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Abstract. This work presents the use of longitudinal data analysis tech-
niques to fit the accelerations of a real car in terms of some previous
throttle pedal measurements and of the current time. Different repeti-
tions of the same driving maneuvers have been observed in a real car,
which constitute the data used to learn the model. The natural statisti-
cal framework to analyze these data is to consider it as a particular case
of longitudinal data.

Different fits are given and tested as a first step in order to explain the
relationship between variables describing the control of the car by the
driver and the final variables describing the movement of the vehicle.
Results show that the approach can be valid in those cases in which
a temporal implicit dependency can be assumed and in which several
realizations of the experiment in similar conditions are available; in such
cases an analytical model of the system can be obtained which has the
ability to generalize, i.e. to show a robust behavior when faced to input
data not used in the model construction phase.

1 Introduction

Many natural phenomena or artificial devices can be modeled as input/output
systems, i.e. as entities that take signals from their environment by means of
direct acquisition from sensors or by explicit data introduction and that gener-
ate outputs that change the state of the system itself and/or of its environment.
The problem of modeling such systems with a digital computer consists on ob-
taining a computing device connectable to sensors if appropriate, or at least an
algorithm, that accounts for the (a priori unknown) relationship between inputs
and outputs.

In general terms, two main approaches can be used to model an unknown
system: the symbolic and the non-symbolic way. The first one use knowledge of
the internal behavior of the system that is expressed in algorithmic or math-
ematical terms; in the case of dynamic systems, differential equations are the
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most common formulation. The second way of getting a model is the recollec-
tion of data taken along the time at regular time intervals or at predetermined
instants; this approach can be divided again into parametric and non-parametric
models, depending on whether the functional form of the relationship between
inputs and outputs is explicitly stated or not. Linear models are an example of
parametric models, since the functional form of the relationship between inputs
and outputs is explicitly stated by the experimenter [4].

The approach we propose consists on the estimation of a parametric model
for the system, which takes elements from both of the aforementioned possibil-
ities: it needs data collected from the real system but it generates an algebraic
expression relating inputs and outputs. The use of parametric models is a stan-
dard way to work in statistics: the experimenter proposes a reasonable model for
the dependency between inputs and outputs, taking into account the statistical
variability, which involves the input variables and some unknown parameters
and then optimal values (under a given criterion) for these parameters are esti-
mated. Models with increasing complexity or with special assumptions can be
proposed if the data come from a physical phenomenon that generates values
along the time (time series) and also if the data represent several realizations of
the same stochastic process (i.e. several experiments). When both conditions are
met, the appropriate theoretical framework to deal with that case is the analysis
of longitudinal data, as described in [3]. This work presents an application of
such formulation to the restricted modeling of a real car, considering the usual
controls of the car (throttle and brake pedals, handwheel, etc.) as inputs and
the accelerations measured by appropriate sensing devices on board of the car
as outputs. The final purpose of this model is its usage embedded into the soft-
ware to control a driving simulator; the simulator contains a cockpit resembling
that of a real car, including a handwheel, throttle and brake pedals and gearbox
lever. All these controls are appropriately sensorized and they are intended to be
the inputs of the model. The simulator has been provided, too with solid state
accelerometers that allow the measurement of the acceleration that the driver
feels. The outputs of the model should be such accelerations, and the platform
will have to be moved so as to produce at least scaled versions of them.

This work is organized as follows: section 2 describes the system and the
problem specifying the inputs and outputs; section 3 makes explicit the assumed
model and the formulation used and shows how the model has been applied to
our problem; section 4 details the experiments and results, and finally section 5
states the conclusions and the proposed future work.

