An Accurate and Efficient Frontal Solver for
Fully-Coupled Hygro-Thermo-Mechanical Problems*

Mauro Bianco?, Gianfranco Bilardi', Francesco Pesavento?,
Geppino Pucci!, and Bernhard A. Schrefler?

! Dipartimento di Elettronica e Informatica, Universita di Padova, Padova, Italy.
{bianco1,bilardi,geppo } @dei.unipd.it
2 Dipartimento di Costruzioni e Trasporti, Universita di Padova, Padova, Italy.
{pesa,bas} @caronte.dic.unipd.it

Abstract. Solving fully-coupled non-linear hygro-thermo-mechanical problems
relative to the behavior of concrete at high temperatures is nowadays a very in-
teresting and challenging computational problem. These models require an ex-
tensive use of computational resources, such as main memory and computational
time, due to the great number of variables and the numerical characteristics of the
coefficients of the linear systems involved.

In this paper a number of different variants of a frontal solver used within HITE-
COSP, an application developed within the BRITE Euram III “HITECO” EU
project, to solve multiphase porous media problems, are presented, evaluated and
compared with respect to their numerical accuracy and performance.

The final result of this activity is a new solver which is both much faster and more
accurate than the original one. Specifically, the code runs over 5 times faster and
numerical errors are reduced of up to three order of magnitude.

1 Introduction

Many successful methods exist for the solution of algebraic equations arising from the
discretization of uncoupled problems. For coupled problems, especially when several
fields are involved, the problem is still open. We concentrate here on a particular cou-
pled multi-physics problem which deals with concrete under high temperature condi-
tions [1,2]. Such a model allows for instance to make residual lifetime predictions in
concrete vessels of nuclear reactors or to predict the behavior of concrete walls in tunnel
fires etc., [1-3]. The model has been implemented in the computer code HITECOSP in
the framework of the BRITE Euram III “HITECO” [4] research project. This software
uses a frontal technique to solve the final system resulting from the finite element (FE)
implementation of the model. The aim of our work has been to improve the efficiency
of HITECOSP’s frontal solver in terms of performance as well as numerical accuracy,
by to exploiting the various characteristics imposed by the model.

Improvements in term of performance have been obtained implementing a number
of code optimizations, discussed in Section 2.2, with respect to original HITECOSP
program.

In order to improve numerical accuracy in solving the linear systems produced by
the Newton-Raphson like procedure used to solve the nonlinear systems arising from
the FE implementation of the model, several pivoting strategies have been implemented

* This work was supported, in part, by MURST of Italy within the framework of the Centre for
Science and Application of Advanced Computation Paradigms of the University of Padova.

P.M.A. Sloot et al. (Eds.): ICCS 2002, LNCS 2329, pp. 733-742, 2002.
© Springer-Verlag Berlin Heidelberg 2002

734 M. Bianco et al.

and evaluated based on a modified component-wise backward error analysis (see Sec-
tion 3). From our analysis it follows that the best strategy in terms of accuracy is also
the best in terms of performance. In particular we have noticed errors of the same or-
der of magnitude of the roundoff unit error and a further speed-up with respect to the
optimized version of the original solver.

The rest of the paper is organized as follows. Section 2 deals with the frontal meth-
ods and the various code optimizations we have introduced and the pivoting strategies
implemented. The metrics adopted to evaluate accuracy and performance are described
in Section 3. Finally, the test cases used to evaluate our solvers are described in Section
4 while our results are shown in Section 5.

2 Frontal Method: Overview and Implementation

The large linear systems produced by the Newton-Raphson used in HITECOSP, are
solved through the frontal method (see [5, 6] for a full description). The frontal method
solves a linear system by working, at each step, only on a portion of the matrix (called
[frontal matrix), hence it is useful in those situations where core memory becomes the
critical resource. The method works by sequentially executing two phases on each ele-
ment of the finite element grid: an assembly phase and an elimination phase. During the
assembly phase, the frontal matrix is augmented by the appropriate number of columns
and rows relative, respectively, to the variables associated to the element and the equa-
tions containing those variables, and the matrix entries are updated to account for the
new element. An entry becomes fully-summed if it will not receive further updates in
any subsequent assembly phase. A column (resp., row) becomes fully-summed when all
its entries become fully summed. A variable corresponding to a fully-summed column
is also said fully-summed.

