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Abstract. Terrain representation is a basic topic in the ÿeld of inter-
active graphics. The amount of data required for good quality terrain
representation oþers an important challenge to developers of such sys-
tems. For users of these applications the accuracy of geographical data
is less important than their natural visual appearance. This makes it
possible to mantain a limited geographical data base for the system and
to extend it generating synthetic data.

In this paper we combine fractal and wavelet theories to provide extra
data which keeps the natural essence of actual information available.
The new levels of detail(LOD) for the terrain are obtained applying an
inverse Wavelet Transform (WT) to a set of values randomly generated,
maintaining statistical properties coherence with original geographical
data.

1 Introduction

Terrain representation is a basic topic in the ÿeld of training simulators, in both
military and civil applications. It is obvious that, in these representations, the
amount of geographic data provided to the subject is clearly related to the feeling
of visual immersion achieved by the system. However it, is not so obvious that
accuracy of the geographical data is less important than their natural visual
appearance. Usually the terrain representation is based on a digital elevation
model (DEM) plus a set of textures mapped on the mesh. The viewer integrates
this geographic information without realizing about the real source of the data
presented but about the natural apparency of the ÿnal representation.

Other important topic in the ÿeld of simulation and interactive graphics is the
freedom of movement within the synthetic environment, that should be as similar
as possible to the real world. Additionally, is expected to have an homogeneous
visual quality from every possible point of view. This introduces an important
drawback in most of the current terrain representation models, which have a
limited resolution to shown to the viewer. For instance, a þight simulator oýers
a good quality appearance of the terrain representation when observed from high
altitude. This also allows the coverage of large scale terrains. However, for low
height þy mission, the visual quality of the representation suýers an important
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degradation, because the original terrain model is not accurate enough to provide
the required detail of the representation.

A possible solution to the previously indicated problem could be to resize the
geographical data base by adding extra data for those special purposes. Never-
theless, there will be always some limitations which come mainly from: budget
restrictions, availability (it is not always possible to have access to the data with
the required accuracy), resources consumption (storage space, computing, etc.).
An approach to solve the resize problem could be the addition of extra resolu-
tion, to real terrain meshes, by means of the natural generation of new synthetic
data. In order to maintain the natural appearance and the ÿdelity to the orig-
inal terrain, the extra data should statistically follow the properties extracted
from the original data. To accomplish this goal we propose a combination of the
fractal (in concrete 1=f processes) and wavelet theory.

Considering the limits in storage capacities, our solution will not store the
generated data; on the contrary it will be dynamically generated when needed.
This means that generated data has to be compatible with the temporal con-
trainsts of the simulation system.

2 Fractal and Multifractal Functions

The family of 1=f fractals has been successfully used to model a wide variety of
natural phenomena and even sociological aspects of the human behavior. Well
known examples are: natural landscapes, distribution of a river turbulent þow,
evolution of the stocks in the markets, etc. [12]

An important characteristic of the 1=f processes is that its spectral density
presents an exponential behavior. The spectral density decades on frequency
according to the following equation:

S(f) ÿ
1

fÿ
(1)

where f is the frequency and ÿ is a constant.
This means that a log-log representation of this density with respect the

frequency is an straight line with a slope of þÿ.
Fractional Brownian motion (fBm) is probably the best known mathematical

characterization of the 1=f processes [7]. This theory has been frequently studied
due to its simplicity and the wide range of natural phenomena that is able to
model.

Based on the works from Mandelbrot, is possible to represent fractals objects
using \fractal dimension". This parameter has an integer value for non-fractals
objects (1 for curves, 2 surfaces,etc.), whereas for fractal objects the fractal di-
mension has a non integer value bigger than its topological dimension. The frac-
tal dimension can be used as a roughness index. For instance, in case of curves,
values close to one mean low roughness in the function, and values close to two
correspond with extremely rough functions. FBm fractal functions are charac-
terized by having only one fractal dimension with an homogeneous distribution
over the whole domain. This type of fractal objects are known as monofractals.
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There are other kinds of fractals which present a variation of the fractal
dimension along its domain; this family of fractals is usually referred as multi-
fractals. The Multifractals were introduced ÿrstly to model energy dissipation
turbulence's [8][5]. They have been proved to be adequate to model a wide range
of non-homogeneous processes [11] [10]. One important consequence of the lack
of homegenity in the fractal dimension is that the increments are not stationary,
so there is no accurate value for the fractal dimension parameter. It will change
in an erratic way along the domain.