2 Description of the system

Driving simulators are becoming popular as a way to evaluate different security
and mechanical issues of real cars, and also to test the psychophysical behavior of
typical drivers and to evaluate their reactions in different driving situations [6].
Movement is usually reproduced by means of mechanical platforms connected to
electrical or electro-neumatic actuators. To make the simulation platform behave
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in a way similar to a real car, a model of the car itself is needed; this means to
know its behavior in terms of the generated movement and acceleration when the
driver interacts with the controls (throttle, brake pedal, handwheel, etc.) in the
usual way. Up to now, the prevalent approach has been to model the behavior
of the vehicle by means of Newton’s laws of mechanics, taking into account
the known forces and torques ([5]). Differential equations can be programmed
so that their output is the state of movement of the vehicle at each moment,
which we will have to reproduce by moving the platform appropriately. The
set of differential equations use to be quite complex, several simplifications are
normally assumed and the knowledge of several parameters is needed, amongst
others suspension stiffness, friction coefficient between the vehicle and the floor
and others not easily measurable.

On the contrary, our solution starts by experimenting several typical driving
maneuvers in a real car that has been sensorized. This means that several sensors
and recording devices have been connected to the main controls to get a record
of the input values, and also a triaxial accelerometer was installed on board of
the car, so that the accelerations along the x, y and z axis of a given coordinate
system are measured and recorded. They are the outputs and the model will
have to calculate them from the current and former values of the inputs. In
this case is clear that the measured acceleration will depend not only on the
current readings of the controls, but also on the past history of the car, which
has determined its present state, and also on the time elapsed from the beginning
of the maneuver. Due to this, the outputs can be considered as time series. It is
common in the context of time series the use of ARMA (Autoregressive Moving
Average) or ARIMA (Autoregressive Integrated Moving Average) models [9],
but this is not appropriate in our case, since the model we intend to determine
has to be obtained from several experiments performed in different conditions
(throttle pressed up to different levels, etc.) in order to be able to generalize,
so it is said, to account for all the different situations that were used to learn,
and also for similar ones, since the behavior of the driver when the model is
working on the simulator will be similar, but not identical in each occasion. All
these reasons have motivated the choice of models based on the formulation of
longitudinal data, since it has theoretical properties appropriate to accomplish
these requirements.

3 Linear models for longitudinal data

Longitudinal data consist on several continuous or categorical responses taken
from one or more experimental units (different repetitions of the same exper-
iment performed independently). The analysis of longitudinal data is closely
related with that of time series but it presents two main differences. First, the
different time series are considered as a sample of a population. Second, the
interest in the correlation structure of longitudinal data is usually minor, but
covariance must be adjusted in the process of data analysis to ensure valid in-
ferences on the structure of the mean of the response.
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The main subject of the paper is to approximate the observed acceleration
of a car from the previous throttle pedal lectures and the current time. All data
are observed at the time instants (t1,...,t,). Let y; and z; be the acceleration
and p explanatory variables (some previous throttle pedal lectures, the time and
different functions of them) at the time ¢;. The simplest model and the classical
option is to assume that

P
vi= > wikBy+e (1)
k=1
where B = (f1,. .., p) are unknown parameters and ¢;, the experimental error,

a normal (or Gaussian) random variable with zero mean and variance o2. It is
denoted usually as €; ~ N(0,0?) (from now on, ~ means distributed as). Fur-
thermore, the different ¢;’s are assumed independent and identically distributed
with variance o2. Based on this assumptions, linear model theory permit us to
estimate the unknown parameters and to predict the accelerations. However,
this approach can not be applied to our case since the different experimental
errors are not independent. Figure 1 shows the autocorrelation function of the
errors plotted against the time lag when the time and three previous throttle
pedal lectures are used to fit the model. Real data of a straight-line acceleration
maneuver was used for this example.