During the elimination phase, Gaussian elimination is applied to the frontal matrix,
choosing the pivot in the block at the intersection of fully-summed rows and fully-
summed columns. At each Gaussian elimination step, the pivot row is eliminated, i.e.,
it is stored somewhere into memory (typically onto a disk, if the problem is too large to
fit in main memory). After the last elimination phase, back substitution on the reduced
linear system is executed.

2.1 Pivoting Strategies

Recall that in the frontal method only a part of the matrix of the system is available at
any given time, hence any pivoting strategy must be adopted to cope with this scenario.
In particular, the pivot must always be chosen among those entries of the frontal matrix
which reside in fully-summed rows and fully-summed columns.

Many strategies have been developed either to speed up the frontal solver or to
improve its numerical stability. In this section we describe those strategies which we
have implemented in order to find a solution that achieves the best trade-off between
stability and performance for our particular physical problems.

Let A be the frontal matrix in a given elimination step. Numerical pivoting [6]
entails choosing the pivot among the entries a;; residing in fully-summed columns such
that

|aij| > OémkaX|aik\7 ey

where 0 < a < 11is a numerical constant and ¢ is the index of a fully-summed row. Nu-
merical pivoting was adopted to reduce the approximation error introduced by Gaussian
elimination for the frontal method.

An Accurate and Efficient Frontal Solver 735

If an eligible pivot is not found, then the next element is assembled and a new
search for a pivot is performed. This strategy is called postordering for stability [6].
The algorithm clearly terminates since eventually all the rows and all the columns of
the frontal matrix will become fully-summed.

Often it is claimed in the literature that postordering for stability affects perfor-
mance only slightly, while numerical stability is substantially increased. However, our
experiments show that this is not the case for our physical problems. The failure of pos-
tordering in our scenario seems to be primarily due to the fact that the matrix entries
in our mixed physical problems can be up to 40 orders of magnitude apart. Moreover,
when a pivot is chosen, during the elimination step, fill-ins are produced in other rows,
thus creating bonds among variables that do not belong to neighboring elements in the
finite element mesh. Often these bonds prevent a row to be eliminated since the entries
in its fully summed columns do not satisfy condition (1). In the next elimination steps
this row continues to be filled with additional nonzero entries, hence the likelihood that
it will not be chosen for elimination keeps on increasing, in a sort of “positive feedback”
effect. Indeed we have observed extreme cases where rows entered in the frontal matrix
at the very beginning of the solver’s activity remains in the matrix until the very end.
This phenomenon introduces two problems: not only does it cause the frontal matrix to
grow inordinately, slowing down the program, but also worsens the numerical stabil-
ity of the method, since a row that is present for a long time in the frontal matrix will
sustain many operations on it, which is likely to amplify accumulation errors.

Another popular pivoting strategy is known as minimum degree [7, 6]. This strategy
was proposed as a greedy way to reduce fill-ins when performing Gaussian elimination
and was proved to be suited for symmetric, positive-definite matrices. Under minimum
degree, the pivot is chosen as the diagonal element of a row with the minimum number
of entries. Under the frontal method, the minimum degree strategy may be applied to
the frontal matrix, choosing the pivot on the diagonal entry of the row with minimum
number of entries in the block formed by the intersection between fully summed rows
and fully summed columns. Since the full matrix of our systems has a symmetric struc-
ture, choosing pivots on the diagonal also preserves this symmetry inside the frontal
matrix, allowing the data structures to be simplified.

It has to be remarked that the minimum degree strategy does not make any nu-
merical consideration on the chosen pivot and it was originally developed for matrices
that do not need such numerical precautions, e.g., positive definite symmetric matrices.
Although our matrices, featuring great differences between numerical values of their
entries, appear to be unsuitable for an application of minimum degree pivoting, our
experiments have shown that the strategy is an effective way of reducing the accumu-
lation error caused by postordering, perhaps due to the fact that it substantially reduces
the amount of floating point operations. Indeed, a careful implementation of the mini-
mum degree strategy has proven to feature both excellent performance and numerical
accuracy for our problems.

