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Abstract. In this paper, an exhaustive parallel library of sparse itera-
tive methods and preconditioners in HPF and MPI was developed, and
a model for predicting the performance of these codes is presented. This
model can be used both by users and by library developers to optimize
the efficiency of the codes, as well as to simplify their use. The informa-
tion offered by this model combines theoretical features of the methods
and preconditioners in addition to certain practical considerations and
predictions about aspects of the performance of their execution in dis-
tributed memory multiprocessors.

1 Introduction

The complexity of parallel systems makes a priori performance prediction dif-
ficult. The reasons for the poor performance of codes on distributed memory
systems can be varied, and users need to be able to understand and correct per-
formance problems. This fact is especially relevant when high level libraries and
programming languages are used to implement parallel codes, as in the case of
HPF. A performance data collection, analysis and visualization environment is
needed to detect the effects of architectural and system software variations.

Most of the performance tools, both research and commercial, focus on low
level message–passing platforms such as MPI or PVM[4], and the most prevalent
approach taken by these tools is to collect performance data during program
execution and then provide post–mortem display and analysis of performance
information[12]. Our proposal is different; we present a model that predicts the
performance of irregular HPF and MPI codes.

The efficient implementation of irregular codes in HPF is difficult. However,
several techniques for handling this problem using intrinsic and library proce-
dures as well as data distribution directives can be applied. An exhaustive HPF
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library of iterative methods and preconditioners was developed[2]. A second ver-
sion of the library was developed using the message–passing programming model
for certain kernels of the library to obtain better performance[3]. The model pre-
sented in this paper analyses the performance of these codes, and can be used
both by users of this library to optimize the efficiency, and by library developers
to check inefficiencies.

In the literature, many iterative methods have been presented and it is im-
possible to cover them all. We chose the methods given below, either because
they represent the current state of the art for solving large sparse linear systems
[1] or because they present special programming features.

2 A library of iterative methods

2.1 Sparse linear systems

Let us consider applications that can be formulated in terms of the matrix equa-
tion A · x = b, called linear system, where matrix A and vector b are given, and
x must be calculated. The structure of A is highly dependent on the particu-
lar application, and some of them give rise to a matrix that is effectively dense
and can be efficiently solved using direct factorization–based methods, whereas
others generate a matrix that is sparse. For these types of matrices, iterative
methods[1] are preferred, especially when A is very large and sparse, due to
their efficiency in both memory and work requirements.

We developed PARAISO (PARAllel Iterative SOlver), that is a lib that in-
cludes several iterative methods, such us the Conjugate Gradient (CG), the Bi-
conjugate Gradient (BiCG), the Biconjugate Gradient Stabilized (BiCGSTAB),
the Conjugate Gradient Squared (CGS), the Generalized Minimal Residual (GM-
RES), the Jacobi method, the Quasi–Minimal Residual (QMR) and the Gauss–
Seidel Successive Over–Relaxation (SOR). Some preconditioners are also imple-
mented, and can be applied to the target sparse matrix to transform it into one
with a more favourable spectrum. These preconditioners are: the Jacobi precon-
ditioner, the Symmetric Successive Over–Relaxation (SSOR), the Incomplete LU
factorization (ILU(0)), the Incomplete LU factorization with threshold (ILUT),
the Neumann Polynomial preconditioner and the Least Squares Polynomial pre-
conditioner.

We implemented three version of these codes on the AP3000[7]. A F90 ver-
sion, a HPF version and an enhanced HPF version with those kernels coded in
MPI (which we refer to as HPI).

2.2 HPF Implementation

The data–parallel programming model upon which HPF is based requires a well–
defined mapping of the data onto local memories in order to achieve an efficient
parallel code architecture. Henceforth, we assume that vectors are represented as
N–element arrays and the sparse matrix is represented as three one–dimensional
arrays, either in CSC or CSR format[9].
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The most used operations in paraiso are the dotproduct and daxpy opera-
tions. HPF readily supports the inner product operations by an intrinsic func-
tion (DOT PRODUCT), and in addition, the daxpy operation is easily performed
using HPF’s parallel array assignments. In any parallel implementation that
distributes the vectors and the matrix among processor memories, the inner
products and sparse matrix–vector multiplications require data communications.
The element–wise multiplications in the inner products can be performed locally
without any communication overhead, while the merge phase for adding up the
partial results from processors involves some communication overhead. However,
the data distributions can be arranged so that all of the other computations will
be performed on local data only. For each operation we will show a data distri-
bution pattern in order to obtain optimal performance, and how the operation
is coded in HPF.