3 Wavelets on the Generation of fBm

Two of the most interesting properties of the fBm noise are its non stationary
behavior, with stationary increments, and its self-similarity at diþerent scales.
The stationarity property implies a time-dependent analysis, while self-similarity
requires some scale-dependent analysis. These two characteristics are intrinsic
to in the wavelet transform [6] [2], which makes them a powerful tool for the
analysis and synthesis of fBm's.

An orthogonal wavelet decomposition of a function X(t) generates detail and
coarse coeÆcients recursively by using the equations:

cj;i =
X

k

cj+1;kh[ÿi+ 2k]

dj;i =
X

k

cj+1;kg[ÿi+ 2k]

being cj;i and dj;i the coarse and the detail coeÆcients respectively. Being h

and g the low and high ÿlter coeÆcients associated to the wavelet base.
The statistical behavior of these coeÆcients was previously analyzed by

Faldrin [4]. Based on the results of this studies it is possible to assume in prac-
tical applications that the correlation amongst the detail coeÆcients can be
ignorated as Wornell point out in [13]. Therefore, it is possible to consider these
coeÆcients as a set of independent Gaussian variables. As a summary, what Wor-
nell discovered is a quite simple procedure to synthesize nearly-fBm functions.
The similarity between the results using this method and a pure fBm is directly
related to the number of "vanish moments" of the wavelet base selected. Even
though, it is not necessary to use basis with high number of vanish moments. In
fact, the only important restriction is to select wavelet bases with the regularity
property. [12].

4 Terrain Representation Based on fBm

Natural landscapes are examples of self-similar fractal phenomena where the geo-
metrical structure is invariant when examined at diþerent scales. This qualitative
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characterization is the base for most approaches to synthetic terrain generation
[3], [1]. The ÿrst attempts to the generation of fractal landscapes were made by
Mandelbrot several years ago [9]. .

If we consider VH(x; y) a Brownian surface with a Holder parameter H
(0 < H < 1), every section of this surface obtained by a vertical plane, generates
a fBm curve with H parameter. Based on this property, if we move a distance
ÿr = ÿx2 +ÿy2 over the surface, the expected value of the function variation
will be:

Var(VH ) / ÿr2H

The fractal dimension of this surface is bigger than the topological dimension
of the corresponding non-fractal surface.

5 Approaches to Increase the Resolution of a Terrain

Mesh

After the introduction of some basic concepts about fractals functions and wavelets,
we will explain our approach, based on these principles, to increase the resolu-
tion of a natural terrain mesh by adding new levels of detail (LOD). The new
synthetic LODs preserve the statistical behavior intrinsic to the real data.

5.1 Global Scope Approach (GSA)

The proposed approach is based on the generation of nearly-fBm functions using
the results of the statistical behavior analysis of the detail coeÆcients in pure
fBm [13].

As previously indicated, the fBm has self-similarity at every scale. If we
assume that the terrain meshes are fBm, or at least they are close enough to it,
the new LODs generated using this technique maintain the statistical properties
of the original natural mesh. The assumption includes that the variance of detail
coeÆcients follows a decreasing power-law.

Taking into account the bidimensional nature of the meshes for the terrain
representation of the WT, three diþerent types of coeÆcients will be generated:
horizontal (d

(h)j;
ÿ!
k
), vertical (d

(v)j;
ÿ!
k
) and diagonal (d

(d)j;
ÿ!
k
) ones (equation

3). The variances of these coeÆcients (þ(h), þ(v) and þ(d)) -equation 2- are in-
dependent among them. This implies the deÿnition of three diþerent ý values:
(ý(h);ý(v);ý(d))(equation 3).