Data Series

Lag

Fig. 1. Autocorrelation function of the residuals observed for a straight-line accelera-
tion maneuver with linear fit (see text for details)

This serial correlation must be taken into account to estimate the parameters
3. We must be aware that have longitudinal data. Different individuals (the dif-
ferent proofs of the same maneuver) are measured repeatedly through time. The
natural experimental unit with longitudinal data is the vectory = (41, ..., yn). It
is assumed that the same operation is repeated m times, and y; = (yi1, - - -, Yin;)
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are the accelerations observed in the i-th proof at the times t; = (¢;1,...,tin,)
where n; (which is the total number of times) can be possibly different between
different proofs. It is assumed independence between different repetitions but no
within a given maneuver observed. This basic hypothesis has to be assumed by
the simpler linear model given in equation 1.

It will be assumed that the different y;’s can be considered as independent
realizations of a random vector Y; with a multivariate normal (or Gaussian)
distribution i.e.

Y. = X8 +¢ (2)

being € = (€1, - -, €in,) and
€ij = Ui + Wiltiz) + Zij, (3)

where U; is a normal random variable (independent for different 4’s) with zero
mean and variance v?; Z;; is another normal random variable with zero mean
and variance 72 (independent for different 4’s and j’s) and finally W; is a station-
ary Gaussian process such that W;(t;;) ~ N(0,0?) and whose autocorrelation
function is p. Two different autocorrelation functions will be used in this work:
p(u) = exp{—¢ | u |} and the Gaussian p(u) = exp{—¢u?}. For different i’s, it
will be assumed that the different realizations of the Gaussian process W, are
independent. Under this model, it can be easily verified that

var(Y;) = Vi = 02 H; + 721 + 12, (4)

being H;(j,k) = p(] tij — tir |), I the identity matrix and J a matrix of ones.
The notation used in the paper has been taken from [3] where the reader can
find more details.

The proposed model and the corresponding analysis based on it uses all
data jointly. Let y = (y1,...,ym) be all the observed accelerations and t =
(t1,...,tm), the whole set of times. The length of y and t would be N = Zi\; n;.
It is assumed that y is a realization of a random vector Y with a multivariate
normal distribution given by

Y ~ N(XB,V(t,0)), (5)

where § = (02, ¢, 7%,1?) and X is a N x p matrix where the different X;’s have
been stacked. V is a block-diagonal matrix whose non-zero blocks are the V;’s
previously considered i.e.

Y =XB+e. (6)

The log-likelihood of the observed data y is then
1 = 1 _
L(B,0) = —5{nmlog(c®) + Y _log(| Vi N} + —(y - XB)'V 'y = XB). (7)
i=1

The parameters (3,6) will be estimated by using the maximum likelihood es-
timators (MLE) i.e. the values that give the maximum of the likelihood given
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by the former equation. The software package Oswald, a library of S-PLUS, has
been used.’

The global behavior of a car can be seen as a juxtaposition of different be-
haviors depending on the maneuver: acceleration, braking, steering, etc. In this
work we will deal exclusively with the straight-line acceleration maneuver, but
the behavior of the model could be extended to other driving maneuver by iden-
tifying them in the same way as done with the aforementioned maneuver. This
was the approach adopted in [1] to build a complete car simulator.

The inputs to the system are the signals that have been obtained from the
most important controls of the car: throttle position, brake pedal force, angle of
the handwheel and a time vector that will be generated from the beginning of
the maneuver. The outputs of the system are the accelerations in the three axes
X, Y and Z depending on the maneuver we want to learn. One of the inputs to
the system, the time vector, does not refer to any of the controls of the car. This
input has been fed into the system because it is important to know if we have
pushed the brake pedal or the throttle pedal up to any position (for example, a
50% of its final position) at the beginning of the development of the maneuver
or later; indeed, the acceleration of the car will be different in each case.

After doing several tests to determine how many and which previous instants
contained relevant information for the dynamic car’s modeling, it was decided
to use 50 and 100 previous samples from the current instants, for each of the
input signals. Given our sampling time, which is 7' = 0.01s, this means half and
one second before present.

Since identification was done for each of the driving maneuvers separately,
not necessarily all available input had to be used for each of them. For example,
straight line acceleration maneuver does not need the brake pedal and handwheel
angle, since they are both null in this case. This type of heuristic knowledge may
help in the reduction of the dimensionality of the input space.