Using Np processors, daxpy operations can be performed in O(N/Np) time
on any architecture. On the other hand, the inner products take O(N/Np) time
for the local phase, but the merge overheads change according to the network
architecture.

As an example, we show here the code for a HPF implementation of matrix–
vector product. Let’s consider the multiplication of an N ×N arbitrarily sparse
matrix A, with NNZ non–zero entries, by an N × 1 vector x that gives a N × 1
vector y. Different solutions have been given to solve this problem. One implies
the modification of the matrix adding padding elements in order to obtain a
regular sparse matrix[10]. Other solutions involve the use of HPF extensions to
include specific data distributions for sparse matrices[11]. We propose to use
HPF intrinsic procedures[2]. Loops are replaced by calls to intrinsic and library
procedures, which are inherently parallel. The HPF code for the spmatvec with
CSC storage using HPF library procedures is shown below. A detailed description
of the code can be found in [3]

1 INTEGER, DIMENSION( N+1) : : colptr
2 INTEGER, DIMENSION( NNZ ) : : rowind
3 REAL, DIMENSION( NNZ ) : : d
4 REAL, DIMENSION( N ) : : x
5 REAL, DIMENSION( N ) : : y
6 REAL, DIMENSION( NNZ ) : : aux
7 LOGICAL, DIMENSION( NNZ ) : : segment
8

9 ! HPF$ ALIGN ( : ) WITH x ( : ) : : y
10 ! HPF$ ALIGN ( : ) WITH d ( : ) : : rowind , aux , segment
11 ! HPF$ DISTRIBUTE ( BLOCK ) : : d , x
12 ! HPF$ DISTRIBUTE ( ∗ ) : : colptr
13

14 y = ZERO
15 aux ( colptr ( : N ) ) = x
16 aux = COPY_PREFIX ( aux , SEGMENT = segment )
17 aux = d ∗ aux
18 y = SUM_SCATTER ( aux , y , rowind )

2.3 Hybrid Implementation: HPF+MPI

In this section we present the implementation of the main kernels of the itera-
tive methods using MPI (Message Passing Interface). The objective is to take
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advantage of the flexibility of the message–passing paradigm to optimize irreg-
ular computations in these kernels. In this way, the computations that involve
vectors (dot products, update of vectors (daxpy), etc.) can be efficiently coded
in HPF, whereas the irregular kernels are coded in MPI. Henceforth, the version
of Paraiso based on this approach will be referred as HPI.

To be able to carry out this approach, the matrix is distributed according to
a Block Column Scatter scheme (BCS)[8]. The execution of some functions to
redistribute the vectors used in the HPF part of the code (block distribution) to
the distributions used in the MPI kernels (cyclic distribution) and vice versa is
mandatory. These redistributions require high communication overheads.

The three vectors that represent the sparse matrix are distributed by HPF;
it is necessary to transform it into a BCS matrix in order to implement the basic
kernels in MPI.

Whereas, the BCS distribution uses a cyclic projection of the matrix onto
P × Q processors. The matrix is partitioned according to a P × Q template,
and each processor takes the non–null entries that fills with its position in the
template, as shown in the example in figure 1.
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Fig. 1. BCS partition of a sparse matrix in a 2 × 2 processor mesh.

As the sparse matrix–vector product is the most time consuming operation
in each iteration, its implementation should be as efficient as possible. Let us
suppose a typical situation in an iterative method:

DO iter = 1 , MAX_ITER
HPF operations with vectors
. . .
CALL HPI_spmatvec ( A , x , y )
. . .
HPF operations with vectors

END DO
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For an efficient MPI implementation of the sparse matrix–vector product
and taking into account the BCS distribution of the matrix, it is necessary to
redistribute the input vector, x, from a block to a cyclic by columns distribution.
The sparse matrix–vector product is then computed given a cyclic by rows dis-
tributed vector. Finally, this vector is redistributed to block in order to obtain
the output vector, y. This process is shown in figure 2 and it is summarized as
follows:

HPI_spmatvec ( A , x , y ) /∗ input vector x , output vector y ∗/
Block2CyclicCols ( x , x_cyc_cols ) ;
spmatvec ( A , x_cyl_cols , y_cyc_rows ) ;
CyclicRows2Block ( y_cyc_rows , y ) ;
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Fig. 2. HPI sparse matrix-vector product on a 2 × 2 processor mesh.

