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Abstract. Recently, a new extension of the standard neural networks,
the so-called functional networks, has been described [5]. This approach
has been successfully applied to the reconstruction of a surface from a
given set of 3D data points assumed to lie on unknown Bézier [17] and
B-spline tensor-product surfaces [18]. In both cases the sets of data were
fitted using Bézier surfaces. However, in general, the Bézier scheme is no
longer used for practical applications. In this paper, the use of B-spline
surfaces (by far, the most common family of surfaces in surface mod-
eling and industry) for the surface reconstruction problem is proposed
instead. The performance of this method is discussed by means of several
illustrative examples. A careful analysis of the errors makes it possible
to determine the number of B-spline surface fitting control points that
best fit the data points. This analysis also includes the use of two sets of
data (the training and the testing data) to check for overfitting, which
does not occur here.

1 Introduction

The problem of recovering the 3D shape of a surface, also known as surface recon-
struction, has received much attention in the last few years. For instance, in [9,
20, 21, 23, 24] the authors address the problem of obtaining a surface model from
a set of given cross-sections. This is a typical problem in many research and ap-
plication areas such as medical science, biomedical engineering and CAD/CAM,
in which an object is often known by a sequence of 2D cross-sections (acquired
from computer tomography, magnetic resonance imaging, ultrasound imaging,
3D laser scanning, etc.).

Another different approach consists of reconstructing surfaces from a given
set of data points (see, for example, [10, 14, 15, 19, 22, 27]). In this approach, the
goal of the surface reconstruction methods can be stated as follows: given a set of
sample points X assumed to lie on an unknown surface U , construct a surface
model S that approximates U . This problem has been analyzed from several
points of view, such as parametric methods [3, 4, 11, 27], function reconstruction
[7, 28], implicit surfaces [19, 26], B-spline patches [22], etc.
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One of the most striking and promising approaches to this problem is that
based on neural networks. After all, artificial neural networks have been recog-
nized as a powerful tool for learning and simulating systems in a great variety
of fields (see [8] and [12] for a survey). Since the behavior of the brain is the
inspiration behind the neural networks, these are able to reproduce some of its
most typical features, such as the ability to learn from data. This feature makes
them specially valuable for solving problems in which one is interested in fit-
ting a given set of data. For instance, the authors in [10] propose to fit surfaces
through a standard neural network. Their approach is based on training the neu-
ral network to learn the relationship between the parametric variables and the
data points. A more recent approach can be found in [13], in which a Kohonen
neural network [16] has been applied to obtain free-form surfaces from scattered
data. However, in this approach the network is used exclusively to order the
data and create a grid of control vertices with quadrilateral topology. After this
pre-processing step, any standard surface reconstruction method (such as those
referenced above) has to be applied. Finally, a very recent work using a com-
bination of neural networks and PDE techniques for the parameterization and
reconstruction of surfaces from 3D scattered points can be found in [2].

It should be remarked, however, that the neural network scheme is not the
“panacea” for the surface reconstruction problem. On the contrary, as shown in
[17], some situations might require more sophisticated techniques. Among them,
an extension of the “neural” approach based on the so-called functional networks
has been recently proposed [5, 17]. These functional networks are a generalization
of the standard neural networks in the sense that the weights are now replaced
by neural functions, which can exhibit, in general, a multivariate character. In
addition, when working with functional networks we are able to connect different
neuron outputs at convenience. Furthermore, different neurons can be associated
with neural functions from different families of functions. As a consequence, the
functional networks exhibit more flexibility than the standard neural networks
[5]. The performance of this new approach has been illustrated by its application
to fit given sets of data from Bézier [17] and B-spline tensor-product surfaces
[18].

