∀i,j (bi,j : 
bi,j = (∑p,q (wp , q *                                     
a i+p , j+q)) } 

where w p , q  ∈ W(S), 
p and q range over the 
neighborhood S; i and 
j range over the im-
ages A and B 

Variants of the con-
volution operator are 
produced by replac-
ing the ∑ p, q opera-
tion with Π p, q,    
Min p,q, Max p, q, & 
others and the * 
operation with +, 
max, min & others. 

Matrix Opera-
tors 

(A+B), (A-B), 
(k*A), An, √A 
where A & B are 
images, k & n are 
numbers 

These operations on 
matrices have the 
conventional defini-
tions, e.g., (A+B) = 
{∀i,j (ai,j + bi,j )} 

 

 

Define the weights for concrete neighborhoods S and SP to be 0 if the neighbor-
hood is hanging off the edge of the image, or to be 
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if it is not. Given these definitions, one can write an expression for the Sobel edge 
detection method [22] that has the following form: 

B = [(A ⊕ S)2 + (A ⊕ SP)2]1/2  

This expression de-localizes loop controls and spreads them over the expression in 
the sense that each individual operator introduces a loop over some image(s), e.g., 
over the image A or the intermediate image (A ⊕ S). What technology will be 



employed to specify localization? AOG uses a pattern-directed transformation re-
gime. 

2.2   Pattern-Directed Control Regimes 

In the simplest form, generic pattern-directed transformation systems store knowl-
edge as a single global soup of transformations rules4 represented as rewrite rules of 
the form  

Pattern ⇒ RewrittenExpression 

The left hand side of the rule (Pattern) matches a subtree of the Abstract Syn-
tax Tree (AST) specification of the target program and binds matching elements to 
transformation variables (e.g., ?operator) in Pattern. If that is successful, then 
the right hand side of the rule (RewrittenExpression) is instantiated with the 
variable bindings and replaces the matched portion of the AST. Operationally, rules 
are chosen (i.e., triggered) based largely on the syntactic pattern of the left hand side 
thereby motivating the moniker “Pattern-Directed” for such systems.  Beyond syntac-
tic forms, Pattern-s may also include 1) semantic constraints (e.g., type restric-
tions), and 2) other constraints (often called enabling conditions) that must be true 
before the rule can be fully executed. In addition, algorithmic checks on enabling 
conditions and bookkeeping chores (e.g., inventing translator variables and objects) 
are often handled by a separate procedure associated with the rule.  

One of the key questions with transformation systems is what is the control re-
gime underlying the system. That is, what is the storage organization of rules and 
how are the transformations chosen or triggered? We will consider the question of 
storage organization in a minute but first we will look at triggering strategies. In 
general, control regimes are some mixture of two kinds of triggering strategies: pat-
tern-directed (PD) triggering and metaprogram controlled triggering. PD triggering 
produces a control regime that looks like a search process directed mostly by syntac-
tic or semantic information local to AST subtrees. PD searches are bias toward pro-
gramming syntax and semantics mainly because the tools used are biased toward 
such information.  

The problem with pure PD control strategies is that rule choice is largely local to 
an AST subtree and therefore, often leads to a strategically blind search in a huge 
search space. In contrast, the triggering choices may be made by a goal-driven 
metaprogram. Metaprograms are algorithms that operate on programs and therefore, 
save state information, which allows them to make design choices based on earlier 
successes or failures. This purposefulness and use of state information tends to re-
duce the search space over that of PD control. However, case combinations can still 

                                                        
4 Most non-toy transformation systems use various control machinery to attempt to overcome 

the inefficiencies of the “global soup” model of transformations while retaining the conven-
ience of viewing the set of transformations more or less as a set of separate transformations. 



explode the search space. This paper will look at the techniques that are used to 
overcome these problems. 