In order to implement the redistribution of the vector from block to cyclic
by columns; it is needed a preprocessing stage to obtain the data that will be
sent to each processor, their size and their stride. This stage is only executed
once in the HPI init function[3], and given the regularity of the distributions,
lacks communications. With this information, the necessary redistributions for
each sparse matrix–vector product can be carried out in two stages. In the pre-
processing step, the elements that will be sent to the processors in the same row
are determined. Given the regularity of the block and cyclic by columns distri-
butions, it can easily be seen that if the first element to be sent is known, the
remaining ones are equidistant. In each call to this function a communication
step, by rows, is carried out, followed by another one, by columns, to complete
the data needed by each processor. Each one of these communication steps is
carried out by means of a collective communication. In the case of redistribu-
tion from cyclic by rows to block, since there is redundancy of data, only a
communication step by columns is needed.

3 Performance Prediction

The complexity of parallel computers makes a priori performance prediction
difficult. For this reason, performance data collection, analysis and visualiza-
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tion environments are needed to detect the effects of architectural and system
software variations.

When programming these systems, the reasons for poor performance of par-
allel message–passing and data parallel codes can be varied and complex, and
users need to be able to understand and correct performance problems. Perfor-
mance tools can help by monitoring the execution of a program and producing
performance data that can be analyzed to locate and understand areas of poor
performance. This situation is particularly relevant when high–level libraries and
programming languages are used to implement parallel codes, as in the case of
HPF. This is true in regular problems, but it is especially important and difficult
on irregular codes, such as those included in PARAISO.

Most of the performance tools, both research and commercial, focus on low
level message–passing platforms[4], such as MPI or PVM, and the most preva-
lent approach taken by these tools is to collect performance data during program
execution, and then provide post-mortem display and analysis of performance
information[12]. Our proposal is different, we present a model that predicts per-
formance of the irregular codes of PARAISO before executing them, giving
valuable information about theoretical and practical considerations that can
help the user to understand the execution of several iterative methods on their
particular sparse linear system.

3.1 Analisis of computations

Execution time is the common measure of computer performance. However, an-
other popular alternative in numerical codes is million floating point operations
per second (MFLOPS). MFLOPS gauges the capability of a system to deal with
floating point math instead of raw instructions. The estimation of the number
of FLOPs depends on the target machine. Hence, MFLOPS are not reliable, as
the group of floating point operations is not consistent in different systems.

The proposed prediction model counts the number of FLOPs required for
every kernel in the library. Based on these kernels it counts the number of FLOPs
for one iteration of every method and preconditioner. We can not predict the
number of iterations required to achieve convergence, however, the number of
FLOPs per iteration gives an idea of the computational cost of any method.

In table 1, the number of FLOPs for different kernels and methods of the
library PARAISO are shown. The number of FLOPs required for the first
iteration of each method, which is the most expensive one is also included. In
this way, the initial set of residuals and the computation of the required norms
for the stopping criterium are considered.

3.2 Analisis of communications

The study of the communication pattern generated by HPF programs is essential
for predicting its overhead. The straightforward way to check this pattern is
to execute the program with profiling capabilities, taking data from different
executions (i.e., different number of processors or different problems).
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Table 1. #FLOPs for kernel and methods. n is matrix dimension (N). α is NNZ. r is
the restart for the GMRES method

KERNELS

kernel FLOPs

spmatvec 2α
spmatvectrans 2α− 1
dotproduct 2n − 1
jacobi split n
sor split α+ n
stoptest 2n
norm inf α
triang 2α− n

METHODS

method FLOPs 1st iter FLOPs next iter

CG 19n + 7α− 3 12n + 2α
BiCG 23n + 9α− 4 16n + 4α− 1
BiCGstab 29n + 9α 22n + 4α + 3
CGS 25n + 9α− 4 18n + 5α− 1
GMRES (r2 + 6r + 13)n (r2 + 6r + 8)n + (2r + 3)α

+(2r + 7)α− ((r3/3) +(2r + 3)α− ((r3/3)
+(9r2/2)− (5r/6)− 2) +(9r2/2)− (5r/6)− 1)

QMR 35n + 9α + 16 24n + 4α + 18
Jacobi 11n + 4α− 1 5n + 2α
SOR 10n + 5α− 1 4n + 2α

We used a profiling tool to trace PARAISO library. Once the trace in-
formation for a given routine is obtained, the communication patterns for the
different kernels in PARAISO library can be extracted. As an of an example,
the behavior of the matrix–vector kernel is described. next.