The original application, HITECOSP, from which this work started, uses the fol-
lowing hybrid strategy. Before the pivot is chosen, if the absolute value of the previous
pivot is less than a fixed numerical threshold value (10 ~# in our cases), then the fully-
summed rows are normalized so they will contain only values included between —1 and
1. After that, the pivot is chosen as the entry with the maximum absolute value among
those in the intersection between fully-summed rows and columns. No postordering is
performed. This strategy seems to work well for our physical problems. Namely, it ex-
hibits good numerical accuracy and lends itself to an efficient implementation, which
however requires a complete redesign of the relevant data structures.

736 M. Bianco et al.

2.2 Our Solutions

In this section we describe the frontal solvers which we have implemented. Each variant
is characterized by a short name (in parentheses) which suggests the specific pivoting
strategy adopted by the variant. Our first intervention has aimed at improving perfor-
mance of the HITECOSP software (HIT) by providing an optimized implementation of
its solver. In particular, the greatest improvement in performance has been obtained by
the redesign of the main data structures in order to reduce at the minimum the number
of linear searches inside arrays.

Another important issue that has been considered in redesigning HITECOSP’s solver
is the enhancement of the temporal and spatial locality of the memory accesses per-
formed. To this purpose, extensive cache optimization has been applied, such as per-
forming operations (e.g., row elimination, pivot search, etc.) within the solver by col-
umn rather that by row, in order to exploit the column major allocation of matrices
featured by the FORTRAN compiler.

Another important source of performance enhancement has come from conditional
branch optimization. As an example, consider that when computing on a sparse matrix,
many operations are performed to no effect on zero entries (e.g., divisions and multipli-
cations). However in most modern microprocessor architectures (and, in particular, on
the ALPHA platform where our experiments run), keeping these operations improves
performance since they take less cycles than those necessary by the processor to recover
from a mispredicted branch. Indeed, conditional branch elimination in HITECOSP has
improved the performance of the resulting code of up to 20%. This version of the frontal
solver, implementing the same pivoting strategy as HITECOSP, named BASE, exhibits
rather good performance.

The above code optimizations have also been employed to speed up the execution
of the other solvers developed within our study. However, the main justification for de-
signing new solvers mainly stems from our desire to compare the efficiency and numer-
ical stability of the pivoting approach of HITECOSP with the other more established
strategies described in the previous section. As a first step, basic numerical pivoting (as
illustrated before) was implemented. Specifically we have developed a version with-
out postordering that chooses as pivot the element that maximizes the value of o in (1)
(NUMPIV), and another one implementing postordering (NUMPPO) which set v = 10 ~6
in (1).

Next, we have implemented the minimum degree strategy (MINDEG). This latter
solver chooses the pivot on the diagonal of the frontal matrix and is endowed with
recovery features when an entry in the diagonal is zero (however, this has never occurred
in our experiments). A further optimization stems from the fact that, since the structure
of the frontal matrix depends only on that of the finite element mesh, and, under the
minimum degree strategy, the pivots depend only on the structure of the matrix, the
pivotal sequence remains the same for all the executions of the frontal solver over the
different iterations of the Newton-Raphson method (unless the chosen pivot is zero,
which requires special care). Hence, it is possible to store the pivotal sequence during
the first execution and to use it for the next ones, choosing the pivot, at each stage, with a
single memory access. Our version of the minimum degree algorithm stores the pivotal
sequence after the first execution of the frontal solver and uses it in the subsequent calls.

Finally, for the purpose of comparison, we have produced a further implementation
(HSL) which uses the free version of the HSL (Harvell Subroutine Library) library
[8]. Specifically, we have used the MA32 routine [9] that implements a frontal solver
featuring a sophisticated numerical pivoting strategy. Version HSL gives us insight to
compare our strategies against standard solutions available using third-party software.

An Accurate and Efficient Frontal Solver 737

3 Comparison Metrics

All the solver versions introduced in the previous section are evaluated in terms of their
numerical stability (limited to the solution of the linear system) and performance. The
next two sections discuss the metrics used to measure these two characteristics.