GSA Algorithm . The algorithm consists of the following steps:

1. Evaluate the associated variances to the wavelet coeÆcients in each of the
levels and for each of the bands (horizontal, vertical and diagonal). It is
assumed that these values follow a Gaussian distribution centred at cero (ü =
0). The dispersion þ at level j is obtained by using the following equations:

ÿ
þ(ÿ)j

þ2
= Var

ý
d
(ÿ)j;
ÿ!
k

ü
(2)
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2. Adjust the logarithm of the variances, obtained in the previous step, to a
straight line[12]:

log2

ÿ
Var

þ
d
(ÿ)j;
ÿ!
k

ýü
= ÿjÿ(ÿ) + a(ÿ) (3)

We have three kinds of coeÆcients, so the process has to be repeated for each
of them, producing three values of slope: (ÿ(h);ÿ(v);ÿ(d)), and three ordinate
values ((a(h);a(v);a(d)). As low levels have not suÆcient number of coeÆcient
values to consider them statistically signiÿcant, we can reject them. In this
way, we consider only variances from level 3 and up.

3. Randomly generate the values of the coeÆcients for the new levels. The
generated values follow a Gaussian distribution centred at cero and with
dispersion obtained using equation 2. This guarantees the same statistical
behavior as for the original levels.

4. Generate the new level of the terrain mesh by calculating the inverse wavelet
transform of the coeÆcients obtained in step 3.

Figure 1 shows a visual example where we have applied this approach has been
applied to generate a ÿner resolution of a natural terrain mesh.

This approach oþers good results when the fractal dimension of the origi-
nal mesh is more or less homogenous across the whole surface (ÿgure 1, top).
However, most of the practical cases do not follow the previous conditions. For
instance, landscapes including rough mountains and smooth valleys (ÿgure 1,
bottom), have no homogeneous fractal dimension. Figure 1 shows that the results
of GSA in this case of heterogeneous terrains is not so good as those obtained
where the the homogenty in the fractal dimension is accomplished.

5.2 Local Scope Approach (LSA)

As indicated at the end of the next section, the GSA method presents serious
deÿciencies to its application to general meshes. To solve these problems we have
introduced the local scope approach that can be used in the common DEMs that
are better represented as multifractal objects.

Even though multifractals have been extensively studied, there are not too
many real applications using this theory. A possible cause is the mathematical
complexity involved in its use. The last remark is important because our goal is
to develop an algorithm eÆcient enough to dynamically generate new LODs. To
accomplish both objectives: good characterization of the fractal nature of DEMs,
and good computational performance, we assume the following constraints:

1. The mesh is divided into regions, each of them has a more or less homoge-
neous fractal dimension.

2. The fractal dimension transition across neighbour regions is smooth.

The ÿrst assumption does not impose important constraints because it has been
well established in the literature that DEMs present a locally monofractal be-
havior. In fact, most of the analysis and synthesis algorithms related to terrain
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meshes are based on fBm. The second condition might be more diÆcult to ac-
complish in some cases, but its inÿuence in the þnal result is not so critical;
partial violation of it produces still good enough þnal meshes.

Local Fractal Dimension Estimation. One of the key points in LSA, as it
was in GSA, is the estimation of the ÿ parameter. In LSA we have a diýerent ÿ
parameter at each location. The ÿ estimation is based on the use of the variance
of the detail coeÆcients of the WT. However, we only consider the coeÆcients
which have a spatial domain close to the location where we are estimating the
ÿ value.

Being X(x; y) a function (accomplishing the previously stated conditions)to
which we have previously applied the WT, we can conclude that around each
point ÿ!r = (x; y) there is a region that satisþes equation 3 with a single value of
the ÿ parameter.