In spite of these good results, the previous scheme is very limited in practice
because the sets of data were fitted by means of Bézier surfaces in both cases.
This is a drastic limitation because, in general, the Bézier scheme is not longer
used for practical applications. The (more flexible) piecewise polynomial scheme
(based on B-spline and NURBS surfaces) is usually applied in surface modeling
and industry instead. The present paper applies this recently introduced func-
tional network methodology to fit sets of given 3D data points through B-spline
surfaces. In Sect. 2 we briefly describe the B-spline surfaces. Then, in Sect. 3
the problem to be solved is introduced. Application of the functional network
methodology to this problem is described in Sect. 4. Sect. 5 reports the results
obtained from the learning process for different examples of surfaces as well
as a careful analysis of the errors. It includes the use of two sets of data (the
training and the testing data) to check for overfitting. As we will show, this
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analysis makes it possible to determine the number of B-spline surface fitting
control points that best fit the data points. Finally, Sect. 6 closes with the main
conclusions of this work.

2 Some Basic Definitions

In this section we give some basic definitions required throughout the paper. A
more detailed discussion about B-spline surfaces can be found in [25].

Let S = {s0, s1, s2, . . . , sr−1, sr} be a nondecreasing sequence of real numbers
called knots. S is called the knot vector. The ith B-spline basis function Nik(s)
of order k (or degree k − 1) is defined by the recurrence relations

Ni1(s) =
{

1 if si ≤ s < si+1

0 otherwise (1)

and
Nik(s) =

s− si

si+k−1 − si
Ni,k−1(s) +

si+k − s

si+k − si+1
Ni+1,k−1(s) (2)

for k > 1. With the same notation, given a set of three-dimensional control points
{Pij ; i = 0, . . . , m; j = 0, . . . , n} in a bidirectional net and two knot vectors
S = {s0, s1, . . . , sr} and T = {t0, t1, . . . , th} with r = m + k and h = n + l, a
B-spline surface S(s, t) of order (k, l) is defined by

S(s, t) =
m∑

i=0

n∑
j=0

PijNik(s)Njl(t), (3)

where the {Nik(s)}i and {Njl(t)}j are the B-spline basis functions of order k
and l respectively, defined following (1) and (2).

3 Description of the Problem

In this section we describe the problem we want to solve. It can be stated as
follows: we look for the most general family of parametric surfaces P(s, t) such
that their isoparametric curves (see [6] for a description) s = s̃0 and t = t̃0 are
linear combinations of the sets of functions: f(s) = {f0(s), f1(s), . . . , fm(s)} and
f∗(t) = {f∗0 (t), f∗1 (t) . . . , f∗n(t)} respectively. In other words, we look for surfaces
P(s, t) such that they satisfy the system of functional equations

P(s, t) ≡
n∑

j=0

αj(s)f∗j (t) =
m∑

i=0

βi(t)fi(s) (4)

where the sets of coefficients {αj(s); j = 0, 1, . . . , n} and {βi(t); i = 0, 1, . . . , m}
can be assumed, without loss of generality, as sets of linearly independent func-
tions.
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This problem cannot be solved with simple standard neural networks: to
represent it in terms of a neural network, we should allow some neural functions
to be different, while the neural functions in neural networks are always identical.
Moreover, the neuron outputs of neural networks are different; however, in our
scheme, some neuron outputs in the example are coincident. This implies that
the neural networks paradigm should be generalized to include all these new
features, which are incorporated into the functional networks (see [5]). To be
more precise, our problem is described by the functional network in Fig. 1(left)
which can be simplified (see [17] for details) to the expression:

P(s, t) =
m∑

i=0

n∑
j=0

Pijfi(s)f∗j (t) (5)

where the Pij are elements of an arbitrary matrix P; therefore, P(s, t) is a tensor
product surface. Eq. (5) shows that the functional network in Fig. 1(left) can be
simplified to the equivalent functional network in Fig. 1(right).