In order to model the straight-line acceleration maneuver, we need data which
are sufficiently representative of the general behavior of the maneuver. In this
case we had available data from different runs done for various conditions: throt-
tle pedal pushed at 10%, 30% and 75% of its total allowed run, which are obvi-
ously different. Following the notation used by [7] where the concept of experi-
mental unit represents the repetition of each of the tests, each experimental unit
contains one of the three available data banks for the acceleration maneuver,
each of which refers to each of the three different final positions of the throttle
pedal.

4 Results

Several experiments have been performed by using the models of equations 2
and 3 with different sets of explanatory variables and assuming different auto-
correlation structure. The results are shown in table 1. This table displays the

L Oswald is a copyright ©1997 David M. Smith and Lancaster University
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MLE of the parameters £2,72 and q§2, and the maximum log-likelihood reached.
The usual S-PLUS notation for the formulae is used (see [8]).

Table 1. Results with the different models fitted showing the value of the maximum
log-likelihood (column headed L) besides the MLE: #*, 62, 72 and ¢?

Num.|[Model i 52 |72 ¢ |L

1 Yy~ x1+ T2+ 23 9.1eY [0.223 [0.0033  [0.0385] —770.9
p(u) = exp(—¢ - |ul*)

2 y~T+ T2+ a3 0.517 [0.659 [3.79¢~° [0.009 [—729.1
p(u) = exp(=¢ - |u|)

3 Y ~ T1 % To kT3 0.822 [0.938 [34.59¢1]0.0058| —700.8

p(u) = exp(—¢ - |u|)
4 y ~ poly(z1,2) + poly(x2, 2) 0.584 [0.711 [9.76e~ " 0.0078|—709.1
—|—p0ly(l’3, 2)

p(u) = exp(=¢ - |ul)
5 y ~ poly(z1,2) + poly(xs,2)  [3.11e °]0.2197]0.0032  [0.0386] —766.
+p0ly(1173, 2)

p(u) = exp(=¢ - |u[*)
6 y ~ poly(z1,2) + poly(x2, 2) 0.133 [0.263 [3.49¢ ™ [0.021 [-701.9
+poly(zs,2) + poly(time, 2)
p(u) = exp(—¢ - |u|)

7 y ~ poly(x1,2) + poly(z2, 2) 0.089 |0.0845(0.0031 0.0501] —703.
+poly(xs,2) + tex(tl) + tex(t2)
+tex(t3)

p(u) = exp(=¢ - |ul*)

8 y ~ poly(z1,2) + poly(x2, 2) 0.042 [0.186 [3.94¢ ™0 0.0298]—697.7]
+poly(xs,2) + tex(tl) + tex(t2)
+tex(t3)

p(u) = exp(=¢ - |ul)

For instance, models 1 and 2 (first and second rows of the table) are denoted
by y ~ x1 4+ x2 + x3, which means that the longitudinal data model uses as
explanatory variables three throttle pedal lectures in the current and two former
instants. The second row indicates the auto-correlation function used. The third
model denoted by y ~ x1 * 2 * x3 uses as explanatory variables the original
variables and all the cross-products of the variables x1,z2 and z3 i.e. x1x2,
r123 and so on. The expression poly(r1,2) means that the original, x; and %
have been used as explanatory variables. tex(t1) denotes a vector in which time
increases linearly; tex(¢2) is a vector in which time increases quadratically in the
first time interval, up to a certain time to and tex(t3) is a vector in which time
increases linearly only from ¢y up to the end of the maneuver. In all the cases &
was chosen as 50 sampling periods.