3   Localization Technology 

3.1   Defusing Search Space Explosions 

Since program generation is NP Complete, it will often produce large and intractable 
search spaces. How does AOG overcome this? AOG uses several techniques, one of 
which is localization. More narrowly, AOG localization reduces the search space by: 
1) defining localization as a specialized optimization process with a narrow specific 
goal, 2) grouping the localization rules in ways that make irrelevant rules invisible, 
and 3) using domain knowledge (e.g., knowledge about the general design of the 
code to be generated) to further prune the search space. 

 
One way to reduce the search space is by grouping transformations so that at each 

decision point only a small number of relevant transformations need to be tried. 
AOG implements this idea by grouping the rules in two dimensions: 1) first under a 
relevant object (e.g., a type object) and 2) then under a phase name. The meta-
program goal being pursued at a given moment determines which objects and which 
phases are in scope at that moment. The phase name captures the strategic goal or 
job that those rules as a group are intended to accomplish (e.g., the LoopLocalize 
phase is the localization phase for the IA domain). In addition, the object under 
which the rules are stored provides some key domain knowledge that further prunes 
the search space. For example, in order for loop localization to move loops around, it 
needs to know the data flow design for the various operators. The general design of 
the operator’s data flow is deducible from the resulting type of the expression plus 
the details of the expression. In AOG, an expression type combined with the result of 
a specific rule’s pattern match provides the needed data flow knowledge. Thus, the 
localization process for a specific expression of type X is a matter of trying all rules 
in the LoopLocalize group of the type X object and of types that X inherits from. 
AOG rules provide this organizational information by the following rule format: 

 
(⇒ XformName PhaseName ObjName  
    Pattern RewrittenExpression Pre Post) 
 
The transform’s name is XformName and it is stored as part of the ObjName ob-

ject structure, which in the case of localization will be a “type” object, e.g., the im-
age type. XformName is enabled only during the PhaseName phase (e.g., Loop-
Localize).  Pattern is used to match an AST subtree and upon success, the 
subtree is replaced by RewrittenExpression instantiated with the bindings 
returned by the pattern match. Pre is the name of a routine that checks enabling 



conditions and performs bookkeeping chores (e.g., creating translator variables and 
computing equivalence classes for localization). Post performs various computa-
tional chores after the rewrite. Pre and Post are optional. 

For example, a trivial but concrete example of a PD rule would be 

(⇒ FoldZeroXform SomePhaseName dsnumber `(+ ?x 0) `?x)   

This rule is named FoldZeroXform, is stored in the dsnumber type structure, 
is enabled only in phase SomePhaseName, and rewrites an expression like (+ 27 
0) to 27. In the pattern, the pattern variable ?x will match anything in the first 
position of expressions of the form (+  ___  0). Now, let’s examine an example 
localization rule. 

3.2   RefineComposite Rule 

The IA mini-DSL will need a refinement rule (RefineComposite) to refine a 
composite image like a to a unique black and white pixel object, say bwp27, and 
simultaneously, introduce the elements of a loop control structure to iteratively gen-
erate all values of bwp27. These will include some target program loop index vari-
ables (e.g., idx28 and idx29), some shorthand for the putative target program 
loop control to be generated (e.g., an expression (forall (idx28 idx29) 
...) ), a record of the correspondence relationship between the large-grain compos-
ite a and the component bwp27 (e.g., the expression (mappings (bwp27) 
(a)), and the details of the refinement relationship (e.g.,  some rule bwp27 => 
a[idx28, idx29]). How would one formulate RefineComposite in AOG?  

Given a routine (e.g., gensym) to generate symbols (e.g., bwp27), an overly sim-
ple form of this rule might look like: 

 
(=> RefineComposite LoopLocalize Image `?op  
    (gensym ‘bwp)) 
 

where ?op matches any expression of type Image and rewrites it as some gensym-
ed black and white pixel bwp27. But this form of the rule does not do quite enough. 
An image instance may be represented in the AST in an alternative form – e.g., 
(leaf a ...). The leaf structure provides a place to hang an AST node property 
list, which in AOG is called a tags list. Thus, the rule will have to deal with a struc-
ture like (leaf a (tags  Prop1 Prop2 ...)).  To accommodate this case, 
the rule pattern will have to be extended using AOG’s “or” pattern operator, $(por 
pat1 pat2 ...), which allows alternative sub-patterns (e.g., pat1 pat2…)  
to be matched. 

