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Abstract. For the problem of filtration of viscous fluid in porous medium
it was observed that a number of one-parameter families of convective
states with the spectrum, which varies along the family. It was shown
by V. Yudovich that these families cannot be an orbit of an operation
of any symmetry group and as a result the theory of cosymmetry was
derived. The combined spectral and finite-difference approach to the pla-
nar problem of filtration-convection in porous media with Darcy law is
described. The special approximation of nonlinear terms is derived to
preserve cosymmetry. The computation of stationary regime transfor-
mations is carried out when filtration Rayleigh number varies.

1 Introduction

In this work we study the conservation of cosymmetry in finite-dimensional mod-
els of filtration-convection problem derived via combined spectral and finite-
difference method. Cosymmetry concept was introduced by Yudovich [1, 2] and
some interesting phenomena were found for both dynamical systems possessing
the cosymmetry property. Particularly, it was shown that cosymmetry may be a
reason for the existence of the continuous family of regimes of the same type. If
a symmetry group produces a continuous family of identical regimes then it im-
plies the identical spectrum for all points on the family. The stability spectrum
for the cosymmetric system depends on the location of a point, and the family
may be formed by stable and unstable regimes.

Following [1], a cosymmetry for a differential equation u̇ = F (u) in a Hilbert
space is the operator L(u) which is orthogonal to F at each point of the phase
space i.e (F (u), L(u)) = 0, u ∈ Rn with an inner product (·, ·). If the equilibrium
u0 is noncosymmetric, i.e. F (u0) = 0 and L(u0) &= 0 , then u0 belongs to a
one-parameter family of equilibria. This takes place if there are no additional
degeneracies.

A number of interesting effects were found in the planar filtration-convection
problem of fluid flow through porous media [1–4]. The investigations in [4] were
carried out for finite-dimensional approximations of small size, so it is desirable to
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develop appropriate numerical methods for finite-dimensional systems of larger
size. It is very important to preserve cosymmetry in finite-dimensional models
derived from partial differential equations. It was shown in [5] that improper
approximation may lead to the destruction of the family of equilibria. We apply
in this work the approach based on spectral expansion on vertical coordinate
and finite-difference method in horizontal direction.

2 Darcy convection problem

We will consider the planar filtration-convection problem for incompressible fluid
saturated with a porous medium in a rectangular container D = [0, a] × [0, b]
which is uniformly heated below. The temperature difference δT was held con-
stant between the lower y = 0 and upper y = b boundaries of the rectangle and
the temperature on the vertical boundaries obeys a linear law, so that a time
independent uniform vertical temperature profile is formed. We consider pertur-
bation of the temperature from the basic state of rest with a linear conductive
profile.

Because the fluid is incompressible, we introduce a stream function ψ such
that horizontal and vertical components of the velocity vector are given as u =
−ψy and v = ψx, respectively. The dimensionless equations of the filtration
convection problem are:

∂θ

∂t
= ∆θ + λ

∂ψ

∂x
+ J(ψ, θ) ≡ F1 (1)

0 = ∆ψ − ∂θ

∂x
≡ F2 (2)

where ∆ = ∂2
x + ∂2

y is the Laplacian and J(ψ, θ) denotes the Jacobian operator
over (x, y):

J(ψ, θ) =
∂ψ

∂x

∂θ

∂y
− ∂ψ

∂y

∂θ

∂x
.

The dependent variables ψ(x, y, t) and θ(x, y, t) denote perturbations of the
stream function and temperature, λ is the Rayleigh number given by λ =
βgδTKl/κµ, here β is the thermal expansion coefficient, g is the acceleration
due to gravity, µ is the kinematic viscosity, κ is the thermal diffusivity of the
fluid, K is the permeability coefficient, l is the length parameter. The boundary
conditions are:

θ = 0, ψ = 0 on ∂D, (3)

and the initial condition is only defined for the temperature

θ(x, y, 0) = θ0(x, y), (4)

where θ0 denotes the initial temperature distribution. For a given θ0, the stream
function ψ can be obtained from (2), (3) as the solution of the Dirichlet problem
via Green’s operator ψ = Gθx.
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Cosymmetry for underlying system is given by (ψ,−θ). Really, multiply (1)
by ψ and (2) by −θ, sum and integrate over domain D. Then, using integration
by parts and Green’s formula we derive∫
D

(F1ψ−F2θ)dxdy =

∫
D

(∆θψ−∆ψθ+λψxψ+ θxθ+ J(θ,ψ)ψ)dxdy = 0. (5)

To establish this we also need the following equality∫
D
J(ψ, θ)ψdxdy = 0. (6)

Moreover, the Jacobian J is antisymmetric with respect to its arguments and
the equality takes place ∫

D
J(ψ, θ)θdxdy = 0. (7)

For all values of the Rayleigh number there is a trivial equilibrium. The eigen-
values of the spectral problem for the trivial equilibrium are [2]

λmn = 4π2

(
m2

a2
+
n2

b2

)
, (8)

where m, and n are integers. They have multiplicity of two if and only if the
diopanthine equation m2/a2 + n2/b2 = m2

1/a
2 + n2

1/b
2 has a unique solution

with m1 = m and n1 = n. The lowest eigenvalue corresponds to m = n = 1, and
when the parameter λ passes λ11 a one-parameter family of stationary solutions
emerges. This family is a closed curve in the phase space. In [2] it was shown
that the spectrum varies along this family and therefore this family can not be
an orbit of the action of any symmetry group.