Evaluating numerical stability

Let % be the computed (approximated) solution to one of the linear systems Ax = b
arising during the solution of a FEM problem. Approximation errors have been evalu-
ated using a metric based on the component-wise backward error [10]

w=min{e: (A+ AA)Z = b+ Ab,|AA| < ¢|A|,|Ab|] < b} 2)

(The absolute values and the comparisons are intended to be component-wise). It can be
proved (see [10, 11]) that, setting 0/0 = 0 and £/0 = oo if £ # 0, w can be computed
as

3)

w = max L
o ([A] 2]+ []):

Intuitively, w measures the minimum variation that the matrix of the system and the
right hand side vector should sustain to obtain the approximated = solution. There is
evidence in the literature that the component-wise backward error is more sensitive to
instability than other metrics [12].

In this work, in order to have a more detailed description of the approximation errors
introduced by our solvers, we have refined the component-wise backward error metric
as follows. Let a; denote the i-th row of A. Define the ith equation error to be

w; = min{e : (a; + Aa;)T = b; + Ab;, |Aa;| < €lag|, |[Abs| < elbil}. ()

Value w; gives a measure of “how well” vector & satisfies the ¢th equation of the system
and can be readily observed as follow.

Theorem 1. Let v be a vector with v; = (\AH;W' Then w; = v;.

Proof. Let Aa; and Ab; be a pair of minimal perturbations associated to w;. Since
|Ad;| < w;la;| and | Ab;| < w;|b;|, we have that

il = [bi — @:F| = |Aai& — Abs| < |Ady||Z] + |Abs| < wi(las]|Z| + |bi]),

whence w; > |v;|. Also, from the definition of v it follows that r; = v;(|a;||Z| + |bi])-
Define now Aa} = v;|a;|diag(sign(z)) and Ab, = —wv;|b;|. It is easy to see that (a; +
Aay)Z — (b; + Ab;) = 0. Therefore, since |Aal| = |v;|a;| and |Ab;| = |v;||bs], it
follows that w; < |v;], and the theorem follows.

It is easy to see that AA = diag(v)|A|diag(sign(Z)) and Ab = —diag(v)|b| are such
that |[AA| < wl|A|, |Ab] < w|b| and (A + AA)Z — (b + Ab) = 0. Moreover, the
above theorem proves that all the perturbations are the minimum possible, in the sense
indicated by (4). Hence, vector v provides a readily obtainable indication about the
minimum perturbation that each equation should sustain to obtain the approximated
solution. In particular any element of v can be compared against the roundoff unit error
to gain immediate appreciation of the significance of the corresponding perturbations.
Finally, observe that the standard component-wise error metric w can be obtained as
w =] -

738 M. Bianco et al.

A plot of vector v (using the equation indices as the abscissae) can be used to ascer-
tain whether numerical errors tend to affect some groups of equations more than others.
We feel that this is particularly useful in multi-physics applications as the ones treated
in this paper.

All the metrics described above have been collected over several iterations of each
solver. No significant variation of each metric has been observed over the different
iterations. However, in what follows, we report the maximum errors encountered on
each test case.

Measuring performances
Performance is measured both in terms of computational time and rate of floating point
operations (Mflops) relatively to the frontal solver only.

4 Test Cases

The various solver versions have been executed on a number of test cases arising in
several practical scenarios and characterized by an increasing complexity of the under-
lying physical system. As for the solver version, each test case is indicated by a short
name (in parentheses):

1. small column (smcol): a regular 10 x 10 mesh of 100 elements in which all the
degrees of freedom, except for the ones related to displacements, are set to zero.

2. wall (wall): 69 elements lined up in a row where the fifth degree of freedom (y-
displacement) is fixed to zero;

3. container (cont): 288 elements outlining a container;

4. column (col): a square section of a column made of a 20 x 20 mesh of 400 elements;

5. big column (bigcol): like column but made of a 25 x 25 mesh of 625 elements;

Such a variety of test cases allows us to evaluate the behavior of the solver variants when
the complexity of the physics behind the problem to be solved varies, from simpler
(smcol) to harder (bigcol).