As in the GSA, our meshes are discrete functions parametrized by two param-
eters, then WT produces three diýerent types of detail coeÆcients: horizontal
(d

(h)j;
ÿ!
k
), vertical (d

(v)j;
ÿ!
k
) and diagonal (d

(d)j;
ÿ!
k
) ones. The variances associ-

ated to each type of coeÆcients are independent among themselves , and can be
derived from equation:

ÿ
þ(ÿ) j (

ÿ!r )
þ2

= Var

ý
d
(ÿ)j;
ÿ!
k

ü
(ÿ!r ) = A(ÿ)(

ÿ!r ) 2ÿj ÿ(ÿ)(
ÿ!r )

being A(þ)(
ÿ!r ) a constant through the diýerent levels j, and ÿ(þ)(

ÿ!r ) the local ÿ
parameter at point ÿ!r .

The next step will be able the deþnition of the spatial regions with homo-
geneous fractal dimension. This will determine the particular sets of coeÆcients
to be used. To solve it in a accurate way is not trivial. It implies an additional
computational cost that will be incompatible with our temporal restrictions. To
overcome this limitation we make an important simpliþcation: actual regions are
not determined. Instead we suppose that the fractal dimesion is more or less ho-
mogeneous in a square window centred at the current point, so only coeÆcients
inside the window are used to estimate the ÿ(þ)(

ÿ!r ) parameters.
The previous simpliþcation is not free of risk, because the þnal result depends

on the proper selection of the window size. The selection of the appropiate win-
dows size may require some kind of trial and error test.

Once the window size has been selected, we always consider the same number
of coeÆcients, no matter the level we are working on, to obtain the local variance.

Values ( ÿ(h); ÿ(v); ÿ(d) ) are calculated as the slope of the straight line rep-
resented by the equation:

log2(Var

ý
d
(þ)j;
ÿ!
k

ü
)(ÿ!r ) = ÿjÿ(þ)(

ÿ!r ) + a(þ)(
ÿ!r ) (4)

Due to the exponential increase of spatial domain covered by detail coeÆ-
cients when the level decreases, only variance of the coeÆcients at higher levels
is considered.
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New LODs Generation. Once the set of ÿ(ÿ)(
ÿ!r ) and a(ÿ)(

ÿ!r ) values have been
evaluated, we are ready to generate the additional levels of detail. To generate
the vertex that conforms with the new LOD mesh at level n we use, as in
the GSA, the inverse wavelet transform applied to the synthetic coeÆcients
generated randomly. The random generation is based on a Gaussian distribution
centred at cero and having its dispersion expressed by the following equation:

þ2
(ÿ)n(
ÿ!r ) = 2a(ÿ)(

ÿ!r )2ÿnÿ(ÿ)(
ÿ!r ) (5)

The process can be repeated as many times as needed until we achieve the
desired resolution in the ÿnal terrain mesh. However, a degradation in the quality
of the ÿnal result has been observed when the number of extra detail levels is
too high.

LSA Algortim. As a summary of LSA we will present the speciÿc steps involved
in this solution. If we have m initial levels generated using actual data, and if n
is the number of extra levels of detail (the ÿnal number of levels will be m+ n)
the algorithm associated to LSA will repeat the following steps for each point
at level m:

1. Evaluate the local variance of the detail coeÆcients at levels j < m (this
process has to be done for the three types of coeÆcients).

2. Calculate the values of the slopes ( ÿ(h)(
ÿ!r ); ÿ(v)(

ÿ!r ); ÿ(d)(
ÿ!r ) ) and the

ordinate values ( a(h)(
ÿ!r ); a(v)(

ÿ!r ); a(d)(
ÿ!r ) ), using equation 3.

3. Generate randomly, using a Gaussian distribution centred at cero and with
the dispersion obtained from equations 5, the new details coeÆcients for
levels from m to m+ nÿ 1 related to the current point ÿ!r .

Once we have applied the previous algorithm to every point at level m we calcu-
late the inverse wavelet transform for the new added coeÆcients obtaining the
extra terrain levels of detail.