 
(=> RefineComposite LoopLocalize Image    
    `$(por (leaf ?op) ?op) (gensym ‘bwp)) 
 



Now, (leaf a ...) will get translated to some pixel symbol bwp27 with ?op 
bound5 to a (i.e., {{a/?op}}). However, the rule does not record the relationship 
among the image a, the pixel bwp27, and some yet-to-be-generated index variables 
(e.g., idx28 and idx29) that will be needed to loop over a to compute the various 
values of bwp27. So, the next iteration of the rule adds the name of a pre-routine 
(say RCChores) that will do the translator chores of gensym-ing the pixel object 
(bwp27), binding it to a new pattern variable (say ?bwp), and while it is at it, gen-
sym-ing a couple of index objects and binding them to ?idx1 and ?idx2. The next 
iteration of the rule looks like: 

(=> RefineComposite LoopLocalize Image           
    `$(por (leaf ?op) ?op) `(leaf ?bwp) `RCChores) 

Executing this rule on the AST structure (leaf a ...) will create the binding 
list  {{a/?op} {bwp27/?bwp} {idx28/?idx1} {idx29/?idx2}} and 
rewrite (leaf a ...)  to (leaf bwp27). However, it does not yet record the 
relationship among a, bwp27, idx28, and idx29. Other instances of images in 
the expressions will create analogous sets of image, pixel, and index objects, some of 
which will end up being redundant. In particular, new loop index variables will get 
generated at each image reference in the AST. Most of these will be redundant. 
Other rules will be added that merge away these redundancies by discarding redun-
dant pixels and indexes. To supply the data for these merging rules, the next version 
of the rule will need to create a shorthand form expressing the relationship among 
these items and add it to the tags list. The shorthand will have the form 

 
(_forall (idx28 idx29)  
         (_suchthat  
  (_member idx28 (_range minrow maxrow))  
           (_member idx29 (_range mincol maxcol))  
           (mappings (bwp27) (a)))) 
 
The idx variable names will become loop control variables that will be used to 

iterate over the image a, generating pixels like bwp27.  bwp27 will eventually be 
refined into some array reference such as (aref6 a idx28 idx29). The 
_member clauses define the ranges of these control variables. The lists in the map-
pings clause establish the correspondences between elements (e.g., bwp27, 
bwp41, etc.) and the composites from which they are derived (e.g., a, b, etc.) 
thereby enabling the finding and elimination of redundant elements and loop in-
dexes.  

                                                        
5 A binding list is defined as a set of {value/variable} pairs and is written as 

{(val1/vbl1)  (val2/vbl2) …}. Instantiation of an expression with a binding list 
rewrites the expression substituting each valn for the corresponding vbln in the expres-
sion. 

6 (aref a idx28 idx29) is the AST representation of the code a[idx28,idx29]. 



The final form of the RefineComposite rule (annotated with explanatory 
comments) is: 
 
(=> RefineComposite LoopLocalize Image  
    `$(por (leaf ?op) Pattern to match an image leaf  
           ?op)        or image atom. Bind image to ?op. 
 
    `(leaf ?bwp       Rewrite image as ?bwp pixel. 
        (tags           Add a property list to pixel. 
    
   (_forall    Loop shorthand introducing 
    (?idx1 ?idx2) loop indexes and   
                (_suchthat   loop ranges & relations.         
      (_member ?idx1 (_range minrow maxrow))       
                  (_member ?idx2 (_range mincol maxcol)) 

      (mappings (?bwp) (?op)))) 
  
 (itype bwpixel))) Add new type expression. 

     
   `RCChores)          Name the pre-routine that  
             creates pixel & indexes. 