5 Results

The solver versions shown above have been tested on an Alpha workstation which uses
a 21264 processor clocked at 666Mhz with two floating point units that make it capable
of a 1354Mflops peak performance

The next two subsections report the results obtained by evaluating the various ver-
sions of the solvers described above. In section 5.1 we analyze the numerical stability
properties exhibited by the solvers with respect to the metrics discussed in section 3. In
section 5.2 we examine the performance achieved by the solvers.

5.1 Numerical Quality

Table 1 reports the component-wise backward error analysis (2) for all the solver ver-
sions and test cases described before. We note that MINDEG exhibits the least errors
(in order of magnitude), scaling extremely well as the physical problems become more
complex. Also, the table shows that HIT and BASE do not exhibit exactly the same
errors, with BASE featuring slightly larger errors. This is explained by the fact that HIT
uses some extra heuristic precautions to reduce fill-ins. We have chosen not to imple-
ment these expedients in BASE, since they complicate the code while not providing
significant improvements in term of either accuracy or performance.

An Accurate and Efficient Frontal Solver 739

Table 1. Component-wise backward errors exhibited by the various solvers for each test cases.

HIT BASE |NEWPIV|NEWPPO |MINDEG| HSL
smcol [3-1077°[3.107"°[3 - 10 "°[3. 10" "°|3 - 10~ "°[4 - 10~ °
wall [4-1077[1-107"°[1-107""[3-10° 410" "°[1-107°
cont [6-10""°[5-107"°]6-10"""[2-107"[6-10""°[5 107"
col [4-107"%[2-107"%[2-107°[2-107°[9-10""°[4-10""
bigcol|2 10726 - 10" | 7-107°[5-10°[1-10"[5.107°
BASE and HIT MINDEG
-5 -5
8 8
@ -10 -10
2 2
o [s]
P— 5-15
3 S
-20 -20
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
Index of sorted known terms array Index of sorted known terms array
NEWPIV HSL
-5 : ', -5
s - s
s -10 : 5 -10
2 2
o [s)
S- 15
S S
-20 -20
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
Index of sorted known terms array Index of sorted known terms array

Fig. 1. Plot of the component-wise errors for the bigcol test case, exhibited by the various solvers.
The abscissae are the equations indices and the ordinates are the base 10 logarithms of the errors.

If we compare NEWPIV with NEWPPO, implementing, respectively, numerical piv-
oting without and with postordering, we see that the errors exhibited by the latter (in all
cases except smcol) are orders of magnitude worse than those exhibited by the former.
Indeed, for the two largest test cases, the errors exhibited by NEWPPO in the solution of
the linear systems became so large to prevent the Newton-Raphson method from con-
verge. This provides numerical evidence that postordering does not achieve its intended
purpose in our physical scenario.

To achieve a more profound understanding on the numerical behavior of the imple-
mented variants, in Figure 1, we show all the components of the v vector (see sec. 3)
for different solvers running the bigcol test case, plotted (in logarithmic scale) against
their respective indices. For our specific physical problems, we have that indices be-
tween 1 and 2000 are relative gas pressure equations, indices between 2001 and 4000
are relative to capillary pressure, indices between 4001 and 6000 are relative to temper-
atures, and, finally, the remaining indices are relative to displacement equations. It is
interesting to observe how errors tend to cluster according to the type of equation.

It is clear from the figure that MINDEG exhibits extremel%/ homogeneous errors that
are all close to the roundoff unit error (which is about 10 ~'¢ for our machine), while
BASE, although still behaving quite well, tends to show a more varied range of errors,
which implies that different equations (corresponding to different physical constraints)
are solved with different degrees of accuracy. As for NEWPIV, we can see a rather good
behavior on average, but the plot highlights a non-negligible set of outliers with high

740 M. Bianco et al.

Table 2. Times and floating point operations rates (frontal solver only). Note the +oco entries in
the NEWPPO columns are related to that test cases for which the method does not converge as the
errors become too large.