Fig. 1. (left) Graphical representation of a functional network for the parametric sur-
face of Eq. (4); (right) Functional network associated with Eq. (5). It is equivalent to
the functional network on the left

This functional network is then applied to solve the surface reconstruction
problem described in Sect. 1. In order to check the flexibility of our proposal, we
have considered sets of 256 3D data points {Tuv; u, v = 1, . . . , 16} (from here on,
the training points) in a regular 16×16 grid from four different surfaces. The first
one (Surface I) is a B-spline surface given by (3) with the control points listed
in Table 1, m = n = 5, k = l = 3 and nonperiodic knot vectors (according to the
classification used in [1]) for both directions s and t. The other three surfaces
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Table 1. Control points used to define Surface I

(x, y, z) (x, y, z) (x, y, z) (x, y, z) (x, y, z) (x, y, z)

(0, 0, 1) (0, 1, 2) (0, 2, 3) (0, 3, 3) (0, 4, 2) (0, 5, 1)
(1, 0, 2) (1, 1, 3) (1, 2, 4) (1, 3, 2) (1, 4, 3) (1, 5, 2)
(2, 0, 1) (2, 1, 4) (2, 2, 5) (2, 3, 5) (2, 4, 4) (2, 5, 3)
(3, 0, 3) (3, 1, 4) (3, 2, 5) (3, 3, 1) (3, 4, 2) (3, 5, 3)
(4, 0, 2) (4, 1, 2) (4, 2, 4) (4, 3, 4) (4, 4, 3) (4, 5, 2)
(5, 0, 1) (5, 1, 2) (5, 2, 3) (5, 3, 3) (5, 4, 2) (5, 5, 1)

(labelled as Surface II, III and IV) are explicit surfaces defined by the equations

z = y3 − x3 − y2 + x2 + xy, z = 2(x4 − y4) and z =
0.8y2 − 0.5x2

x2 + y2 + 0.1
, respectively.

In order to check the robustness of the proposed method, the third coordinate
of the 256 three-dimensional points (xp, yp, zp) was slightly modified by adding
a real uniform random variable εp of mean 0 and variance 0.05. Therefore, in the
following, we consider points given by (xp, yp, z

∗
p), where

z∗p = zp + εp , εp ∈ (−0.05, 0.05). (6)

Such a random variable plays the role of a measure error to be used in the
estimation step to learn the functional form of P(s, t).

4 Applying the functional network

To solve the problem described in the previous section, the neural functions of
the network must be estimated (learned) by using some minimization method.
In functional networks, this learning process consists of obtaining the neural
functions based on a set of data D = {(Ii, Oi)|i = 1, . . . , n}, where Ii and Oi are
the i-th input and output, respectively, and n is the sample size. To this end,
each neural function fi is approximated by a linear combination of functions
in a given family {φi1, . . . , φimi

}. Thus, the approximated neural function f̂i(x)
becomes

f̂i(x) =
mi∑
j=1

aijφij(x), (7)

where x are the inputs associated with the i-th neuron. In the case of our ex-
ample, the problem of learning the above functional network merely requires
the neuron functions x(s, t), y(s, t) and z(s, t) to be estimated from a given se-
quence of triplets {(xp, yp, zp), p = 1, . . . , 256} which depend on s and t so that
x(sp, tp) = xp and so on. For this purpose we build the sum of squared errors
function:

Qα =
256∑
p=1


αp −

M−1∑
i=0

N−1∑
j=0

aijφi(sp)ψj(tp)




2

(8)
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where, in the present example, we must consider an error function for each
variable x, y and z. This is assumed by α in the previous expression, so (8)
must be interpreted as three different equations, for α = x, y and z respectively.
Applying the Lagrange multipliers to (8), the optimum value is obtained for

∂Qα

2∂aγµ
=

256∑
p=1


αp −

M−1∑
i=0

N−1∑
j=0

aijφi(sp)ψj(tp)


 φγ(sp)ψµ(tp) = 0

γ = 0, 1, . . . , M − 1 ; µ = 0, 1, . . . , N − 1.