3 Spectral-finite-difference method

The approach based on spectral and finite-difference approximation is applied.
We use Galerkin expansion in the direction y and finite-difference method for x.
Firstly we take the following

θ(x, y, t) =
m∑
j=1

θj(x, t) sin
πjy

b
, ψ(x, y, t) =

m∑
j=1

ψj(x, t) sin
πjy

b
. (9)

After substituting (9) to (1)–(2) and integrating on y we derive:

θ̇j = θ′′j − cjθj + λψ′j − Jj , j = 1÷m, (10)

0 = ψ′′
j − cjψj − θ′j , j = 1÷m, (11)
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here a prime and a dot denote differentiation on x and t respectively, cj =
j2π2/b2, and for Jj we have

Jj =
2π

b

m−j∑
i=1

[(i+ j)(θi+jψ
′
i − θ′iψi+j) + i(θ′i+jψi − θiψ

′
i+j)] (12)

+
2π

b

j−1∑
i=1

(j − i)(θ′iψj−i − θj−iψ
′
i), j = 1÷m.

The boundary conditions (3) may be rewritten as

θj(t, 0) = θj(t, a), ψj(t, 0) = ψj(t, a), j = 1÷m.

We deduce from initial condition (4) the following

θj(x, 0) =

∫
D
θ0(x, y) sin

πjy

b
dy, j = 1÷m.

To discretize (10)–(12) on variable x we apply uniform mesh ω = {xk|xk =
kh, k = 0 ÷ n, h = a/(n + 1)} and the notions θj,k = θj(xk, t), ψj,k = ψj(xk, t),
Jj,k = Jj(xk, t). The centered finite-difference operators are used and we deduce
a system of ordinary differential equations

θ̇jk =
θj,k+1 − 2θj,k + θj,k−1

h2
− cjθjk + λ

ψj,k+1 − ψj,k−1

2h
− Jj,k ≡ φ1jk, (13)

0 =
ψj,k+1 − 2ψj,k + ψj,k−1

h2
− cjψjk +

θj,k+1 − θj,k−1

2h
≡ φ2jk. (14)

The expression for Jjk, being discretization of Jj (12) at xk, will be given below.
Finally, the boundary conditions are the following

θj0 = θjn = 0, ψj0 = ψjn = 0. (15)

4 Cosymmetry conservation

One can check that a vector

Lh = (ψ11, ...,ψn1,ψ12, ...,ψnm,−θ11, ...,−θn1,−θ12, ...,−θnm)

gives a cosymmetry for (13)–(14). So, a cosymmetric equality must be held

m∑
j=1

n∑
k=1

[φ1jkψj,k − φ2jkθj,k] = 0. (16)

Substitute (13), (14) into (16) and using summation we deduce that linear parts
in (13), (14) nullify and the following relation must be preserved

n∑
k=1

m∑
j=1

(Jjψj)k = 0. (17)
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We demand also for Jj,k the additional property

n∑
k=1

m∑
j=1

(Jjθj)k = 0. (18)

It should be stressed that usual finite-difference operators do not keep the equal-
ities (17)–(18). To reach correct approximation of nonlinear terms we introduce
two operators

Da(θ,ψ) = θ′ψ − θψ′, Ds(θ,ψ) = θ′ψ + θψ′.

Then, we rewrite Jj

Jj =
2π

b

(
m−j∑
i=1

χ1
j,i +

j−1∑
i=1

χ2
j,i

)
, (19)

χ1
j,i =

2i+ j

2
(Ds(θi+j ,ψi)−Ds(θi,ψi+j))− j

2
(Da(θi+j ,ψi) +Da(θi,ψi+j)) ,

χ2
j,i =

j − i

2
(Ds(θi,ψj−i) +Da(θi+j,ψi)−Ds(θj−i,ψi) +Da(θj−i,ψi)) .

Using method of free parameters we derive the special approximation on three-
point stencil for Da Ds

da,k(θ,ψ) =
θk+1 − θk−1

2h
ψk − θk

ψk+1 − ψk−1

2h
,

ds,k(θ,ψ) =
2θk+1ψk+1 + ψk(θk+1 − θk−1) + θk(ψk+1 − ψk−1)− 2θk−1ψk−1

6h
.