HIT |BASE INEWPIVNEWPPOMINDEG| HSL
wall |Time (s)] 4.6 [223 | 2.48 1.96 1.07 | 448
Mflops |59.54 (109.18] 134.15 | 163.08 | 161.34 231.73
lsmcol |Time (s)| 6.05 | 1.98 | 2.12 1.83 1.64 | 6.97
Mflops |50.28 | 164.3 | 168.94 | 179.05 | 180.45 201.91
lcont [Time (s)| 77.5 | 27.5 | 304 790.0 22.9 |207.1
Mflops | 79.63 [237.63| 232.06 | 98.4 |262.02 206.47
lcol [Time (s)| 314.1 | 116.8 | 1245 [3212 96.5 |1230.5
Mflops |54.08 [224.09| 222.62 | 7.89 |256.93 |154.76
bigcol|Time (s)[1276.4]260.1 | 274.0 +00 2259 [1609.5
Mflops |30.58 232.53| 226.6 - 261.77 |137.47

10

Solution time per linear system (s)

L
Q
Qo
=
)

WALL

3 I I I I I I I I I
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Size of the system (number of variables)

Fig. 2. Time taken by the various solvers on a single linear system as a function of the size of the
system itself.

values of the error w. Finally, looking at the plot for HSL, we may note how it behaves
very poorly for two entire groups of equations (especially those related to pressures)
while it is only slightly worse that BASE for the other two groups.

5.2 Performances

Table 2 shows the execution times and the floating point operation rates (Mflops) exhib-
ited by the frontal solvers. Each test case involves several time steps, with each time step
in turn requiring the solution of a number of linear systems, one per Newton-Raphson
iteration. More specifically, the number of linear systems solved in each test case is
about 120 for wall and smcol, 45 for cont and col, and 30 for bigcol. For the last three
test cases, the most computationally intensive ones, we have that the solver accounts
for about 75% of the total time for MINDEG, and goes up to 95% for HIT. This fact
justifies our focusing on the solver only, rather than other parts of the program, such as
the numerical integration routines.

In Figure 2 we plot the time taken by the various solvers on a single linear system
as a function the size of the system itself. We want to remark that the size of the system
is not, however, the only parameter that affects performance, since, depending on the

An Accurate and Efficient Frontal Solver 741

Flop rate (Mflops)
o
3

0 ; ; ; ; ; ; ; ; ;
o 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Size of the system (number of variables)

Fig. 3. Floating point operations rates exhibited by the solvers varying the size of the systems
resolved.

solver used, other peculiarities may influence execution times, such as, for example, the
shape of the mesh.

Looking at Table 2, we note that MINDEG exhibits the by far best performance.
Together with the numerical stability data presented in the previous section, this im-
plies that MINDEG achieves both performance and accuracy at the same time, which
is somewhat surprising since an increase in accuracy often comes at the expense of a
deterioration of performance.

Unlike HIT and HSL, MINDEG, BASE, and NEWPIV seem to be able to sustain
high flops rate when the size of the problem increases (see fig. 3). Such scalability
rewards our redesign of the data structures, which affords access times to data which
are independent of the amount of the data itself. Comparing BASE against HIT, we see
that redesigning the data structures, optimizing data accesses and carefully eliminating
conditional branches alone made the solver more than 4 times faster. Changing the
pivoting strategy yielded an extra time saving: indeed, MINDEG is more than 5.6 times
faster than HIT for the bigcol test case.

Looking at the numerical pivoting strategies, we note that HSL exhibits a rather
unsatisfactory performance. This seems to be mainly due to postordering. Comparing
NEWPPO to NEWPIV, for the test cases for which both strategies converge, we note that
when postordering is extensively used (as for cont and col test cases), the execution
time explodes. This can be explained by the feedback effect described in section 2.1
and due to postordering. It has to be remarked that HSL behaves quite well for the
wall and smcol test cases, for which it exhibits the highest flops rate. In fact, when
the physical problem is simple, HSL becomes competitive. However, as the problem
becomes more complex, the time performance of HSL degrades, even though its floating
point operations rate remains quite high. As a bottomline we can say that HSL features
a very good implementation (high flops rate), but its pivoting strategy, however, turns
out to be a poor choice for our physical problems.

Going back to NEWPIV and NEWPPO, we note that for the wall and smcol test
cases, the latter exhibits better execution times than the former. This is due to the fact
that, while NEWPIV maximizes « in equation (1), NEWPPO simply picks the first el-
ement which satisfies (1) for a fixed @ = 107°. This strategy proves to be beneficial
for performance since fewer entries of the frontal matrix need to be scanned. The gain
in performance is however limited to those simple cases where postordering is rarely
applied. We have chosen not to pick the best possible pivot when implementing pos-
tordering since we have observed that otherwise some rows would remain longer in the
frontal matrix, which has detrimental effects on both time performance and accuracy.