5.3 Results

To test the presented approaches we have used two diþerent meshes. The ÿrst
mesh contains only rough mountain areas (ÿgure 1,top), and the second one
includes rough mountains and smooth valleys (ÿgure 1,bottom).

The quality of the results will depend on three main parameters: the approach
selected (local or global), the selected wavelet base, and, in the case of local scope
approach, the window size. To test the last parameter we have selected square
windows of four diþerent window sizes: 1þ 1, 3þ 3, 5þ 5 and 7þ 7.

The estimation of the goodness of the results will be based on two main
criteria, related to our original objectives: visual quality and computing perfor-
mance. The ÿrst aspect is somewhat subjective while the second will be based
on measuring of the time spent for the new level generation.
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The two original terrain meshes have a size of 16 ÿ 16 with 4 actual level
of detail (ÿgures 1, left). We have increased the mesh resolution up to 64 ÿ 64
points, which implies the generation of two extra levels of detail.

Figure 2 shows the results of applying the LSA, with a linear-spline wavelet
base, to the hetereogeneous test mesh. Four diþerent window sizes have being
used for the test. Table 1 presents the time to generate the extra levels of detail
for both approaches. Time measures have been performed using a Pentium II
233 MHz processor.

Fig. 1. Top-Left: Original homogeneous mesh, (16ÿ16) points. Top-Right: Results after
applying GSA to homogeneous mesh . Synthetic mesh has (64 ÿ 64) points. Bottom-
Left: Original hetereogeneous mesh, (16ÿ16) points. Bottom-Right:Results of applying
GSA to hetereogeneous mesh. Synthetic mesh has (64 ÿ 64) points.

GSA LSA 1x1 LSA 3x3 LSA 5x5 LSA 7x7

Homogeneous M. 78 95 100 122 132

Heterogeneous M. 77 95 100 120 130

Table 1. Spent Time (ms.) for the diÿerent approaches (linear-spline wavelet base).
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Fig. 2. Results applying LSA to heterogeneous mesh with window size of :1ÿ 1, 3ÿ 3,

5 ÿ 5, y 7ÿ 7.

6 Conclusions and future work

In this paper, two new methods (GSA and LSA) have been presented to increase
actual terrain resolution based on a fractal-wavelet approach. GSA analyses the
global statistical properties to decide how to extend the new LODs terrains,
while LSA analyses these statistical properties locally at each point. As a ÿrst
conclusion, we can observe that both methods are fully compatible with our
temporal restrictions imposed for real-time terrain representation, allowing a
dynamical generation of extra levels of detail on demand.

GSA has been proved to be a good approach when used on terrains with
uniform geographical properties(ÿgure 1, top), but it fails in not so much homo-
geneous terrains (ÿgure 1, bottom). This behavior is not strange because global
statistical analysis tends to minimize speciÿc local properties having as a re-
sult a uniform distribution for the whole mesh. To overcome this problem, the
special analysis used in LSA preserves local properties of terrain using only co-
eÆcients close to the particular location (ÿgure 2). The 25% extra time of this
method (table1),considering a 3ÿ 3window size, is justiÿed taking into account
the achieved improvement in the ÿnal visual appearance.

As indicated in section three, the vanish moments of the wavelet bases have
inþuence on the achieved degree of proximity to pure fBm. Tests performed using
others symetric diýerent wavelet bases have proved that this inþuence has no
very important consequences in the ÿnal visual appearance. For cost reasons the
recomended base for interactive applications is the linear-spline.
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The window size in LSA is another important aspect for the quality results.
Tests indicate that window sizes inferior to 3ÿ 3 have got no enough values to
perform reliable statical analysis, this is clearly reÿected in the visual appear-
ance. On the contrary, too large window size (superior to 5ÿ 5) are not capable
reÿecting local essence at each point of the surface, becoming in a behavior
similar to GSA (þgure 2).

As indicated in the introduction of this paper, the other important com-
ponent in terrain representation is the realistic textures mapped to the terrain
mesh. The fractal nature of these terrain textures suggest a possible extension of
the presented works to generate þner resolution images from original textures.
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