The matrix–vector product was implemented in HPF using intrinsic functions
in order to achieve high performance as was explained in section 2.2. From the
point of view of communications, only lines 15, 16 and 18 produce messages[2].

aux(colptr(:N)) = x implements the first stage of filling aux vector. This
HPF line presents an indirection in the left–hand side of the statement, Thus,
the HPF compiler cannot detect which elements of vector x will be assigned to
the correponding aux entry, as they depend on the values of colptr which are
unknown at compilation time. The compiler that we used solves the situation in
two stages: first, vector x is sent to processor 0 and then this processor calculates
the corresponding aux(i) (since colptr is replicated); and then, it sends the
result to the processor that owns aux(i). The situation is described in figure 3
for four processors. Note the low efficiency of this approach, as in fact, the HPF
line is executed in a sequential way. Similar study was made with routines at
lines 16 and 18[3].

The HPI version of PARAISO integrates MPI coded kernels with HPF
coded methods and preconditioners. From the point of view of communications,
we only need to predict the MPI kernels, since dense operations with communi-
cations, such us the inner product, are performed in HPF and we can use the
HPF communication prediction routines in this case.

As is explained in section 2.3, the MPI implementation of the kernels is based
on a distributed BCS matrix and a number of redistribution routines to exchange
data between the HPF and MPI worlds. The prediction of the performance of
these kernels consists of simulating them by using an array of BCS matrices
(one for each processor). All the communications in these kernels are based on
global MPI communication routines (MPI Alltoallv, MPI Allreduce, etc.) which
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Fig. 3. aux(colptr(:N)) = x using four processors

direct the communication patterns defined in HPI init. The prediction routines
for HPI builds a simulation of these communications patterns and gathers the
corresponding communication accounting for every MPI communication routine.

3.3 A model to predict execution times of computations and
communications

In order to predict the execution time of parallel irregular codes such as those of
PARAISO, it is necessary to consider a great number of events: computations,
communications, memory access costs, waiting times, etc.

We construct a model that provides an estimation of the computation time
due to FLOPS, the number of cache misses, and the communication times for
each message according to its size. The relationship between the number of
FLOPs and the actual execution time for every method can be modeled by the
following linear expression:

tcomp = γf + β (1)

where f is the number of FLOPs and tcomp is the execution time in seconds.
The values for the parameters γ and β depends on the iterative method. They
are shown in table 2. R2 is the fitting standard deviation.

Table 2. Linear model for computation and communication time. Fitting parameters

Computations

Method γ β R2

CG, BiCG, 0.419 0.0013 0.99
BiCGStab,
GMRES, CGS

SOR 0.637 0.0014 0.99

Jacobi 0.726 0.0006 0.99

QMR 0.375 0.0012 0.99

Communications

Message Size (doubles) γ β R2

Send 0–120 1.59 · 10−7 7.63 · 10−5 0.39

Receive 0–120 3.21 · 10−7 4.59 · 10−5 0.66

Send 121–1000 6.25 · 10−8 1.15 · 10−4 0.92

Receive 121–1000 7.44 · 10−8 7.41 · 10−5 0.93

Send 1001– 8.02 · 10−8 8.91 · 10−5 1.00

Receive 1001– 1.40 · 10−7 9.75 · 10−5 1.00
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We have carried out a similar study for the cost of the communications,
measuring the time for sending and receiving a message of different sizes. Once
again, according to a linear model we have:

tcomm = γm+ β (2)

where m is the message size in doubles (8 bytes) and tcomm is the execution time
in seconds. We obtain three different intervals for characterizing this behaviour
(shown in table 2). We have used a ping-pong benchmark to establish these
measures. Note that, for small messages, the correlation indexes are not high
due to the great variance of measuring small runtimes. For larger messages we
obtain better results for the fittings.

Finally, we have used a model to predict the number of cache misses found
in accessing data for the HPI version of PARAISO. The model[6] is based on
a program that simulates the secondary cache of each processor of the AP3000.

4 Results

To validate the prediction model, a number of experiments have been carried out
on the AP3000 multiprocessor system. As an example we show the Conjugate
Gradient method with a set of matrices of the Harwell–Boeing suite[5]. In figure
4 the predicted and real execution times, and the prediction error for different
matrices with the CG method are shown. Note that most of the predictions show
errors lower than 15%.

5 Conclusion

A parallel iterative solver library is presented and a performance prediction
model for this library is developed. The library has been implement using HPF
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and a number of kernels of the library were codes in MPI in order to achive
better performance.

The execution time of these codes has been characterized in terms of MFLOPs,
and the communication patterns of the principal kernels were established. By
using the prediction model, it is easy to understand the application behaviour,
to evaluate the load balance, to analyze the performance of the kernels, to in-
vestigate the communication patterns and performance, and to identify commu-
nication hot spots.

Future work for this prediction model will be required in order to obtain
better prediction times for communication in HPI version, and it will be espe-
cially necessary to model especially the collective communications routines used
in HPI kernels.
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