Let us look at the model 4 with more detail. This model uses polynomials
of order up to 2 for each of the explanatory variables. The likelihood observed
is —709.1 i.e. it is the fifth better fit from this point of view. Note that the
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parameters estimated are based on three experimental units. The plots in figure
2 show the obtained adjusted data that the model gives for each experimental
unit overlaid to the real data. It is clear that the results are not good, since
acceleration goes out of the desired range for the real outputs (there are even
negative accelerations), but the generalization is acceptable. Nevertheless, the
result would be unusable in a simulator since negative accelerations would be
opposite to the type of sensation that is expected by the driver.

Fitting using polynomials (Unit 1) Fitting using polynomials (Unit 2)

Real output
Fitted output

Real output _
Fitted output

Samples Samples

Fitting using polynomials (Unit 3)

Real output _
Fitted output

Acceleration in X-axis

0 50 100 150 200

Samples

Fig. 2. Comparison between real and fitted values for experimental units 1, 2 and 3
respectively. A model with polynomials of order 2 (experiment 4) has been used.

Model 6 is the first one in which time is used explicitly. Experiments 7 and 8
use the tex function with the two user-defined vectors of time, ¢; and ¢5, explained
above. These vectors have been created in this way so that a quadratic fitting
can be done for the first part of the plot and a linear fitting for the rest of the
maneuver. If we observe the behavior of the acceleration in this type of maneuver
(output to be fitted) it is clear that the creation of these two vectors is a sensible
option. Table 1 shows the obtained results for this type of models; it can be
seen that they provide better fits that every previous model giving a maximum
log-likelihood of —697.7. Plots in figure 3 show the comparison between the real
signal and fitted data. Results are now clearly better; they could be used in our
practical case, though not with a completely real sensation. The model could be
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further refined to get better results by changing the variables in the correlation
function and testing other combinations in the formula for the linear model.

Obviously, more explanatory variables and more complex relations provide a
better fit. However, they remains two open questions: the variables selection (how
many previous pedal lectures and in which times to observe) and a deeper study
of the functional relation between the explanatory variables and the observed
acceleration.

Fitting using polynomials and tex functions (Unit 1) Fitting using polynomials and tex functions (Unit 2)

Real output
Fitted output

Real output
Fitied output

0 50 100 150 200 0 50 100 150 200

Acceleration in X-axis

T T T
0 50 100 150 200

Samples

Fig. 3. Comparison between real and fitted values using the formula 8 of table 1 for
experimental units 1, 2 and 3 respectively.

5 Conclusions

An important objective of this work was to determine to what extent longitu-
dinal data models can be considered as a valid alternative for the modeling of
the dynamic behavior of a real system, or at least of a restricted part of it. The
performed experiments shows that, in our case, longitudinal data analysis can
be a feasible approach only for sufficiently sophisticated models. Explicit usage
of time as an input introduces valuable information, but this can only be done
if the initial instant of time (the instant in which the data start to arrive) is
known. Moreover, controlling the specific type of dependency of the output with
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respect to time, and making it different for different time intervals of the exper-
iment increases the goodness of the fit, as can be seen in the second experiment,
in which this has been done. On the contrary, the choice of the autocorrela-
tion function of the errors (exponential or Gaussian) does not appear to have a
decisive influence, at least for this case.

With respect to the adequacy of the model for its intended purposes, the
fit obtained in the second experiment can be considered as sufficient for its use
in our driving simulator, given the limited ability of people to perceive absolute
values of accelerations or differences of them. Other dynamic systems may require
a better fit, but this could probably be achieved by using models involving
more complex dependencies between inputs and output. On the other hand, the
generalization capabilities of the model are also appropriate for this case, and this
is the main reason to choose longitudinal data with preference to simpler linear
models for problems involving the control of dynamic systems whose behavior is
similar, but strictly different for each trial.

An important practical aspect is the detection of the point in time in which
the dependency of the output with time changes, for instance from linear to
quadratic, and which roughly corresponds in our case to a change in the auto-
matic gearbox. This could be done by using a different model involving informa-
tion such as engine speed and remains as a future work.
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