742 M. Bianco et al.

6 Conclusion

When solving very non linear and strictly coupled physical problems where there may
be many orders of magnitude among the numerical values involved, our experiments
suggest that the best strategy is to strive for simplicity. Indeed, the MINDEG version of
the solver does not do any numerical consideration when choosing the pivot in Gaussian
elimination, but only structural ones. Yet, this suffices to get excellent performance and
good accuracy.

Redesigning the data structures and performing code optimizations has proved to
be the most effective way to speed-up the program considering that BASE achieves an
improvement of a factor 4 with respect to HIT. A further improvement is then obtained
by simplifying the pivoting strategy.

A possible further improvement in performance, that we mean to investigate, is to
find the right tradeoff between avoiding linear searches inside the arrays and limiting
indirect addressing. Specifically, observe that data structures designed to avoid linear
searches make large use of indirect addressing, which, however, may disrupt temporal
locality and slow down the algorithm by forcing the processor to wait for the data to
become available from main memory.

References

1. D. Gawin, C. E. Majorana, F. Pesavento and B. A. Schrefler. A fully coupled multiphase FE
model of hygro- thermo- mechanical behaviour of concrete at high temperature. In Computa-
tional Mechanics., Onate, E. & Idelsohn, S.R. (eds.), New Trends and Applications:, Proc. of
the 4th World Congress on Computational Mechanics, Buenos Aires 1998; 1-19. Barcelona:
CIMNE, 1998.

2. D. Gawin, C. E. Majorana and B. A. Schrefler. Numerical analysis of hygro-thermic be-
haviour and damage of concrete at high temperature. In Mech. Cohes.-Frict. Mater. 1999;
4:37-74.

3. D. Gawin, F. Pesavento and B. A. Schrefler. Modelling of hygro-thermal behaviour and dam-
age of concrete at temperature above the critical point of water. Submitted for publication.

4. BRITE Euram III BRPR-CT95-0065 1999 "HITECO”. Understanding and industrial ap-
plications of High Performance Concrete in High Temperature Environment, Final Report,
1999.

5. B. M. Irons. A frontal solution program for finite element analysis Int. J. Numer. Meth.
Engng, 1970; 2:5-32.

6. 1. S. Duff, A. M. Erisman and J. K. Reid. Direct Methods for Sparse Matrices, Clarendon
Press, 1986.

7. W. E Tinney and J. W. Walker. Direct solutions of sparse network equations by optimally
ordered triangular factorization, Proc. IEEE 55, 1967; 1801-1809,

8. HSL (Formerly the Harwell Subroutine Library).
http://www.cse.clrc.ac.uk/Activity/HSL

9. L. S. Duff and J. K. Reid. MA32 - a package for solving sparse unsymmetric systems using
the frontal method, Report R.10079, HMSO, London, 1981.

10. W. Oettli and W. Prager. Compatibility of Approximate Solution of Linear Equations with
Given Error Bounds for Coefficients and Right-Hand Sides, Numerische Mathematik, 1964;
6:405-4009.

11. N.J. Higham. How accurate is Gaussian elimination? In D. F. Griffiths and G. A. Watson,
editors, Numerical Analysis 1989, Proceedings of the 13th Dundee Conference, volume 228,
pages 137-154, Essex, UK, 1990. Longman Scientific and Technical.

12. N.J. Higham. Testing Linear Algebra Software, in R. F. Boisvert, editor, Quality of Numer-
ical Software: Assessment and Enhancement, pages 109-122. Chapman and Hall, London,
1997

13. 1. S. Duff and J. A. Scott. The use of multiple fronts in Gaussian Elimination, Technical
Report RAL-TR-94-040, Department for Computation and Information, Rutherford Appleton
Laboratory, September 1994.

	Introduction
	Frontal Method: Overview and Implementation
	Pivoting Strategies
	Our Solutions

	Comparison Metrics
	Test Cases
	Results
	Numerical Quality
	Performances

	Conclusion
	References