3.3 Combining Loop Shorthands 

After RefineComposite has executed, the loop shorthand information will be 
residing on the tags list of the bwp27 leaf in the AST. But this loop shorthand is 
only one of a set of incipient loops that are dispersed over the expression. These 
incipient loops must be moved up the expression tree and combined in order to re-
duce redundant looping. AOG will require a set of rules to do this job. For example, 
one rule (ConvolutionOnLeaves7) will move the loop shorthand up to the con-
volution operator and another (FunctionalOpsOnComposites8) will move it 
up to the mathematical square function. These two rules rewrite the AST subtree9 
from 
 
(** (⊕ (leaf bwp27  
             (tags (forall (idx28 idx29) ...)... )) s)  
    2)  

 
to 
  
(** (⊕ (leaf bwp27 ...) s  

                                                        
7 Definition not shown due to space limitations. 
8 Definition not shown. 
9 These examples omit much of the actual complexity and enabling condition checking but 

capture the essence of the rewrites.  



       (tags (forall (idx28 idx29) ...))) 2) 
 
and then to 
  
(** (⊕ (leaf bwp27 ...) s) 2  
    (tags (forall (idx28 idx29) ...)... )). 
 
Eventually, the process will get to a level in the expression tree where two of these 

incipient loops will have to be combined to share some portions of the loop. In this 
case, it will share the index variables, preserving one set and throwing the other set 
away. For example, the rule FunctionalOpsOnParallelComposites will 
perform such a combination by rewriting10 the AST subtree 
 
(+  (**(⊕ bwp27 s) 2  
       (tags (forall (idx28 idx29) ...)... )) 
    (**(⊕ bwp31 s) 2  
       (tags (forall (idx32 idx33) ...)... )))  
 
to 
 
(+ (** (⊕  bwp27 s) 2) 
   (** (⊕  bwp31 s) 2)  
   (tags (forall (idx32 idx33) ...)...))) 
 

throwing away  idx28 and  idx29 and retaining  idx32 and idx33.  
This movement and combination process continues until the dispersed, incipient 

loop structures are localized to minimize the number of passes over images. Follow-
on phases (CodeGen and SpecRefine respectively) will cast the resulting short-
hand(s) into more conventional loop forms and refine intermediate symbols like 
bwp27 and bwp31 into a computation expressed in terms of the source data, e.g., 
a[idx32,idx33]. But this refinement presents a coordination problem to be 
solved. How will SpecRefine know to refine bwp27 into a[idx32,idx33] 
instead of its original refinement into a[idx27,idx28]? Just replacing bwp27 
with bwp31 in the AST during the combination rule (FunctionalOpsOnPar-
allelComposites) does not work because bwp27 may occur in multiple places 
in the expression due to previously executed rules. Worst yet, there may be instances 
of bwp27 that are yet to appear in the expression due to deferred rules that are pend-
ing. Other complexities arise when only the indexes are shared (e.g., for different 
images such as a and b). Finally, since the replacement of bwp27 is, in theory, 
recursive to an indefinite depth, there may be several related abstractions undergoing 
localization combination and coordination. For example, an RGB color pixel abstrac-
tion, say cp27, may represent a call to the red method of the pixel class – say  (red 
pixel26) –  and the pixel26 abstraction may represent an access to the image – 
                                                        
10 These examples omit details (e.g., leaf structures) when they are not essential to under-

standing the example. 



say a[idx64, idx65]. Each of these abstractions can potentially change 
through combination during the localization process. So, how does AOG assure that 
all of these generated symbols get mapped into a set of correctly coordinated target 
code symbols? 

 

3.4 Speculative Refinements 

Speculative refinement is a process of dynamically generating and modifying rules to 
create the correct final mapping. When executed in a follow-on phase called Spe-
cRefine, these generated rules map away discarded symbols and map the surviving 
symbols to the properly coordinated target code symbols (e.g., array names and loop 
indexes). 