5 Numerical Results

We rewrite the (13)–(14) in vector form

d

dt
Θ = AΘ + λBΨ + L(Θ,Ψ), 0 = AΨ −BΘ, (20)

Θ = (θ11, ..., θn1, ..., θ1m, ..., θnm), Ψ = (ψ11, ...,ψn1, ...,ψ1m, ...,ψnm).

The matrix A consists of m three-diagonal submatrices Aj , nonlinear entries of
skew-symmetric matrix B = {bsr}nms,r=1 are given by bs,s+1 = −bs+1,s = h/2, s =
1÷nm−1, and L(F,G) presents the nonlinear terms in (13). The discrete stream
function Ψ can be expressed in form of Θ using second equation in (20). It gives
the following system of ordinary differential equations:

dΘ

dt
= (A + λBA−1B)Θ + L(Θ, A−1BΘ). (21)

To carry out computation with (21) we create a code on MATLAB. It allows to
analyze convective structures, continue the families of stationary regimes .
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Fig. 1. The families of stationary regimes for different meshes λ = 70, β = 1.5 (left),
λ = 55, β = 3 (right)

As stated in [2], if λ is slightly larger than λ11, then all points of the family
are stable. Starting from the vicinity of unstable zero equilibrium we integrate
the system (21) up to a point Θ0 close to a stable equilibrium on the family.
We have used here the classical fourth order Runge-Kutta method as time inte-
grator. Then a simplified version of the algorithm for family computation may
be formulated in the following steps. Correct the point Θ0 using the modified
Newton method. Determine the kernel of the linearization matrix at the point
Θ0 by singular value decomposition. Predict the next point on the family Θ0

by using fourth order Runge-Kutta method. Repeat these steps until a closed
curve is obtained. This method is based on the cosymmetric version of implicit
function theorem [6].

We explored the derived technique to calculate the families consisting both
of stable and unstable equilibria. We analyze the case of narrow container (β =
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Fig. 2. Spectra for the families computed on different meshes, λ = 55, β = 3
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b/a ≥ 1, a = 1). In Fig. 1 we compare the families computed for different meshes.
We use here the coordinates Nuh and Nuv [4]

Nuh =

∫ b

0

∂θ

∂x
|x=a/2 dy, Nuv =

∫ a

0

∂θ

∂y
|y=0 dx

The spectra corresponding to these families are given in Fig. 2, where for
equilibria we use the parameterization φ ∈ [0, 2π]. In fig.1 we mark by starts

0 1
0

1.5

−630 −315 0
−120

−60

0

60

120

0 1
0

1.5

−1400 −700 0
−120

−60

0

60

120

0 1
0

1.5

−2400 −1200 0
−120

−60

0

60

120

8x8 12x12 16x16 

Fig. 3. Stream functions (top) and spectra (bottom) for selected equilibria (marked by
stars) in fig. 1, λ = 70, β = 1.5

the stationary regimes for which in fig. 3 stream functions (top) and spectra
distributions (bottom) are presented. It is suitable to summarize the results of
our computations in fig. 4. To present the dependence of critical values from
parameter β we use the ratio λ/λ11, where λ11 is the threshold of onset of the
family. In fig. 4 the curves 1 and 2 correspond to the monotonic and oscillatory
instability respectively, the curve 3 respects to the completely instable primary
family (λ = λo), and the curve 4 gives the critical values of collision when
primary and secondary families collide together (λ = λc). The stream functions
for the first stationary regimes lost stability are displayed in fig. 5. This picture
demonstrates that a number of equilibria lost stability depends on the parameter
β. We observe the case of instability at six equilibria for β ≈ 2.3 when the
monotonic instability takes place in two points and oscillatory one – in four
points.
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Fig. 5. Stream functions corresponding to first regimes lost stability, β = 1.5, 2, 2.5
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Finally, we demonstrate the scenario of the evolution of the primary family
for β = 2 in fig. 6. We mark by crosses (circles) the regimes lost the stabil-
ity by monotonic (oscillatory) manner, and draw the secondary family (dotted
curve). We use the projection onto two-dimensional unstable manifold of the
zero equilibrium (coordinates U1, U2).

The primary family of stationary regimes is consists of stable equilibria for
λ = 70, see fig. 6a. When λ increases one can see how the family deforms and
at λu = 112 (fig. 6b) two points become unstable by monotonic manner. We
present the stream functions for these equilibria in fig. 5. Further two arcs of
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Fig. 6. Primary and secondary families evolution, β = 2
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unstable equilibria are formed, then, for λ = 129 four regimes lost stability via
oscillatory bifurcation (fig. 6c). We mention that for λ > 81.6 unstable secondary
family exists as well (the curve 2 in fig. 6c). In fig. 6d one can see two families for
λ = 145. Collision of primary and secondary families takes place for λo = 147.6.
As a result, we see two small families and a combined one, fig. 6. When λ increases
the small families collapse and disappear. The combined family for λ = 156 is
completely unstable (fig. 6f).

A quite complete picture of local bifurcations in a cosymmetric dynamical
system is presented in [7–9].
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