(9)

On the other hand, a B-spline function is basically a piecewise polynomial
function whose number of spans r is given by r = m + k− 1, where m and k are
the number of the control points and the order, respectively. Hence, we need to
make a decision between the following two possibilities:

– to fix the number of control points and to change the order of the B-spline
or

– to fix the order and then change the number of the control points.

In this paper we have considered the second option: to fit the 256 data
points of our examples we have used nonperiodic third-order B-spline basis
functions {Ni3(s)}i and {Nj3(t)}j , that is, we have chosen {φi(s) = Ni3(s)|i =
0, 1, . . . , M − 1} and {ψj(t) = Nj3(t)|j = 0, 1, . . . , N − 1} in (8). We remark
that this choice is very natural: the B-spline functions are frequently used in the
framework of both surface reconstruction and approximation theory. In particu-
lar, the third-order B-spline functions are the most common curves and surfaces
in research and industry. Finally, nonperiodic knot vectors mean that we force
the B-spline surfaces to pass through the corner points of the control net, a very
reasonable constraint in surface reconstruction.

Therefore, we allow the parameters M and N in (9) to change. Of course,
every different choice for M and N yields to the corresponding system (9),
which must be solved. Note that, since third-order B-spline functions are used,
the minimum value for M and N is 3. However, this value implies that the B-
spline surface is actually a Bézier surface [1], so we have taken values for M and
N from 4 to 8. Solving the system (9) for all these cases, we obtain the control
points associated with the B-spline surfaces fitting the data. The results will be
discussed in the next section.

5 Results

To test the quality of the model we have calculated the mean and the root mean
squared (RMS) errors for M and N from 4 to 8 and for the 256 training data
points from the four surfaces described in Sect. 3.

Table 2 refers to Surface I. As the reader can appreciate, the errors (which,
of course, depend on the values of M and N) are very small, indicating that
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the approach is reasonable. The best choice (indicated in bold in Table 2) cor-
responds to M = N = 6, as expected because data points come from a B-spline
surface defined through a net of 6× 6 control points. In this case, the mean and
the RMS errors are 0.0085 and 0.00071 respectively.

Table 2. Mean and root mean squared errors of the z-coordinate of the 256 training
points from the Surface I for different values of M and N

N = 4 N = 5 N = 6 N = 7 N = 8

M = 4
0.1975

0.00919
0.1000

0.00798
0.0941

0.00762
0.0945

0.00764
0.0943

0.00763

M = 5
0.1229

0.00873
0.0939

0.00743
0.0885

0.00700
0.0888

0.00703
0.0886

0.00702

M = 6
0.0676

0.00528
0.0354

0.00265
0.0085

0.00071
0.0115

0.00090
0.0093

0.00082

M = 7
0.0691

0.00547
0.0387

0.00301
0.0208

0.00163
0.0221

0.00172
0.0217

0.00168

M = 8
0.0678

0.00531
0.0356

0.00270
0.0117

0.00093
0.0139

0.00109
0.0131

0.00103

Table 3. Control points of the reconstructed Surface I

(x, y, z) (x, y, z) (x, y, z) (x, y, z) (x, y, z) (x, y, z)

(0, 0, 1.0382) (0, 1, 1.9897) (0, 2, 3.047) (0, 3, 2.9435) (0, 4, 2.0411) (0, 5, 0.9777)
(1, 0, 2.0048) (1, 1, 2.9945) (1, 2, 4.0228) (1, 3, 1.9602) (1, 4, 2.9981) (1, 5, 2.0028)
(2, 0, 1.007) (2, 1, 3.9777) (2, 2, 4.9951) (2, 3, 5.0357) (2, 4, 3.9554) (2, 5, 3.0221)
(3, 0, 2.9866) (3, 1, 4.004) (3, 2, 5.0283) (3, 3, 0.9122) (3, 4, 2.0926) (3, 5, 2.968)
(4, 0, 2.0302) (4, 1, 1.9729) (4, 2, 4.0344) (4, 3, 4.004) (4, 4, 2.9637) (4, 5, 2.0087)
(5, 0, 0.9757) (5, 1, 2.0232) (5, 2, 3.0047) (5, 3, 3.009) (5, 4, 1.9567) (5, 5, 1.0423)