As an example, consider the RefineComposite rule shown earlier. Its pre-
routine, RCChores, will create several speculative refinement rules at various times 
while processing various sub-expressions. Among them are: 

 
(=> SpecRule89 SpecRefine bwp2711 `bwp27  
    `(aref a idx27 idx28)) 
(=> SpecRule90 SpecRefine bwp31 `bwp31  
    `(aref a idx32 idx33)) 
 
Later, the pre-routine of the FunctionalOpsOnParallelComposites rule 

chose bwp31 to replace the equivalent bwp27. It recorded this decision by replac-
ing the right hand side of rule SpecRule89 with bwp31. SpecRule89 will now 
map all bwp27 references to bwp31 which SpecRule90 will then map to (aref 
a idx32 idx33). 

Thus, at the end of the loop localization phase all speculative refinement rules are 
coordinated to reflect the current state of localization combinations. The follow-on 
speculative refinement phase recursively applies any rules (e.g., SpecRule89) that 
are attached to AST abstractions (e.g., bwp27). The result is a consistent and coor-
dinated expression of references to common indexes, images, field names (e.g., 
red), etc. 

4 Other Explosion Control Strategies 

AOG uses other control regimes and strategies that are beyond the scope of this pa-
per. These include an event driven triggering of transformations called Tag-Directed 
(TD) transformation control12 that allows cross-component and cross-domain optimi-
zations (code reweavings) to occur in the programming language domain while re-

                                                        
11 Notice that these rules are stored on the gensym-ed objects. 
12 Patent number 6,314,562. 



taining and using domain specific knowledge to reduce the search space. TD rules 
perform architectural reshaping of the code to accommodate external, global con-
straints such as interaction protocols or parallel CPU architectures. See 3 and 5-9. 
 

5   Related Research 

Central sources for many of the topics in this paper are found in [4, 11, 21, 23, 26]. 
This work bears the strongest relation to Neighbor’s work [18-19]. The main dif-

ferences are: 1) the AOG PD rules are distributed over the two dimensional space of 
objects and phases, 2) the use of the specialized control regimes (including TD con-
trol) for specialized program optimization strategies, and 3) the inclusion of cross-
domain optimization machinery.  

The work bears a strong relationship to Kiczales' Aspect Oriented Programming 
[12, 16] at least in terms of its objectives, but the optimization machinery appears to 
be quite different. 

This work is largely orthogonal but complementary to the work of Batory [1,4, 11] 
with Batory focusing on generating class and method definitions and AOG focusing 
on optimizing expressions of calls to such methods.  

AOG and Doug Smith's work are similar in that they make heavy use of domain 
specific information [24, 11].  However, Smith relies more on generalized inference 
and AOG relies more on partial evaluation [11, 26]. 

The organization of the transformations into goal driven stages is similar to 
Boyle’s TAMPR [9]. However, Boyle’s stages are implicit and they do not perform 
localization in the AOG sense. 

The pattern language [6] is most similar to the work of Wile [28,29], Visser [25] 
and Crew [10]. Wile and Visser lean toward an architecture driven by compiling and 
parsing notions, though Visser’s pattern matching notation parallels much of the 
AOG pattern notation. Both Wile and Visser are influenced less by logic program-
ming than AOG. On the other hand, logic programming influences both ASTLOG 
and the AOG pattern language. However, ASTLOG’s architecture is driven by pro-
gram analysis objectives and is not really designed for dynamic change and manipu-
lation of the AST. In addition, AOG’s pattern language is distinguished from both 
ASTLOG and classic Prolog in that it does mostly local reasoning with a distributed 
rule base.  

There are a variety of other connections that are beyond the space limitations of 
this paper. For example, there are relations to Intentional Programming [11], metap-
rogramming and reflection [11, 23], logic programming based generation, formal 
synthesis systems (e.g., Specware) [11], deforestation [27], transformation replay [2], 
other generator designs [13, 14] and procedural transformation systems [17]. The 
differences are greater or lesser across this group and broad generalization is hard. 
However, the most obvious general difference between AOG and most of these sys-
tems is AOG’s use of specialized control regimes to limit the search space. 
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