Table 3 shows the control points for the reconstructed Surface I corresponding
to the best case M = N = 6. They were obtained by solving the system (9) with
a floating-point precision and removing the zeroes when redundant. A simple
comparison with Table 1 shows that the corresponding x and y coordinates
are exactly the same, which is as expected because they were not affected by
the noise. On the contrary, since noise was applied to the z coordinate, the
corresponding values are not obviously the same but very similar, indicating
that we have obtained a very good approximation. The approximating surface
is shown in Fig. 2(top-left) and it is virtually indistinguishable from the original
surface.

To cross validate the model we have also used the fitted model to predict a
new set of 1024 testing data points, and calculated the mean and the root mean
squared (RMS) errors, obtaining the results shown in Table 4. The new results
confirm our previous choice for M and N . A comparison between mean and
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Fig. 2. (top-bottom,left-right) B-spline approximating surfaces of the surfaces labelled
Surface I, II, III and IV, respectively. Their corresponding equations are described in
Sect. 3

RMS error values for the training and testing data shows that, for our choice,
they are comparable. Thus, we can conclude that no overfitting occurs. Note
that a variance for the training data significantly smaller than the variance for
the testing data is a clear indication of overfitting. This does not occur here.

Table 4. Mean and root mean squared errors of the z-coordinate of the 1024 testing
points from the Surface I for different values of M and N

N = 4 N = 5 N = 6 N = 7 N = 8

M = 4
0.1118

0.00441
0.0943

0.00384
0.0887

0.00366
0.0889

0.00367
0.0889

0.00366

M = 5
0.10599
0.00422

0.0888
0.00363

0.0830
0.00342

0.0833
0.00343

0.0832
0.00342

M = 6
0.0649

0.00252
0.0341

0.00130
0.0078

0.00032
0.0109

0.00042
0.0093

0.00038

M = 7
0.0668

0.00263
0.0381

0.00149
0.0203

0.00081
0.0216

0.00085
0.0213

0.00084

M = 8
0.0651

0.00253
0.0345

0.00133
0.0111

0.00043
0.0133

0.00051
0.0125

0.00049
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A similar analysis was carried out for the other surfaces described in Sect. 3.
The corresponding tables of results are not included here because of limitations
of space. It is enough to say that the best choice of M and N for the Surface II is
M = N = 4. The mean and RMS errors are 0.0052 and 0.00040 respectively for
the training points and 0.0049 and 0.00019 for the testing points. The Surface III
has a more complex shape so larger values of M and N , namely M = 6 and N =
7, are required for the best fitting. For these values the mean and RMS errors are
0.0095 and 0.00073 respectively for the training points and 0.0090 and 0.00035
for the testing points. Finally, Surface IV is best fitted for M = N = 7. In this
last case, the mean and RMS errors are 0.0143 and 0.00114 respectively for the
training points and 0.0139 and 0.00055 for the testing points. The approximating
B-spline surfaces are displayed in Fig. 2.

6 Conclusions

In this paper a powerful extension of neural networks, the so-called functional
networks, has been applied to the surface reconstruction problem. Given a set
of 3D data points, the functional network returns the control points and the
degree of the B-spline surface that best fits these data points. We remark that
the data points do not necessarily have to belong to a parametric surface. In
fact, some examples of the performance of this method for both parametric and
explicit surfaces have been given. A careful analysis of the error as a function
of the number of the control points has also been carried out. The obtained
results show that all these new functional networks features allow the surface
reconstruction problem to be solved in several cases. Nevertheless, in order to
assess the limitations of our proposal further research is required. This future
work will be reported elsewhere.
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